Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2219-2231.doi: 10.3864/j.issn.0578-1752.2020.11.008
• PLANT PROTECTION • Previous Articles Next Articles
LIU XiaoJian1(),GUO Jun1,2,ZHANG XueYao1,MA EnBo1,ZHANG JianZhen1
[1] |
ARANDA A, PASCUAL A . Nuclear hormone receptors and gene expression. Physiological Reviews, 2001,81(3):1269-1304.
doi: 10.1152/physrev.2001.81.3.1269 |
[2] |
HELSEN C, CLAESSENS F . Looking at nuclear receptors from a new angle. Molecular and Cellular Endocrinology, 2014,382(1):97-106.
doi: 10.1016/j.mce.2013.09.009 |
[3] | 周树堂, 郭伟, 宋佳晟 . 昆虫变态的激素与基因调控. 生物学通报, 2012,47(9):1-6. |
ZHOU S T, GUO W, SONG J S . Insect metamorphosis hormones and gene regulation. Bulletin of Biology, 2012,47(9):1-6. (in Chinese) | |
[4] | 何倩毓, 张原熙, 裴泽华, 李美鑫, 张旭 . 保幼激素对昆虫变态发育调控的分子机制. 昆虫学报, 2017,60(5):594-603. |
HE Q Y, ZHANG Y X, PEI Z H, LI M X, ZHANG X . Molecular mechanisms of juvenile hormone regulation on insect metamorphosis. Acta Entomologica Sinica, 2017,60(5):594-603. (in Chinese) | |
[5] |
GUO X P, HARMON M A, LAUDET V, MANGELSDORF D J, PALMER M J . Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology, 1997,27(11):945-962.
doi: 10.1016/S0965-1748(97)00075-1 |
[6] |
FAHRBACH S E, SMAGGHE G, VELARDE R A . Insect nuclear receptors. Annual Review of Entomology, 2012,57:83-106.
doi: 10.1146/annurev-ento-120710-100607 |
[7] |
BIALECKI M, SHILTON A, FICHTENBERG C, SEGRAVES W A, THUMMEL C S . Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Developmental Cell, 2002,3(2):209-220.
doi: 10.1016/S1534-5807(02)00204-6 |
[8] |
PIERCEALL W E, LI C, BIRAN A, MIURA K, RAIKHEL A S, SEGRAVES W A . E75 expression in mosquito ovary and fat body suggests reiterative use of ecdysone-regulated hierarchies in development and reproduction. Molecular and Cellular Endocrinology, 1999,150(1/2):73-89.
doi: 10.1016/S0303-7207(99)00022-2 |
[9] |
HIRUMA K, RIDDIFORD L M . Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3. Developmental Biology, 2004,272(2):510-521.
doi: 10.1016/j.ydbio.2004.04.028 |
[10] |
JINDRA M, SEHNAL F, RIDDIFORD L M . Isolation, characterization and developmental expression of the ecdysteroid-induced E75 gene of the wax moth Galleria mellonella. European Journal of Biochemistry, 1994,221(2):665-675.
doi: 10.1111/ejb.1994.221.issue-2 |
[11] | RETNAKARAN A, MACDONALD A, TOMKINS W L, DAVIS C N, BROWNWRIGHT A J, PALLI S R . Ultrastructural effects of a non-steroidal ecdysone agonist, RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 1997,43(1):55-68. |
[12] |
SWEVERS L, ITO K, IATROU K . The BmE75 nuclear receptors function as dominant repressors of the nuclear receptor BmHR3A. The Journal of Biological Chemistry, 2002,277(44):41637-41644.
doi: 10.1074/jbc.M203581200 |
[13] |
SIAUSSAT D, BOZZOLAN F, QUEGUINER I, PORCHERON P, DEBERNARD S . Effects of juvenile hormone on 20-hydroxyecdysone- inducible EcR, HR3, E75 gene expression in imaginal wing cells of Plodia interpunctella lepidoptera. European Journal of Biochemistry, 2004,271(14):3017-3027.
doi: 10.1111/(ISSN)1432-1033 |
[14] |
PAUL R K, TAKEUCHI H, KUBO T . Expression of two ecdysteroid-regulated genes, Broad-Complex and E75, in the brain and ovary of the honeybee (Apis mellifera L.). Zoological Science, 2006,23(12):1085-1092.
doi: 10.2108/zsj.23.1085 |
[15] | PARTHASARATHY R, TAN A, BAI H, PALLI S R . Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mechanisms of Development, 2008,125(3/4):299-313. |
[16] |
GUO W C, LIU X P, FU K Y, SHI J F, LÜ F G, LI G Q . Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). Insect Molecular Biology, 2016,25(1):44-57.
doi: 10.1111/imb.12197 |
[17] |
MANE-PADROS D, CRUZ J, VILAPLANA L, PASCUAL N, BELLES X, MARTIN D . The nuclear hormone receptor BgE75 links molting and developmental progression in the direct-developing insect Blattella germanica. Developmental Biology, 2008,315(1):147-160.
doi: 10.1016/j.ydbio.2007.12.015 |
[18] |
YANG, Q P, LI Z, CAO J J, ZHANG S D, ZHANG H J, WU X Y, ZHANG Q W, LIU X X . Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 2014,9(6):e98164.
doi: 10.1371/journal.pone.0098164 |
[19] |
LIU X J, LI F, LI D Q, MA E B, ZHANG W Q, ZHU K Y, ZHANG J Z . Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust, Locusta migratoria. PLoS ONE, 2013,8(8):e71970.
doi: 10.1371/journal.pone.0071970 |
[20] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 |
[21] |
LI D Q, ZHAGN J Q, WANG Y, LIU X J, MA E B, SUN Y, LI S, ZHU K Y, ZHANG J Z . Two chitinase 5 genes from Locusta migratoria: Molecular characteristics and functional differentiation. Insect Biochemistry and Molecular Biology, 2015,58:46-54.
doi: 10.1016/j.ibmb.2015.01.004 |
[22] |
LIU X J, SUN Y W, LI D Q, LI S, MA E B, ZHANG J Z . Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria. Insect Science, 2018,25(2):211-221.
doi: 10.1111/1744-7917.12406 |
[23] |
SONG T Q, YANG M L, WANG Y L, LIU Q, WANG H M, ZHANG J, LI T . Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Insect Science, 2016,23(4):520-530.
doi: 10.1111/1744-7917.12342 |
[24] |
LI K, GUO E E, HOSSAIN M S, LI Q R, CAO Y, TIAN L, DENG X J, LI S . Bombyx E75 isoforms display stage- and tissue-specific responses to 20-hydroxyecdysone. Scientific Reports, 2015,5:12114.
doi: 10.1038/srep12114 |
[25] |
ESCRIVA H, BERYRAND S, LAUDET V . The evolution of the nuclear receptor superfamily. Essays in Biochemistry, 2004,40(2):11-26.
doi: 10.1042/bse0400011 |
[26] |
CACERES L, NECAKOV A S, SCHWARTZ C, KIMBER S, ROBERTS I J, KRAUSE H M . Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes and Development, 2011,25(14):1476-1485.
doi: 10.1101/gad.2064111 |
[27] |
JOHNSTON D M, SEDKOV Y, PETRUK S, RILEY K M, FUJILKA M, JAYNES J B, MAZO A . Ecdysone- and no-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Molecular Cell, 2011,44(1):51-61.
doi: 10.1016/j.molcel.2011.07.033 |
[28] |
KESHAN B, HIRUMA K, RIDDIFORD L M . Developmental expression and hormonal regulation of different isoforms of the transcription factor E75 in the tobacco hornworm Manduca sexta. Developmental Biology, 2006,295(2):623-632.
doi: 10.1016/j.ydbio.2006.03.049 |
[29] | 李凯龙 . 褐飞虱蜕皮及变态信号途径相关基因的功能分析[D]. 北京: 中国农业科学院, 2016. |
LI K L . Functional analysis of the genes involved in molting and metamorphosis signal pathways in Nilaparvata lugens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese) | |
[30] |
ZHAO X M, QIN Z Y, LIU W M, LIU X J, MOUSSIAN B, MA E B, LI S, ZHANG J Z . Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochemistry and Molecular Biology, 2018,92:1-11.
doi: 10.1016/j.ibmb.2017.11.001 |
[31] | ZHAO X M, QIN Z Y, ZHANG J, YANG Y, JIA P, YANG Q, MA E B, ZHANG J Z . Nuclear receptor HR39 is required for locust molting by regulating the chitinase and carboxypeptidase genes. Insect Molecular Biology, 2019,28(4):537-549. |
[32] |
YU Z T, ZHANG X Y, WANG Y W, MOUSSIAN B, ZHU K Y, LI S, MA E B, ZHANG J Z . LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Scientific Reports, 2016,6:29980.
doi: 10.1038/srep29980 |
[33] |
YU Z T, WANG Y W, ZHAO X M, LIU X J, MA E B, MOUSSIAN B, ZHANG J Z . The ABC transporter ABCH-9C is needed for cuticle barrier construction in Locusta migratoria.Insect Biochemistry and Molecular Biology, 2017, 87:90-99.
doi: 10.1016/j.ibmb.2017.06.005 |
[34] |
ZHENG J Z, LIU X J, ZHANG J Q, LI D Q, SUN Y, GUO Y P, MA E B, ZHU K Y . Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochemistry and Molecular Biology, 2010,40(11):824-833.
doi: 10.1016/j.ibmb.2010.08.001 |
[35] | YU R R, LIU W M, LI D Q, ZHAO X M, DING G W, ZHANG M, MA E B, ZHU K Y, LI S, MOUSSIAN B, ZHANG J Z . Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). The Journal of Biological Chemistry, 2016,291(47):24352-24363. |
[36] | ZHAO X M, GOU X, LIU W M, MA E B, MOUSSIAN B, LI S, ZHU K Y, ZHANG J Z . The wing-specific cuticular protein LmACP7 is essential for normal wing morphogenesis in the migratory locust. Insect Biochemistry and Molecular Biology, 2019,112:103206. |
[1] | ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338. |
[2] | GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. |
[3] | YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571. |
[4] | WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346. |
[5] | CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160. |
[6] | Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153. |
[7] | GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031. |
[8] | TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131. |
[9] | ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119. |
[10] | YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. |
[11] | MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399. |
[12] | DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246. |
[13] | WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031. |
[14] | JIA Pan,ZHANG Jing,YANG Yang,LIU WeiMin,ZHANG JianZhen,ZHAO XiaoMing. Expression and Function Analysis of Endocuticle Structural Glycoprotein Gene LmAbd-2 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(4): 651-660. |
[15] | JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526. |
|