Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 508-518.doi: 10.3864/j.issn.0578-1752.2023.03.009

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit

WANG ZhuangZhuang1,2(), DONG ShaoYun1(), ZHOU Qi1, MIAO Han1, LIU XiaoPing1, XU KuiPeng2, GU XingFang1(), ZHANG ShengPing1()   

  1. 1Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
    2College of Horticulture, Qingdao Agricultural University, Qingdao 266000, Shandong
  • Received:2022-04-13 Accepted:2022-06-13 Online:2023-02-01 Published:2023-02-14
  • Contact: GU XingFang, ZHANG ShengPing E-mail:wangzhuangz2021@163.com;dongshaoyun@caas.cn;guxingfang@caas.cn;zhangshengping@caas.cn

Abstract:

【Objective】The aim of this study was to identify the location, quantity and expression characteristics of genes involved in regulating the synthesis of vitamin C (Vc) by L-galactose pathway in cucumber fruits, and to clone the key genes, so as to lay a foundation for the regulation of Vc synthesis in cucumber.【Method】According to the reported Vc-related genes within the L-galactose pathway in Arabidopsis, the encoded amino acid sequence was used for BLAST in Cucumber 9930_V2 reference genome database. TBtools software was used to map the gene position on cucumber chromosomes. The expression of these genes in two cucumber accessions with significant differences in fruit Vc content was analyzed by qRT-PCR. The homologous genes encoding rate limiting enzymes GDP-L-galactose phosphorylase (GGP) and GDP mannose-3'5'- epimerase (GME) were cloned by PCR amplification, and the sequence differences of these genes in cucumber with high Vc and low Vc were analyzed by sequencing. Phylogenetic tree was constructed to analyze the relatedness cucumber GME, GGP and homologs in other species.【Result】Twenty one homologous genes involved in the synthesis of Vc related enzymes, including PMI, PMM, GMPase, GME, GGP, GPP, GalLDH, and GalLDH in L-galactose pathway, were compared in cucumber and were obtained by BLAST, which were distributed on seven chromosomes, with the most numbers on chromosome 5 and chromosome 1. By analyzing the expression of these genes in R48 (with low Vc) and CG45 (with high Vc), it was found that the genes regulating PMI, PMM, GMPase, GME and GalLDH were significantly different between the two materials. The sequence analysis of Vc synthesis rate-limiting enzyme GGP and GME related genes showed that the full length of CsGME2 gene was 3 537 bp in R48 and 3 541 bp in CG45. There were multiple SNP sites and Indel difference between the two materials, among which one mutation site was located in the CDS region, and resulted in the amino acids changes. Through the analysis of the protein properties of rate limiting enzymes GME and GGP regulating vitamin C synthesis, it was found that the protein properties of GME and GGP in different species were not significantly different, which were hydrophilic proteins and their functions were relatively conservative. Evolutionary tree analysis found that the clusters with close genetic relationship among different species were highly conservative during evolution.【Conclusion】Twenty one L-galactose pathway related genes of cucumber Vc synthesis were identified, which were distributed on seven chromosomes. It was speculated that the key enzymes including PMI, PMM, GMPase, GME, GalLDH and GGP might affect the Vc content in cucumber fruits. The functions of key enzymes GME and GGP regulating the rate limiting step of Vc synthesis were relatively conservative. The SNP site on CsGME2 gene in the two materials of high Vc and low Vc resulted in changes in amino acid sequence.

Key words: cucumber, vitamin C, gene clone, expression analysis

Table 1

Real-time qPCR primers for homologous genes of L-galactose pathway"

基因 Gene 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
Csa1G181570 TTATCTCAAGGACCATTATCCC TCCATCAAGAGGATCAACG
Csa1G183590 ATTGGACCATTCGACACC TAACAGCATCCATCACCG
Csa1G006280 CACCAGTTTGGAGAGTTGATT TCGAAACACCTTGAATTGTG
Csa1G600810 CCTGAGGATGTTGGAACC CTACAGCACCATTCCGTCT
Csa2G011460 TCTAGTGCTTGCATCTATCCTG AGCTTCTCCAGACCGTAGG
Csa2G013230 TGAAAGGCAGGGAATGTATC CCATGCCCAATAATCGAA
Csa2G249820 CAAGCAGCAGAGGAGTCTATG CATCAATGGGATCTAAAACCC
Csa3G300600 AAGTCTGCTCTAAGGTTGGC TTCCTTGGCTGTTAATTGC
Csa3G829100 GCTGATCCGGTCACTAATG CCTTCCCGATGAATTGAG
Csa3G133160 ACCTGATAGCCGATTTGC GATTAGCAGCACACCACG
Csa4G236360 AAGTGAGGAAGCCATACAGC TCAAGGGCAAGTAGTTTATCG
Csa4G015100 CTCTATTATCAACATCGGATCG TGGGATGAACTGCATGAG
Csa5G011690 TCGAAATGGGATGCTTAAC CTCCCGAAGGATAGAAACC
Csa5G167200 TTGGCGAGATCCTTGAAC AACTTCTCTGCATCAGCACA
Csa5G182060 TTAGAAGTTGCTACGATGAAGG TTGCTAACAACACGACCG
Csa5G512920 CACTGGATCGAAGGATAACTTG GGCAAGCAAGATGGTATATTTG
Csa5G272920 TGTATGGGCTTGACTGGAG TCAGTGCCAACCAGGATT
Csa6G008750 GCGAGCCATTCTTTGTCC CACACCGTATTTGGAAGGC
Csa6G511690 ATGGAGCTGACTGATGAGC AACTGTTGGAACTTTGCCA
Csa7G067450 GGTGACAAGGAGCATTGAC GGAATCGTCTCGTTCACAC
Csa7G219200 AGGTCCTCTTCCGGTTTG CAATAGTGGCGCAACCAC
Actin TCCACGAGACTACCTACAACTC GCTCATACGGTCAGCGAT

Table 2

Primers of GME and GGP related genes"

引物名称 Primer name 正向引物 Forward 反向引物 Reverse
CsGME1-1 TGTCTGAGTCCAAGAGAACG GCATCTGACTCCTTCAAGCT
CsGME1-2 TGAGGAAGAAAGTACGCAAC TGAGTTACGACCACGGACAC
CsGME1-3 AGACTTCCGTGAGCCAGTGA ACGGTGGACCTCATAATATC
CsGME2-1 TTAGGCAGCCAATCGTCGGA CTGTCCACTAGATGAGAGCCA
CsGME2-2 TCCTTGTGTGACAATCATC CAGTCAATGGTTCGCTACTGC
CsGME2-3 ACATATGGACCGAGAATGA AGTAGTGGCATGAGTCGAGA
CsGGP-1 CCCTAGAAGATTCGAAGTA GCCAGATATCTTGTTCAGC
CsGGP-2 GCTTTCATTCCTAGTGGATA ATCCGTTGCCCACAATCAGC
CsGGP-3 GATGGAGTGATCATCTCTGA AGGACCATTAGTGATAGGTA

Table 3

Key enzymes and related genes of vitamin C synthesis in cucumber"


Enzyme
登录号(拟南芥)
Accession No. (Arabidopsis)
登录号(黄瓜)
Accession No. (cucumber)
基因名称
Gene name
染色体位置
Chromosome
物理位置
Location (bp)
PMI AT3G02570 Csa3G300600
Csa5G167200
CsPMI1
CsPMI2
Chr3
Chr5
17101685-17104783 (+)
6525799-6529720 (-)
PMM AT2G45790 Csa5G011690 CsPMM Chr5 410127-419862 (+)
GMPase AT2G39770 Csa6G008750
Csa3G829100
Csa1G006280
Csa2G013230
Csa1G600810
CsGMPase1
CsGMPase2
CsGMPase3
CsGMPase4
CsGMPase5
Chr6
Chr3
Chr1
Chr2
Chr1
901131-904917 (+)
901131-904917 (+)
1169141-1173256 (+)
2269704-2282961 (-)
23233328-23240457 (+)
GME AT5G28840 Csa2G011460
Csa5G182060
Csa5G512920
CsGME1
CsGME2
CsGME3
Chr2
Chr5
Chr5
2039207-2042353 (+)
8093540-8097076 (+)
17891804-17895624 (-)
GGP AT4G26850
AT5G55120
Csa7G219200
CsGGP Chr7 7788896-7792047 (+)
GPP AT3G02870 Csa1G181570
Csa6G511690
Csa1G183590
Csa2G249820
CsGPP1
CsGPP2
CsGPP3
CsGPP4
Chr1
Chr6
Chr1
Chr2
11166020-11169584 (+)
26388577-26391259 (-)
11213505-11222521 (+)
12197999-12203006 (+)
GalDH AT4G33670 Csa7G067450
Csa5G272920
Csa4G015100
Csa3G133160
CsGalDH1
CsGalDH2
CsGalDH3
CsGalDH4
Chr7
Chr5
Chr4
Chr3
4137998-4141177 (+)
11505791-11512104 (+)
1982420-1984762 (+)
8687749-8692048 (-)
GalLDH AT3G47930 Csa4G236360 CsGalLDH Chr4 10080624-10094987 (+)

Fig. 1

Position of vitamin C synthesis related genes on chromosome in cucumber"

Fig. 2

Relative expression of vitamin C synthesis related genes in cucumber fruit of R48 and CG45 1: CsPMI1; 2: CsPMI2; 3: CsPMM; 4: CsGMPase1; 5: CsGMPase2; 6: CsGMPase3; 7: CsGMPase4; 8: CsGMPase5; 9: CsGME1; 10: CsGME2; 11: CsGME3; 12: CsGGP; 13: CsGPP1; 14: CsGPP2; 15: CsGPP3; 16: CsGPP4; 17: CsGalDH1; 18: CsGalDH2; 19: CsGalDH3; 20: CsGalDH4; 21: CsGalLDH"

Fig. 3

L-galactose pathway The circle in the left column is the relative expression of R48, and the circle in the right column is the relative expression of CG45"

Fig. 4

Sequence analysis of CsGME2 gene between the two materials"

Fig. 5

Analysis of conserved domain of CsGME2 gene"

Table 4

The physicochemical properties of different species of GME"

物种
Species
氨基酸长度
Length (aa)
蛋白质量
Mw (kD)
等电点
pI
不稳定系数
II
总平均疏水性
GRAVY
序列号
Accession
黄瓜 Cucumis sativus 376 42.52 5.94 41.85 -0.411 XP_004139232
甜瓜 Cucumis melo var. makuwa 409 46.50 6.05 49.3 -0.429 TYK18415.1
冬瓜 Benincasa hispida 376 42.62 5.94 42.09 -0.432 XP_038890351
南瓜 Cucurbita moschata 376 42.54 6.05 41.96 -0.415 XP_022946492
苦瓜 Momordica charantia 376 42.51 5.81 39.45 -0.414 XP_022143153
银葫芦亚种 Cucurbita argyrosperma subsp. sororia 397 44.78 5.74 43.98 -0.409 KAG6586308
桑葚 Morus notabilis 379 42.87 6.21 40.5 -0.437 XP_024025147
向日葵 Helianthus annuus 376 42.60 5.84 43.02 -0.408 XP_022002729
开心果 Pistacia vera 376 42.48 5.93 39.46 -0.410 XP_031268788
石榴 Punica granatum 386 43.47 6.16 38.39 -0.383 OWM82038

Fig. 6

Evolutionary tree of GME in cucumber and other species"

Table 5

The physicochemical properties of different species of GGP"

物种
Species
氨基酸长度
Length (aa)
蛋白质量
Mw (kD)
等电点
pI
不稳定系数
II
总平均疏水性
GRAVY
序列号
Accession
黄瓜 Cucumis sativus 445 49.99 5.18 44.23 -0.224 XP_004139797.1
甜瓜 Cucumis melo var. makuwa 537 60.04 5.13 45.37 -0.174 TYK23075.1
冬瓜 Benincasa hispida 448 50.23 5.24 43.20 -0.163 XP_038897875.1
苦瓜 Momordica charantia 446 49.77 4.86 48.18 -0.206 XP_022139724.1
南瓜 Cucurbita moschata 445 49.58 5.14 49.30 -0.167 XP_022940636.1
银葫芦亚种 Cucurbita argyrosperma subsp. sororia 445 49.61 5.09 48.32 -0.165 KAG7037363.1
西葫芦 Cucurbita pepo subsp. pepo 445 49.57 5.10 48.71 -0.162 XP_023524925.1
开心果 Pistacia vera 449 50.05 4.77 48.15 -0.222 XP_031282295.1
核桃 Juglans regia 449 49.83 5.16 46.50 -0.180 XP_018812019.2
桑葚 Morus notabilis 443 49.28 5.07 40.97 -0.126 XP_010096115.1
棉花 Gossypium hirsutum 450 50.55 5.10 54.38 -0.230 XP_040942951.1

Fig. 7

Evolutionary tree analysis of GGP in cucumber and other species"

[1] FOYER C H, KYNDT T, HANCOCK R D. Vitamin C in plants: Novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal, 2020, 32(7): 463-485.
doi: 10.1089/ars.2019.7819
[2] ALVES R C, ROSSATTO D R, SILVA J S, CHECCHIO M V, OLIVEIRA K R, OLIVEIRA F D A, DE QUEIROZ S F, DA CRUZ M A P, GRATAO P L. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101927.
doi: 10.1016/j.bcab.2021.101927
[3] KHAZAEI Z, ESTAJI A. Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 2020, 42(7): 118.
doi: 10.1007/s11738-020-03106-z
[4] LUKATKIN A S, ANJUM N A. Control of cucumber (Cucumis sativus L.) tolerance to chilling stress - Evaluating the role of ascorbic acid and glutathione. Frontiers in Environmental Science, 2014, 2. https://doi.org/10.3389/fcns.2014.00062.
[5] LYKKESFELDT J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence. Redox Biology, 2020, 34: 101532.
doi: 10.1016/j.redox.2020.101532
[6] RIVELLI A R, CARUSO M C, MARIA S D, GALGANO F. Vitamin C content in leaves and roots of horseradish (Armoracia rusticana): Seasonal variation in fresh tissues and retention as affected by storage conditions. Emirates Journal of Food and Agriculture, 2017, 29(10): 799-806.
[7] 孙小娟, 刘庆帅, 员盎然, 张妍, 霍俊伟, 秦栋, 姜婷. 黑穗醋栗果实生长发育过程中抗坏血酸含量及相关酶活性的变化. 中国农业科学, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010.
doi: 10.3864/j.issn.0578-1752.2019.01.010
SUN X J, LIU Q S, YUAN A R, ZHANG Y, HUO J W, QIN D, JIANG T. The changes in the contents of ascorbic acid and the activities of related enzymes in black currant fruits during the process of its growth and development. Scientia Agricultura Sinica, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.010
[8] KINYI H W, TIRWOMWE M, NINSIIMA H I, MIRUKA C O, ADADI P, PARISE A. Effect of cooking method on vitamin C loses and antioxidant activity of indigenous green leafy vegetables consumed in western Uganda. International Journal of Food Science, 2022, 2022: 2088034.
[9] https://www.fao.org/faostat/zh/#data.
[10] SMIRNOFF N, WHEELER G L, JONES M A. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393(6683): 365-369.
doi: 10.1038/30728
[11] LORENCE A, CHEVONE B I, MENDES P, NESSLER C L. Myo- inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205. doi: 10.1104/pp.103.033936.
doi: 10.1104/pp.103.033936
[12] DAVEY M W, GILOT C, PERSIAU G, STERGAARD J, HAN Y, BAUW G C, VAN MONTAGU M C. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiology, 1999, 121(2): 535-543.
doi: 10.1104/pp.121.2.535
[13] WAGNER C, SEFKOW M, KOPKA J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 2003, 62(6): 887-900.
[14] SMIRNOFF N, DOWDLE J, ISHIKAWA T. The role of VTC2 in vitamin C biosynthesis in Arabidopsis thaliana. Comparative Biochemistry and Physiology. Part A. Molecular & Integrative Physiology, 2007, 146(4): S250.
[15] DOWDLE J, ISHIKAWA T, GATZEK S, ROLINSKI S, SMIRNOFF N. Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal, 2007, 52(4): 673-689.
doi: 10.1111/j.1365-313X.2007.03266.x
[16] TAO J J, HAO Z, HUANG C H. Molecular evolution of GDP-L- galactose phosphorylase, a key regulatory gene in plant ascorbate biosynthesis. AoB Plants, 2020, 12(6): 55.
[17] YOSHIMURA K, NAKANE T, KUME S, SHIOMI Y, MARUTA T, ISHIKAWA T, SHIGEOKA S. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 60-66. doi: 10.1080/09168451.2014.877831.
doi: 10.1080/09168451.2014.877831
[18] BULLEY S M, RASSAM M, HOSER D, OTTO W, SCHÜNEMANN N, WRIGHT M, MACRAE E, GLEAVE A, LAING W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765-778. doi: 10.1093/jxb/ern327.
doi: 10.1093/jxb/ern327
[19] 苑志明, 劳杉杉, 秦智伟, 周秀艳. 黄瓜L-半乳糖-1,4-内酯脱氢酶cDNA全长的克隆和遗传转化. 东北农业大学学报, 2012, 43(7): 100-103.
YUAN Z M, LAO S S, QIN Z W, ZHOU X Y. Cloning and genetic transformation of cDNA full-length of L-galactono-1,4-lactone dehydrogenase from Cucumis sativus. Journal of Northeast Agricultural University, 2012, 43(7): 100-103. (in Chinese)
[20] LIU P, LI Q, GAO Y N, WANG H, CHAI L, YU H J, JIANG W J. A new perspective on the effect of UV-B on l-ascorbic acid metabolism in cucumber seedlings. Journal of Agricultural and Food Chemistry, 2019, 67(16): 4444-4452.
doi: 10.1021/acs.jafc.9b00327 pmid: 30939238
[21] ZHANG X, YU H J, ZHANG X M, YANG X Y, ZHAO W C, LI Q, JIANG W J. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiology and Biochemistry, 2016, 108(7): 222-230.
doi: 10.1016/j.plaphy.2016.07.012
[22] BULLEY S, LAING W. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology, 2016, 33: 15-22.
doi: S1369-5266(16)30067-X pmid: 27179323
[23] 高海荣, 赵爱娟, 王睿颖, 穆兵. 紫外法快速测定中原地区12种蔬菜VC含量. 湖北农业科学, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035.
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035
GAO H R, ZHAO A J, WANG R Y, MU B. The rapid determination of vitamin C content in 12 kinds of central plains vegetables by UV spectrophotometry. Hubei Agricultural Sciences, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035
[24] JAROSOVA J, KUNDU J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real- time RT-PCR. BMC Plant Biology, 2010, 10(1): 146.
doi: 10.1186/1471-2229-10-146
[25] TORABINEJAD J, DONAHUE J L, GUNESEKERA B N, ALLEN- DANIELS M J, GILLASPY G E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 2009, 150(2): 951-961. doi: 10.1104/pp.108.135129.
doi: 10.1104/pp.108.135129 pmid: 19339506
[26] 苗田田, 李强, 余宏军, 刘鹏, 郝佳, 蒋卫杰. 外施肌醇对黄瓜幼苗低温抗性的影响. 中国蔬菜, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001.
doi: 10.19928/j.cnki.1000-6346.2021.1001
MIAO T T, LI Q, YU H J, LIU P, HAO J, JIANG W J. Effects of exogenous myo-inositol on low temperature resistance of cucumber seedlings. China Vegetables, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001. (in Chinese)
doi: 10.19928/j.cnki.1000-6346.2021.1001
[27] MUNIR S, MUMTAZ M A, AHIAKPA J K, LIU G Z, CHEN W F, ZHOU G L, ZHENG W, YE Z B, ZHANG Y Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21(1): 284.
doi: 10.1186/s12864-020-6708-8 pmid: 32252624
[28] WOLUCKA B A, VAN MONTAGU M. GDP-mannose 3',5'- epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. The Journal of Biological Chemistry, 2003, 278(48): 47483-47490.
doi: 10.1074/jbc.M309135200
[29] STEVENS R, BURET M, DUFFÉ P, GARCHERY C, BALDET P, ROTHAN C, CAUSSE M. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007, 143(4): 1943-1953. doi: 10.1104/pp.106.091413.
doi: 10.1104/pp.106.091413 pmid: 17277090
[30] WOLUCKA B A, VAN MONTAGU M, The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 2007, 68(21): 2602-2613.
pmid: 17950389
[31] ALEGRE M L, STEELHEART C, BALDET P, ROTHAN C, JUST D, OKABE Y, EZURA H, SMIRNOFF N, GERGOFF GROZEFF G E, BARTOLI C G. Deficiency of GDP-l-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Planta, 2020, 251(2): 54.
doi: 10.1007/s00425-020-03345-x pmid: 31970534
[32] BULLEY S, WRIGHT M, ROMMENS C, YAN H, RASSAM M, LIN-WANG K, ANDRE C, BREWSTER D, KARUNAIRETNAM S, ALLAN A C, LAING W A. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l- galactose phosphorylase. Plant Biotechnology Journal, 2012, 10(4): 390-397.
doi: 10.1111/j.1467-7652.2011.00668.x
[33] ZHANG G Y, LIU R R, ZHANG C Q, TANG K X, SUN M F, YAN G H, LIU Q Q. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE, 2015, 10(5): e0125870.
doi: 10.1371/journal.pone.0125870
[34] LI J, LIANG D, LI M J, MA F W. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta, 2013, 238(3): 535-547.
doi: 10.1007/s00425-013-1915-z pmid: 23775440
[35] YABUTA Y, MIEDA T, RAPOLU M, NAKAMURA A, MOTOKI T, MARUTA T, YOSHIMURA K, ISHIKAWA T, SHIGEOKA S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany, 2007, 58(10): 2661-2671. doi: 10.1093/jxb/erm124.
doi: 10.1093/jxb/erm124
[1] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[2] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[5] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[6] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[7] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
[8] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[9] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[10] LU BaoShun,ZHU YongJing,ZHANG ShuTing,LÜ YuMeng,LI XiaoFei,SONG YuYang,LAI ZhongXiong,LIN YuLing. Whole-Genome Identification and Expression Analysis of SPL Gene Family in Dimocarpus Longan [J]. Scientia Agricultura Sinica, 2020, 53(20): 4259-4270.
[11] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[12] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[13] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[14] Jian PAN,HaiFan WEN,HuanLe HE,HongLi LIAN,Gang WANG,JunSong PAN,Run CAI. Genome-Wide Identification of Cucumber ERF Gene Family and Expression Analysis in Female Bud Differentiation [J]. Scientia Agricultura Sinica, 2020, 53(1): 133-147.
[15] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!