Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (11): 2219-2231.doi: 10.3864/j.issn.0578-1752.2020.11.008

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria

LIU XiaoJian1(),GUO Jun1,2,ZHANG XueYao1,MA EnBo1,ZHANG JianZhen1   

  1. 1Research Institute of Applied Biology, Shanxi University, Taiyuan 030006
    2College of Life Science, Shanxi University, Taiyuan 030006
  • Received:2019-10-30 Accepted:2019-12-10 Online:2020-06-01 Published:2020-06-09
  • Contact: XiaoJian LIU E-mail:xiaojianliu@sxu.edu.cn

Abstract:

【Objective】Nuclear receptors (NRs) act as ligand-inducible transcription factors, which play an important role during growth and development in insects. Locusta migratoria is an important agricultural pest. The objective of this study is to analyze the molecular characteristics and biological function of the nuclear receptor gene LmE75 in L. migratoria, and to provide a new molecular target for pest control. 【Method】The cDNA sequences of three LmE75 genes were obtained based on the transcriptome database of L. migratoria. The open reading frames, predicted amino acid sequences, physicochemical properties and conserved domains of each gene were analyzed using Blast and ExPASy websites. Using MEGA 6.0 software, the neighbor-joining (NJ) method was used to construct a phylogenetic tree with the homologous sequences of E75 from other insects. Specific primers of three LmE75 isoforms were designed using Primer 3.0 software. Reverse transcription-quantitative PCR (RT-qPCR) was used to analyze the expression characteristics of three LmE75 isoforms in different tissues and developmental days from 4th to 5th instar nymphs. To further test whether LmE75 was regulated by 20-hydroxyecdysone (20E), the expression of LmE75 was detected by RT-qPCR after injected with 20E in vivo and interfered with the 20E receptor gene LmEcR by RNAi. The double-stranded RNA (dsRNA) of the common region of three LmE75 isoforms was synthesized in vitro, and then was injected into the 5th instar nymphs. The total RNA of integument was extracted after 48 h, and the first strand cDNA was synthesized as the template of RT-qPCR. The silencing efficiency of LmE75 was detected by RT-qPCR technology and the phenotype was observed. The effect on the structure of cuticle after injected with dsLmE75 was analyzed by H&E staining method. 【Result】Three cDNA sequences of LmE75 were obtained based on the transcriptome database of L. migratoria. According to structural characteristics, they were named LmE75A, LmE75B and LmE75C, respectively. The GenBank accession numbers were MN584732, MN584733 and MN584734. Each of the three LmE75 isoforms had typical nuclear receptor conserved domains, and DBD (DNA binding domain) and LBD (ligand binding domain) were highly conserved among insects. Phylogenetic tree analysis showed that E75 isoforms of different orders of insects were preferentially clustered into one group. RT-qPCR results showed that three LmE75 isoforms had different tissue and developmental expression characteristics. LmE75A was highly expressed in the integument and muscle. LmE75B was highly expressed in the integument, followed by the foregut. LmE75C was specifically expressed in the integument. The expression level of LmE75A increased first and then decreased at the 4th and 5th instar nymphs. The expression levels of LmE75B were the highest in N4D3 and N5D5, and lower before and after molting. The expression level of LmE75C increased gradually at both the 4th and 5th instar nymphs, with the highest expression before molting. Compared with the control group, the expression level of LmE75 significantly increased by 4.2 and 4.5 times after 20E induction for 3 h and 6 h, respectively. The expression level of LmE75 was significantly down-regulated by 59% after interference with LmEcR for 48 h by RNAi. After injection of dsLmE75 on the 1st day of 5th instar nymphs, L. migratoria exhibited obvious developmental delay phenotype and all L. migratoria could not molt to adults. The H&E staining of the integument found that the cuticle of dsLmE75-injected L. migratoria showed no apolysis. 【Conclusion】There are three LmE75 isoforms in L. migratoria, and they have different tissue and developmental expression characteristics. RNAi results show that LmE75 play an important role in the molting of L. migratoria.

Key words: Locusta migratoria, nuclear receptor (NR), LmE75, 20-hydroxyecdysone (20E), RNA interference (RNAi)

Table 1

Species and GenBank accession number for phylogenetic tree used in this study"


Order
物种
Species
基因
Gene
GenBank 登录号
GenBank accession number
半翅目
Hemiptera
绿盲蝽Apolygus lucorum AlE75A、AlE75B、AlE75C ATN39778.1、ATN39779.1、ATN39780.1
温带臭虫Cimex lectularius
ClE75X1、ClE75X2、ClE75X3
XP_014240379.1、XP_014240380.1、XP_014240381.1
褐飞虱Nilaparvata lugens NlE75X1、NlE75X2 XP_022197917.1、XP_022197918.1
膜翅目
Hymenoptera
哥伦比亚芭切叶蚁Atta colombica AcE75 KYM84307.1
黑毛蚁Lasius niger LnE75 KMQ93219.1
红胡须蚁Pogonomyrmex barbatus PbE75X1 XP_011640767.1
小黄家蚁Monomorium pharaonis MpE75X1、MpE75X2、MpE75X4 XP_012534660.1、XP_028049966.1、XP_028049973.1
西方蜜蜂Apis mellifera AmE75X1 XP_006564380.1
丽蝇蛹集金小蜂Nasonia vitripennis NvE75 XP_008204671.1
双翅目
Diptera
黑腹果蝇Drosophila melanogaster DmE75A、DmE75B、DmE75C、DmE75D AAN11688.1、AAF49282.3、AAN11687.1、AAN11689.1
埃及伊蚊Aedes aegypti AaE75X1、AaE75X2、AaE75X3 XP_021704146.1、XP_011493380.2、XP_001652743.3
橘小实蝇Bactrocera dorsalis BdE75 AGF44569.1
鞘翅目
Coleoptera
马铃薯甲虫Leptinotarsa decemlineata LdE75X1、LdE75X2、LdE75X3 AKN56577.1、AKN56578.1、ALU57795.1
赤拟谷盗Tribolium castaneum TcE75X1、TcE75X2、TcE75X3、TcE75X4、TcE75X5 XP_008197843.1、XP_008197844.1、XP_971362.2、XP_008197845、XP_015838722.1
蜚蠊目
Blattodea
德国小蠊Blattella germanica BgE75A、BgE75B、BgE75C、BgE75D、BgE75E CAJ87513.1、CAJ87514.1、CAM97373.1、CAM97374.1、CAM97375.1
湿木白蚁Zootermopsis nevadensis ZnE75X1、ZnE75X2、ZnE75X3 XP_021938067.1、XP_021938068.1、XP_021938069.1
鳞翅目
Lepidoptera
家蚕Bombyx mori BmE75A、BmE75B、BmE75C、BmE75D NP_001106079.1、NP_001106080.1、NP_001037042.1、BAR88292.1
直翅目Orthoptera 飞蝗Locusta migratoria LmE75A、LmE75B、LmE75C MN584732、MN584733、MN584734

Table 2

Primers used for RT-qPCR and RNAi analysis"

基因Gene 引物序列
Primer sequence (5′-3′)
用途
Application
产物长度
Length of product (bp)
β-actin-F/R CGAAGCACAGTCAAAGAGAGGTA/GCTTCAGTCAAGAGAACAGGATG RT-qPCR 156
LmE75A-F/R TTCCGTGTCCTCCAAGCTAG/ACCTTGCACGGGATGATCTC 111
LmE75B-F/R ATGATCCTGTCCGACGGC/CCCGTCGAACTCTATGTGGA 150
LmE75C-F/R ATGACTGTGAAGGACCCGG/ACTCTTCTAGAACCCTGCCT 133
LmE75-F/R CTGCTCGGTGGTGGTGAT/GTCATCTTGAAGGCGAGCAG 85
LmEcR-F/R GACAAACTGCTACGGGAAGA/CTATCGTTTCTCCCATACCAG 172
dsLmE75-F/R taatacgactcactatagggAGCTGGAGGACCAGTCTGC/taatacgactcactatagggGCGAAGTCGAACATGGAGTC RNAi 460
dsLmEcR-F/R taatacgactcactatagggCAGCAACGCCGCACCCT/taatacgactcactatagggCACTGGTACACGGCATTT 408
dsGFP-F/R taatacgactcactatagggTGGAGAGGGTGAAGG/taatacgactcactatagggGGCAGATTGTGTGGAC 712

Fig. 1

Sequence analysis of three LmE75 isoforms and amino acid multiple alignment with E75 in different insects"

Fig. 2

Phylogenetic analysis of E75 from different insect species"

Fig. 3

The mRNA expression of LmE75 in different tissues and days from 4th-5th instar nymphs of L. migratoria"

Fig. 4

The relative expression of LmE75 after injection with 20E and dsLmEcR"

Fig. 5

Phenotypic analysis and histological observation of the integument of 5th instar nymphs of L. migratoria after injected with dsLmE75"

[1] ARANDA A, PASCUAL A . Nuclear hormone receptors and gene expression. Physiological Reviews, 2001,81(3):1269-1304.
doi: 10.1152/physrev.2001.81.3.1269
[2] HELSEN C, CLAESSENS F . Looking at nuclear receptors from a new angle. Molecular and Cellular Endocrinology, 2014,382(1):97-106.
doi: 10.1016/j.mce.2013.09.009
[3] 周树堂, 郭伟, 宋佳晟 . 昆虫变态的激素与基因调控. 生物学通报, 2012,47(9):1-6.
ZHOU S T, GUO W, SONG J S . Insect metamorphosis hormones and gene regulation. Bulletin of Biology, 2012,47(9):1-6. (in Chinese)
[4] 何倩毓, 张原熙, 裴泽华, 李美鑫, 张旭 . 保幼激素对昆虫变态发育调控的分子机制. 昆虫学报, 2017,60(5):594-603.
HE Q Y, ZHANG Y X, PEI Z H, LI M X, ZHANG X . Molecular mechanisms of juvenile hormone regulation on insect metamorphosis. Acta Entomologica Sinica, 2017,60(5):594-603. (in Chinese)
[5] GUO X P, HARMON M A, LAUDET V, MANGELSDORF D J, PALMER M J . Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.). Insect Biochemistry and Molecular Biology, 1997,27(11):945-962.
doi: 10.1016/S0965-1748(97)00075-1
[6] FAHRBACH S E, SMAGGHE G, VELARDE R A . Insect nuclear receptors. Annual Review of Entomology, 2012,57:83-106.
doi: 10.1146/annurev-ento-120710-100607
[7] BIALECKI M, SHILTON A, FICHTENBERG C, SEGRAVES W A, THUMMEL C S . Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Developmental Cell, 2002,3(2):209-220.
doi: 10.1016/S1534-5807(02)00204-6
[8] PIERCEALL W E, LI C, BIRAN A, MIURA K, RAIKHEL A S, SEGRAVES W A . E75 expression in mosquito ovary and fat body suggests reiterative use of ecdysone-regulated hierarchies in development and reproduction. Molecular and Cellular Endocrinology, 1999,150(1/2):73-89.
doi: 10.1016/S0303-7207(99)00022-2
[9] HIRUMA K, RIDDIFORD L M . Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3. Developmental Biology, 2004,272(2):510-521.
doi: 10.1016/j.ydbio.2004.04.028
[10] JINDRA M, SEHNAL F, RIDDIFORD L M . Isolation, characterization and developmental expression of the ecdysteroid-induced E75 gene of the wax moth Galleria mellonella. European Journal of Biochemistry, 1994,221(2):665-675.
doi: 10.1111/ejb.1994.221.issue-2
[11] RETNAKARAN A, MACDONALD A, TOMKINS W L, DAVIS C N, BROWNWRIGHT A J, PALLI S R . Ultrastructural effects of a non-steroidal ecdysone agonist, RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 1997,43(1):55-68.
[12] SWEVERS L, ITO K, IATROU K . The BmE75 nuclear receptors function as dominant repressors of the nuclear receptor BmHR3A. The Journal of Biological Chemistry, 2002,277(44):41637-41644.
doi: 10.1074/jbc.M203581200
[13] SIAUSSAT D, BOZZOLAN F, QUEGUINER I, PORCHERON P, DEBERNARD S . Effects of juvenile hormone on 20-hydroxyecdysone- inducible EcR, HR3, E75 gene expression in imaginal wing cells of Plodia interpunctella lepidoptera. European Journal of Biochemistry, 2004,271(14):3017-3027.
doi: 10.1111/(ISSN)1432-1033
[14] PAUL R K, TAKEUCHI H, KUBO T . Expression of two ecdysteroid-regulated genes, Broad-Complex and E75, in the brain and ovary of the honeybee (Apis mellifera L.). Zoological Science, 2006,23(12):1085-1092.
doi: 10.2108/zsj.23.1085
[15] PARTHASARATHY R, TAN A, BAI H, PALLI S R . Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum. Mechanisms of Development, 2008,125(3/4):299-313.
[16] GUO W C, LIU X P, FU K Y, SHI J F, LÜ F G, LI G Q . Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). Insect Molecular Biology, 2016,25(1):44-57.
doi: 10.1111/imb.12197
[17] MANE-PADROS D, CRUZ J, VILAPLANA L, PASCUAL N, BELLES X, MARTIN D . The nuclear hormone receptor BgE75 links molting and developmental progression in the direct-developing insect Blattella germanica. Developmental Biology, 2008,315(1):147-160.
doi: 10.1016/j.ydbio.2007.12.015
[18] YANG, Q P, LI Z, CAO J J, ZHANG S D, ZHANG H J, WU X Y, ZHANG Q W, LIU X X . Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 2014,9(6):e98164.
doi: 10.1371/journal.pone.0098164
[19] LIU X J, LI F, LI D Q, MA E B, ZHANG W Q, ZHU K Y, ZHANG J Z . Molecular and functional analysis of UDP-N-acetylglucosamine pyrophosphorylases from the migratory locust, Locusta migratoria. PLoS ONE, 2013,8(8):e71970.
doi: 10.1371/journal.pone.0071970
[20] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[21] LI D Q, ZHAGN J Q, WANG Y, LIU X J, MA E B, SUN Y, LI S, ZHU K Y, ZHANG J Z . Two chitinase 5 genes from Locusta migratoria: Molecular characteristics and functional differentiation. Insect Biochemistry and Molecular Biology, 2015,58:46-54.
doi: 10.1016/j.ibmb.2015.01.004
[22] LIU X J, SUN Y W, LI D Q, LI S, MA E B, ZHANG J Z . Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria. Insect Science, 2018,25(2):211-221.
doi: 10.1111/1744-7917.12406
[23] SONG T Q, YANG M L, WANG Y L, LIU Q, WANG H M, ZHANG J, LI T . Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Insect Science, 2016,23(4):520-530.
doi: 10.1111/1744-7917.12342
[24] LI K, GUO E E, HOSSAIN M S, LI Q R, CAO Y, TIAN L, DENG X J, LI S . Bombyx E75 isoforms display stage- and tissue-specific responses to 20-hydroxyecdysone. Scientific Reports, 2015,5:12114.
doi: 10.1038/srep12114
[25] ESCRIVA H, BERYRAND S, LAUDET V . The evolution of the nuclear receptor superfamily. Essays in Biochemistry, 2004,40(2):11-26.
doi: 10.1042/bse0400011
[26] CACERES L, NECAKOV A S, SCHWARTZ C, KIMBER S, ROBERTS I J, KRAUSE H M . Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes and Development, 2011,25(14):1476-1485.
doi: 10.1101/gad.2064111
[27] JOHNSTON D M, SEDKOV Y, PETRUK S, RILEY K M, FUJILKA M, JAYNES J B, MAZO A . Ecdysone- and no-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during Drosophila development. Molecular Cell, 2011,44(1):51-61.
doi: 10.1016/j.molcel.2011.07.033
[28] KESHAN B, HIRUMA K, RIDDIFORD L M . Developmental expression and hormonal regulation of different isoforms of the transcription factor E75 in the tobacco hornworm Manduca sexta. Developmental Biology, 2006,295(2):623-632.
doi: 10.1016/j.ydbio.2006.03.049
[29] 李凯龙 . 褐飞虱蜕皮及变态信号途径相关基因的功能分析[D]. 北京: 中国农业科学院, 2016.
LI K L . Functional analysis of the genes involved in molting and metamorphosis signal pathways in Nilaparvata lugens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. ( in Chinese)
[30] ZHAO X M, QIN Z Y, LIU W M, LIU X J, MOUSSIAN B, MA E B, LI S, ZHANG J Z . Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochemistry and Molecular Biology, 2018,92:1-11.
doi: 10.1016/j.ibmb.2017.11.001
[31] ZHAO X M, QIN Z Y, ZHANG J, YANG Y, JIA P, YANG Q, MA E B, ZHANG J Z . Nuclear receptor HR39 is required for locust molting by regulating the chitinase and carboxypeptidase genes. Insect Molecular Biology, 2019,28(4):537-549.
[32] YU Z T, ZHANG X Y, WANG Y W, MOUSSIAN B, ZHU K Y, LI S, MA E B, ZHANG J Z . LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria. Scientific Reports, 2016,6:29980.
doi: 10.1038/srep29980
[33] YU Z T, WANG Y W, ZHAO X M, LIU X J, MA E B, MOUSSIAN B, ZHANG J Z . The ABC transporter ABCH-9C is needed for cuticle barrier construction in Locusta migratoria.Insect Biochemistry and Molecular Biology, 2017, 87:90-99.
doi: 10.1016/j.ibmb.2017.06.005
[34] ZHENG J Z, LIU X J, ZHANG J Q, LI D Q, SUN Y, GUO Y P, MA E B, ZHU K Y . Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochemistry and Molecular Biology, 2010,40(11):824-833.
doi: 10.1016/j.ibmb.2010.08.001
[35] YU R R, LIU W M, LI D Q, ZHAO X M, DING G W, ZHANG M, MA E B, ZHU K Y, LI S, MOUSSIAN B, ZHANG J Z . Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). The Journal of Biological Chemistry, 2016,291(47):24352-24363.
[36] ZHAO X M, GOU X, LIU W M, MA E B, MOUSSIAN B, LI S, ZHU K Y, ZHANG J Z . The wing-specific cuticular protein LmACP7 is essential for normal wing morphogenesis in the migratory locust. Insect Biochemistry and Molecular Biology, 2019,112:103206.
[1] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[7] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[8] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[9] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[10] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[11] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
[12] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[13] WANG Jia,WANG Pan,FAN Huan,LIU YingHong. Comparison of Metabolic Profile Between Diapause-Destined and Non-Diapause-Destined Pupae of Bactrocera minax [J]. Scientia Agricultura Sinica, 2019, 52(6): 1021-1031.
[14] JIA Pan,ZHANG Jing,YANG Yang,LIU WeiMin,ZHANG JianZhen,ZHAO XiaoMing. Expression and Function Analysis of Endocuticle Structural Glycoprotein Gene LmAbd-2 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(4): 651-660.
[15] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!