Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 405-415.doi: 10.3864/j.issn.0578-1752.2023.03.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203

LIU Gang1(), XIA KuaiFei2, WU Yan1, ZHANG MingYong2, ZHANG ZaiJun1, YANG JinSong1, QIU DongFeng1()   

  1. 1Food Crop Institute, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064
    2South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
  • Received:2022-09-08 Accepted:2022-11-08 Online:2023-02-01 Published:2023-02-14
  • Contact: QIU DongFeng E-mail:liug1112@163.com;qdflcp@163.com

Abstract:

【Objective】 The global warming has led to the increasingly serious heat damage on the heading and flowering stage of rice. To reduce the impact of heat damage on rice production and to ensure food security in China and even the world, new rice germplasms with thermo-tolerance on heading stage should be identified and new thermo-tolerance varieties need be bred. 【Method】Guanghui 128 (Qiguizao/Ce64//Minghui 63) was used as the heat resistant parent, through hybridization, multiple crossing and pedigree selection, the lines with high seed setting rate and small variation on heading and flowering stage during the high temperature were screened out for several generations’ breeding process. Then the selected higher generation lines were identified to create new thermos-tolerance rice germplasms in artificial climate chamber (The treated plants will be moved into the chamber on the flowering day, high temperature treatment is 9:00-15:00, 38℃, 15:01-8:59 28℃, the relative humidity is 75%, and the treatment lasts for 7 days), with analysis of agronomic trait. 【Result】The new germplasm R203 has stronger thermo-tolerance and higher seed setting rates under both normal and high temperature conditions (94.5% at normal temperature, 81.9% at high temperature, and 86.7% at relative). Its agronomic traits, quality and comprehensive resistance all meet the production standards. Above all, R203 has the potential to breed new thermos-tolerance hybrid rice varieties. The seed setting rates of 7 hybrid combinations with R203 as the male parent and seven three-line male sterile lines as the female parent were between 83.4%-99.4% under natural high temperature conditions. Among them, Taiyou 203, a new three-line medium indica hybrid rice has good qualities, the seed setting rate was 87.9%, the comprehensive relative heat resistance coefficient was 1.11, and the heat resistance reached level 1. In the production test, the yield increased by 5.36% compared with the control, and the yield increase point accounted for 85.71%. It has good high and stable yield, and the rice quality reached the second level of the ministerial standard. Thus Taiyou 203 has good promotion and application value. 【Conclusion】Currently, basic research on heat resistance is not enough to support the breeding of new practical heat resistant varieties, the rice resources in areas prone to high temperature and humidity are preferred as materials for breeding new heat tolerance lines, a new heat-resistant rice variety R203 was created by phenotypic selection, and a practical heat-resistant rice variety Taiyou 203 was developed by using heterosis.

Key words: rice, thermo-tolerance, germplasm enhancement, evaluation of germplasm

Fig. 1

Pedigree of R203"

Table 1

Yield and yield related traits of the hybrid combination of R203 and different male sterile lines"

序号
No.
组合名称
Name of combination
有效穗数
Effective panicle number (万/hm2)
每穗颖花数
<BOLD>S</BOLD>pikelets per panicle
结实率
Seed setting rate (%)
千粒重
Thousand grain weight (g)
单株重
Yield per plant
(g)
理论产量
Theoretical yield (t·hm-2)
1 641A×R203 264 290.59 82.47 20.80 44.30 13.16**
2 泰优203 Taiyou203 264 175.76 89.03 23.80 33.20 9.83**
3 1803A×R203 252 170.63 89.44 25.50 32.70 9.81**
4 2280A×R203 255 206.49 89.04 20.80 33.10 9.75**
5 扬籼9A×R203 Yangxian9 A×R203 249 181.45 84.38 25.30 32.90 9.64**
6 663A×R203 279 190.99 77.44 23.00 32.10 9.49**
7 泰香A×R203 Taixiang A×R203 276 200.35 83.11 20.30 31.70 9.33*
8 1070A×R203 276 157.70 90.24 23.60 31.40 9.27*
9 丰两优四号 Fengliangyousihao 270 144.17 83.58 27.60 26.60 8.98
10 平A×R203 Ping A×R203 294 146.33 81.59 25.30 30.10 8.88
11 282A×R203 255 190.32 81.10 21.20 28.10 8.34**
12 畅A×R203 Chang A×R203 216 181.46 84.40 24.90 28.00 8.24**
13 2361A×R203 315 149.98 86.12 19.80 26.90 8.06**
14 229A×R203 246 190.94 85.28 19.80 32.50 7.93**
15 1511A×R203 276 141.79 83.15 24.10 26.90 7.84**
16 广福A×R203 Guangfu A×R203 225 187.56 78.66 23.60 26.80 7.83**
17 667A×R203 231 190.32 76.77 23.00 26.40 7.76**
18 沪旱7A×R203 Huhan7 A×R203 276 138.73 84.95 23.60 25.90 7.68**

Table 2

List of partial functional genes in R203"

序号
Order No.
基因
<BOLD>G</BOLD>ene
类型
Type
染色体
Chromosome
代表品种
Representative cultivar
表型
Phenotype
1 Gn1a 产量 Yield 1 9311 每穗粒数增加 Increased grains per spike
2 OsSPL16 产量 Yield 8 HJX74 高产 High yield
3 SKC1 抗非生物逆境 Anti abiotic stress 1 Nona Bokra 耐盐 Salt tolerance
4 NRT1.1B 抗非生物逆境 Anti abiotic stress 10 9311 增强氮吸收 Enhanced nitrogen absorption
5 Rymv1 抗生物逆境 Anti biotic stress 4 日本晴
Nipponbare
抗黄色斑驳病毒病
Resistance to yellow mottle virus disease
6 STV11 抗生物逆境 Anti biotic stress 11 Kasalath 抗水稻条叶枯病毒 Resistance to rice stripe virus
7 Pi5 抗生物逆境 Anti Biotic Stress 9 抗稻瘟病 Resistance to rice blast
8 Pia 抗生物逆境 Anti biotic stress 11 抗稻瘟病 Resistance to rice blast
9 Pid2 抗生物逆境 Anti biotic stress 6 抗稻瘟病 Resistance to rice blast
10 Pid3 抗生物逆境 Anti biotic stress 6 抗稻瘟病 Resistance to rice blast
11 Xa21 抗生物逆境 Anti biotic stress 11 抗白叶枯 Resistance to rice bacterial blight
12 OsAAP6 品质 Quality 1 9311 高蛋白 High protein
13 GW2 品质 Quality 2 Oochikara 大粒 Large grain
14 GS3/TT2 品质 Quality 3 明恢63 Minghui63 长粒、耐热 Long grain, thermos-tolerance
15 OsCYP704A3 品质 Quality 4 IR 24 长粒 Long grain
16 Chalk5 品质 Quality 5 H94 垩白度低,高质量 Low chalkiness, Good quality
17 Waxy 品质 Quality 6 日本晴
Nipponbare
非糯的情况下,增加支连淀粉含量
In case of non waxy, increase the content of amylopectin
18 ALK 品质 Quality 6 明恢 63
Minghui63
增加了中长型支链淀粉的含量,糊化温度升高
Increase the content of medium long amylopectin and gelatinization temperature
29 Os01g62780 生育期 Heading date 1 Haplotype B 延迟抽穗 Delayed heading
20 Hd17 生育期 Heading date 6 Koshihikari 延迟开花 Delayed flowering
21 Hd3a 生育期 Heading date 6 日本晴
Nipponbare
光周期敏感基因(促进抽穗,微效QTL)
Photoperiod sensitivity
22 S5 育性 Fertility 6 珍汕97 Zhenshan97 广亲和(籼稻亲和) Wide-compatibility
23 qNGR9 株型 Plant type 9 O. rufipogon 直穗 Erect panicle
24 TAC1 株型 Plant type 9 IR24 分蘖角度增大 Increased tillering angle
25 sh4 其他 Other type 4 日本晴 Nipponbare 非落粒 Non seed shattering

Fig. 2

Seed setting of different hybrid combinations under high temperature in 2022 A: 1070A×R203; B: Ken2001S×R203; C: EK2S×R203; D: N25S×R203; E: Taixiang A×R203; F: Yexiang A×R203; G: Taiyou203; H: Taifeng A×Yuanhui 236 (CK)"

Table 3

Heading date and seed setting rate under high temperature of different hybrid combinations in 2022"

序号
No.
田间编号
Field No.
组合名称
Name of combination
始穗期(月/日)
Initial heading stage (M/D)
齐穗期(月/日)
Full heading stage (M/D)
结实率
Seed setting rate
(%)
1 220038 1070A×R203 7/26 8/2 88.32
2 220148 1070A×R18 7/26 7/31 65.11
3 220146 泰优203 Taiyou203 8/4 8/9 87.89
4 220126 泰丰A×元恢236(CK) Taifeng A×Yuanhui236(CK) 7/30 8/5 50.00
5 220128 EK2S×R203 7/29 8/3 89.39
6 220135 EK2S×Z-3 7/31 8/4 64.55
7 220129 N25S×R203 8/5 8/10 93.58
8 220132 N25S×Z-3 8/2 8/6 73.85
9 220130 泰香A×R203 Taixiang A×R203 8/3 8/8 83.43
10 220131 野香A×R203 Yexiang A×R203 8/1 8/6 91.64
11 220127 垦2001S×R203 Ken2001S×R203 8/4 8/9 90.20

Table 4

Identification results of high temperature tolerance of rice varieties participated in production test of late maturing group of Huifeng enterprise consortium in the middle and lower reaches of the Yangtze River"

田间区号
Field No.
品种编号
Variety No.
品种名称
Name of variety
大田条件 Field condition 盆栽条件 Potting condition 综合相对
耐热系数
Comprehensive relative heat resistance coefficient
耐热级别
Heat resistance rating
年份
Year
常温结实率
Seed setting rate at normal condition (%)
高温结实率
Seed setting rate at high temperature condition (%)
相对结实率
Relative seed setting rate (%)
相对耐热
系数
Relative heat resistance coefficient
常温结实率
Seed setting rate at normal condition (%)
高温结实率
Seed setting rate at high temperature condition (%)
相对结实率
Relative seed setting rate (%)
相对耐热
系数
Relative heat resistance coefficient
BZE211555 1 利两优3822 Liliangyou3822 86.72 76.35 88.04 1.03 84.95 55.53 65.37 1.02 1.02 3 2021
BZE211556 2 95优1号 95you1hao 88.68 68.35 77.07 0.92 83.47 50.97 61.06 0.94 0.93 3
BZE211557 3 果两优桂花丝苗
Guoliangyouguihuasimiao
85.84 71.7 83.53 0.96 84.36 55.47 65.75 1.02 0.99 3
BZE211558 4 竹两优珍25 Zhuliangyouzhen25 87.58 69.22 79.04 0.93 81.17 49.65 61.17 0.91 0.92 3
BZE211559 5 丰两优四号(CK)
Fengliangyousihao (CK)
87.8 74.36 84.69 1.00 83.55 54.47 65.19 1.00 1.00 3
BZE191281 6 两优新月丝苗
Liangyouxinyuesimiao
81.32 65.45 80.48 0.92 80.63 45.25 56.12 0.93 0.93 3 2019
BZE191286 7 桂香优086 Guixiangyou086 86.85 65.78 75.74 0.93 82.27 47.39 57.60 0.97 0.95 3
BZE191288 8 泰优203 Taiyou203 86.47 76.74** 88.75 1.08** 82.64 55.31** 66.93 1.14** 1.11** 1
BZE191255 9 丰两优四号(CK)
Fengliangyousihao (CK)
88.65 70.83 79.90 1.00 8365 48.64 58.15 1.00 1.00 3

Table 5

Performance of yield and major traits of Taiyou 203 in the regional trials"

年份
Year
品种名称
Name of variety
产量
Yield
(t·hm-2)
比CK增产
Compared with CK (%)
增产点率
Point ratio compared with CK (%)
全生育期
Entire growth period (d)
有效穗数
Effective panicle number (万/hm2)
每穗颖花数
Spikelets per panicle
结实率
Seed setting rate (%)
稻米品质部标级
Rice quality
稻瘟病综合抗性
Comprehensive resistance index of rice blast
耐热性
Thermo-
tolerance
2019 泰优203 Taiyou 203 9.99 6.70 100.00 131.8 256.50 187.1 88.10 - 4.4 1
丰两优四号(CK)
Fengliangyousihao (CK)
9.36 135.1 228.00 192.8 85.40 - 7.4 3
2020 泰优203 Taiyou 203 9.30 3.35 94.12 130.9 249.00 198.9 88.20 2 3.7
丰两优四号(CK)
Fengliangyousihao (CK)
8.99 134.4 213.00 207.0 87.40 - 6.6
汇总 泰优203 Taiyou 203 9.65 5.12 97.06 131.4 252.75 193.0 88.15 2 4.4 1
丰两优四号(CK)
Fengliangyousihao (CK)
9.18 134.8 220.5 199.9 86.40 - 7.4 3
[21] PS S, SV A M, PRAKASH C, MK R, TIWARI R, MOHAPATRA T, SINGH N K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice (New York, NY), 2017, 10: 28.
[22] 刘进, 胡佳晓, 马小定, 陈武, 勒思, Jo Sumin, 崔迪, 周慧颖, 张立娜, Shin Dongjin, 黎毛毛, 韩龙植, 余丽琴. 最新录用:水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位. 中国农业科学, 2022, 55(22): 4327-4341.
LIU J, HU J X, MA X D, CHEN W, LE S, JO S, CUI D, ZHOU H Y, ZHANG L N, SHIN D, LI M M, HAN L Z, YU L Q. Construction of high density genetic map for RIL population and QTL analysis of heat tolerance at seedling stage in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. (in Chinese)
[23] WANG D, QIN B X, LI X, TANG D, ZHANG Y E, CHENG Z K, XUE Y B. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genetics, 2016, 12(2): e1005844.
doi: 10.1371/journal.pgen.1005844
[24] LIU J P, ZHANG C C, WEI C C, LIU X, WANG M G, YU F F, XIE Q, TU J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiology, 2015, 170(1): 429-443.
doi: 10.1104/pp.15.00879
[25] ZHENG K L, ZHAO J, LIN D Z, CHEN J Y, XU J L, ZHOU H, TENG S, DONG Y J. The rice TCM5 gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures. Rice (New York, NY), 2016, 9(1): 13.
[26] LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833
doi: 10.1038/ng.3305
[27] KAN Y, MU X R, ZHANG H, GAO J, SHAN J X, YE W W, LIN H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8(1): 53-67.
doi: 10.1038/s41477-021-01039-0
[28] ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y S, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289
[1] CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: e100359.
[2] IPCC. Climate Change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013, Cambridge, United Kingdom and New York, NY, USA, 1535.
[3] JAGADISH S V K, CAIRNS J, LAFITTE R, WHEELER T R, PRICE A H, CRAUFURD P Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Science, 2010, 50(5): 1633-1641.
doi: 10.2135/cropsci2009.09.0516
[4] JAGADISH S V K, MUTHURAJAN R, OANE R, WHEELER T R, HEUER S, BENNETT J, CRAUFURD P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(1): 143-156.
doi: 10.1093/jxb/erp289
[5] KILASI N L, SINGH J, VALLEJOS C E, YE C R, JAGADISH S V K, KUSOLWA P, RATHINASABAPATHI B. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 2018, 9: 1578.
doi: 10.3389/fpls.2018.01578
[6] LEI D Y, TAN L B, LIU F X, SUN C Q. Identification of heat- sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201/202: 121-127.
doi: 10.1016/j.plantsci.2012.12.001
[7] LI M M, LI X, YU L Q, WU J W, LI H, LIU J, MA X D, JO S M, PARK D S, SONG Y C, SHIN D J, HAN L Z. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 2018, 214(4): 1-11.
doi: 10.1007/s10681-017-2087-x
[8] POLI Y, BASAVA R K, PANIGRAHY M, VINUKONDA V P, DOKULA N R, VOLETI S R, DESIRAJU S, NEELAMRAJU S. Characterization of a Nagina 22 rice mutant for heat tolerance and mapping of yield traits. Rice (New York, NY), 2013, 6(1): 36.
[9] TAZIB T, KOBAYASHI Y, KOYAMA H, MATSUI T. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica, 2015, 203(3): 629-642.
doi: 10.1007/s10681-014-1291-1
[10] XIAO Y H, PAN Y, LUO L H, ZHANG G L, DENG H B, DAI L Y, LIU X L, TANG W B, CHEN L Y, WANG G L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica, 2011, 178(3): 331-338.
doi: 10.1007/s10681-010-0300-2
[11] YE C R, TENORIO F A, ARGAYOSO M A, LAZA M A, KOH H J, REDOÑA E D, JAGADISH K S V, GREGORIO G B. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 2015, 16: 41.
doi: 10.1186/s12863-015-0199-7 pmid: 25895682
[12] ZHU S, HUANG R L, WAI H P, XIONG H L, SHEN X H, HE H H, YAN S. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiology and Molecular Biology of Plants, 2017, 23(4): 817-825.
doi: 10.1007/s12298-017-0465-4 pmid: 29158631
[13] 曹立勇, 朱军, 赵松涛, 何立斌, 颜启传. 水稻籼粳交DH群体耐热性的QTLs定位. 农业生物技术学报, 2002, 10(3): 210-214.
CAO L Y, ZHU J, ZHAO S T, HE L B, YAN Q C. Mapping QTLs for heat tolerance in a DH population from indica-japonica cross of rice (Oryza sativa). Journal of Agricultural Biotechnology, 2002, 10(3): 210-214. (in Chinese)
[14] 曹志斌, 谢红卫, 聂元元, 毛凌华, 李永辉, 蔡耀辉. 水稻抽穗扬花期耐热QTL (qHTH5)定位及其遗传效应分析. 中国水稻科学, 2015, 29(2): 119-125.
doi: 10.3969/j.issn.1001-7216.2015.02.002
CAO Z B, XIE H W, NIE Y Y, MAO L H, LI Y H, CAI Y H. Mapping a QTL (qHTH5) for heat tolerance at the heading stage on rice chromosome 5 and its genetic effect analysis. Chinese Journal of Rice Science, 2015, 29(2): 119-125. (in Chinese)
[15] 陈庆全, 余四斌, 李春海, 牟同敏. 水稻抽穗开花期耐热性QTL的定位分析. 中国农业科学, 2008, 41(2): 315-321.
CHEN Q Q, YU S B, LI C H, MOU T M. Identification of QTLs for heat tolerance at flowering stage in rice. Scientia Agricultura Sinica, 2008, 41(2): 315-321. (in Chinese)
[16] 奎丽梅, 谭禄宾, 涂建, 卢义宣, 孙传清. 云南元江野生稻抽穗开花期耐热QTL定位. 农业生物技术学报, 2008, 16(3): 461-464.
KUI L M, TAN L B, TU J, LU Y X, SUN C Q. Identification of QTLs associated with heat tolerance of Yuanjiang common wild rice (Oryza rufipogon griff.) at flowering stage. Journal of Agricultural Biotechnology, 2008, 16(3): 461-464. (in Chinese)
[17] 盘毅, 罗丽华, 邓化冰, 张桂莲, 唐文邦, 陈立云, 肖应辉. 水稻开花期高温胁迫下的花粉育性QTL定位. 中国水稻科学, 2011, 25(1): 99-102.
doi: 10.3969/j.issn.1001-7216.2011.01.01
PAN Y, LUO L H, DENG H B, ZHANG G L, TANG W B, CHEN L Y, XIAO Y H. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice. Chinese Journal of Rice Science, 2011, 25(1): 99-102. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.01.01
[18] 张昌泉, 陈飞, 洪燃, 李钱峰, 顾铭洪, 刘巧泉. 利用染色体片段代换系定位水稻抽穗开花期耐热性QTL. 江苏农业科学, 2016, 44(12): 120-123.
ZHANG C Q, CHEN F, HONG R, LI Q F, GU M H, LIU Q Q. Mapping QTL for heat tolerance at heading and anthesis stage in rice using chromosome segment substitution lines. Jiangsu Agricultural Sciences, 2016, 44(12): 120-123. (in Chinese)
[19] 赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644.
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese)
[20] YE C R, TENORIO F A, REDOÑA E D, MORALES-CORTEZANO P S, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517.
doi: 10.1007/s00122-015-2526-9
[29] 查中萍, 殷得所, 万丙良, 焦春海. 水稻种质资源开花期耐热性分析. 湖北农业科学, 2016, 55(1): 17-19.
ZHA Z P, YIN D S, WAN B L, JIAO C H. Analyzing of rice germplasm heat resistance during flowering stage. Hubei Agricultural Sciences, 2016, 55(1): 17-19. (in Chinese)
[30] LIU G, ZHA Z P, CAI H Y, QIN D D, JIA H T, LIU C Y, QIU D F, ZHANG Z J, WAN Z H, YANG Y Y, WANG B L, YOU A Q, JIAO C H. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). International Journal of Molecular Sciences, 2020, 21: 1155.
doi: 10.3390/ijms21031155
[31] 邱东峰, 葛平娟, 刘刚, 杨金松, 陈建国, 张再君. 优质水稻新种质 ZY56 的创制及评价. 中国农业科学, 2021, 54(6): 1081-1091.
QIU D F, GE P J, LIU G, YANG J S, CHEN J G, ZHANG Z J. Breeding and evaluation of elite rice line ZY56. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091. (in Chinese)
[32] 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异. 作物学报, 2011, 37(5): 820-831.
ZHOU W H, XUE D W, ZHANG G P. Protein response of rice leaves to high temperature stress and its difference of genotypes at different growth stage. Acta Agronomica Sinica, 2011, 37(5): 820-831. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00820
[1] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[2] XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710.
[3] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[4] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[5] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[11] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[12] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[13] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!