Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (3): 405-415.doi: 10.3864/j.issn.0578-1752.2023.03.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIU Gang1(), XIA KuaiFei2, WU Yan1, ZHANG MingYong2, ZHANG ZaiJun1, YANG JinSong1, QIU DongFeng1()
[21] | PS S, SV A M, PRAKASH C, MK R, TIWARI R, MOHAPATRA T, SINGH N K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice (New York, NY), 2017, 10: 28. |
[22] | 刘进, 胡佳晓, 马小定, 陈武, 勒思, Jo Sumin, 崔迪, 周慧颖, 张立娜, Shin Dongjin, 黎毛毛, 韩龙植, 余丽琴. 最新录用:水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位. 中国农业科学, 2022, 55(22): 4327-4341. |
LIU J, HU J X, MA X D, CHEN W, LE S, JO S, CUI D, ZHOU H Y, ZHANG L N, SHIN D, LI M M, HAN L Z, YU L Q. Construction of high density genetic map for RIL population and QTL analysis of heat tolerance at seedling stage in rice (Oryza sativa L.). Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. (in Chinese) | |
[23] |
WANG D, QIN B X, LI X, TANG D, ZHANG Y E, CHENG Z K, XUE Y B. Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genetics, 2016, 12(2): e1005844.
doi: 10.1371/journal.pgen.1005844 |
[24] |
LIU J P, ZHANG C C, WEI C C, LIU X, WANG M G, YU F F, XIE Q, TU J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiology, 2015, 170(1): 429-443.
doi: 10.1104/pp.15.00879 |
[25] | ZHENG K L, ZHAO J, LIN D Z, CHEN J Y, XU J L, ZHOU H, TENG S, DONG Y J. The rice TCM5 gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures. Rice (New York, NY), 2016, 9(1): 13. |
[26] |
LI X M, CHAO D Y, WU Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47(7): 827-833
doi: 10.1038/ng.3305 |
[27] |
KAN Y, MU X R, ZHANG H, GAO J, SHAN J X, YE W W, LIN H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8(1): 53-67.
doi: 10.1038/s41477-021-01039-0 |
[28] |
ZHANG H, ZHOU J F, KAN Y, SHAN J X, YE W W, DONG N Q, GUO T, XIANG Y H, YANG Y B, LI Y C, ZHAO H Y, YU H X, LU Z Q, GUO S Q, LEI J J, LIAO B, MU X R, CAO Y J, YU J J, LIN Y S, LIN H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289 |
[1] | CHEN C Q, VAN GROENIGEN K J, YANG H Y, HUNGATE B A, YANG B, TIAN Y L, CHEN J, DONG W J, HUANG S, DENG A X, JIANG Y, ZHANG W J. Global warming and shifts in cropping systems together reduce China’s rice production. Global Food Security, 2020, 24: e100359. |
[2] | IPCC. Climate Change 2013:The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013, Cambridge, United Kingdom and New York, NY, USA, 1535. |
[3] |
JAGADISH S V K, CAIRNS J, LAFITTE R, WHEELER T R, PRICE A H, CRAUFURD P Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Science, 2010, 50(5): 1633-1641.
doi: 10.2135/cropsci2009.09.0516 |
[4] |
JAGADISH S V K, MUTHURAJAN R, OANE R, WHEELER T R, HEUER S, BENNETT J, CRAUFURD P Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 2010, 61(1): 143-156.
doi: 10.1093/jxb/erp289 |
[5] |
KILASI N L, SINGH J, VALLEJOS C E, YE C R, JAGADISH S V K, KUSOLWA P, RATHINASABAPATHI B. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 2018, 9: 1578.
doi: 10.3389/fpls.2018.01578 |
[6] |
LEI D Y, TAN L B, LIU F X, SUN C Q. Identification of heat- sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201/202: 121-127.
doi: 10.1016/j.plantsci.2012.12.001 |
[7] |
LI M M, LI X, YU L Q, WU J W, LI H, LIU J, MA X D, JO S M, PARK D S, SONG Y C, SHIN D J, HAN L Z. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 2018, 214(4): 1-11.
doi: 10.1007/s10681-017-2087-x |
[8] | POLI Y, BASAVA R K, PANIGRAHY M, VINUKONDA V P, DOKULA N R, VOLETI S R, DESIRAJU S, NEELAMRAJU S. Characterization of a Nagina 22 rice mutant for heat tolerance and mapping of yield traits. Rice (New York, NY), 2013, 6(1): 36. |
[9] |
TAZIB T, KOBAYASHI Y, KOYAMA H, MATSUI T. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica, 2015, 203(3): 629-642.
doi: 10.1007/s10681-014-1291-1 |
[10] |
XIAO Y H, PAN Y, LUO L H, ZHANG G L, DENG H B, DAI L Y, LIU X L, TANG W B, CHEN L Y, WANG G L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica, 2011, 178(3): 331-338.
doi: 10.1007/s10681-010-0300-2 |
[11] |
YE C R, TENORIO F A, ARGAYOSO M A, LAZA M A, KOH H J, REDOÑA E D, JAGADISH K S V, GREGORIO G B. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genetics, 2015, 16: 41.
doi: 10.1186/s12863-015-0199-7 pmid: 25895682 |
[12] |
ZHU S, HUANG R L, WAI H P, XIONG H L, SHEN X H, HE H H, YAN S. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiology and Molecular Biology of Plants, 2017, 23(4): 817-825.
doi: 10.1007/s12298-017-0465-4 pmid: 29158631 |
[13] | 曹立勇, 朱军, 赵松涛, 何立斌, 颜启传. 水稻籼粳交DH群体耐热性的QTLs定位. 农业生物技术学报, 2002, 10(3): 210-214. |
CAO L Y, ZHU J, ZHAO S T, HE L B, YAN Q C. Mapping QTLs for heat tolerance in a DH population from indica-japonica cross of rice (Oryza sativa). Journal of Agricultural Biotechnology, 2002, 10(3): 210-214. (in Chinese) | |
[14] |
曹志斌, 谢红卫, 聂元元, 毛凌华, 李永辉, 蔡耀辉. 水稻抽穗扬花期耐热QTL (qHTH5)定位及其遗传效应分析. 中国水稻科学, 2015, 29(2): 119-125.
doi: 10.3969/j.issn.1001-7216.2015.02.002 |
CAO Z B, XIE H W, NIE Y Y, MAO L H, LI Y H, CAI Y H. Mapping a QTL (qHTH5) for heat tolerance at the heading stage on rice chromosome 5 and its genetic effect analysis. Chinese Journal of Rice Science, 2015, 29(2): 119-125. (in Chinese) | |
[15] | 陈庆全, 余四斌, 李春海, 牟同敏. 水稻抽穗开花期耐热性QTL的定位分析. 中国农业科学, 2008, 41(2): 315-321. |
CHEN Q Q, YU S B, LI C H, MOU T M. Identification of QTLs for heat tolerance at flowering stage in rice. Scientia Agricultura Sinica, 2008, 41(2): 315-321. (in Chinese) | |
[16] | 奎丽梅, 谭禄宾, 涂建, 卢义宣, 孙传清. 云南元江野生稻抽穗开花期耐热QTL定位. 农业生物技术学报, 2008, 16(3): 461-464. |
KUI L M, TAN L B, TU J, LU Y X, SUN C Q. Identification of QTLs associated with heat tolerance of Yuanjiang common wild rice (Oryza rufipogon griff.) at flowering stage. Journal of Agricultural Biotechnology, 2008, 16(3): 461-464. (in Chinese) | |
[17] |
盘毅, 罗丽华, 邓化冰, 张桂莲, 唐文邦, 陈立云, 肖应辉. 水稻开花期高温胁迫下的花粉育性QTL定位. 中国水稻科学, 2011, 25(1): 99-102.
doi: 10.3969/j.issn.1001-7216.2011.01.01 |
PAN Y, LUO L H, DENG H B, ZHANG G L, TANG W B, CHEN L Y, XIAO Y H. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice. Chinese Journal of Rice Science, 2011, 25(1): 99-102. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.01.01 |
|
[18] | 张昌泉, 陈飞, 洪燃, 李钱峰, 顾铭洪, 刘巧泉. 利用染色体片段代换系定位水稻抽穗开花期耐热性QTL. 江苏农业科学, 2016, 44(12): 120-123. |
ZHANG C Q, CHEN F, HONG R, LI Q F, GU M H, LIU Q Q. Mapping QTL for heat tolerance at heading and anthesis stage in rice using chromosome segment substitution lines. Jiangsu Agricultural Sciences, 2016, 44(12): 120-123. (in Chinese) | |
[19] | 赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644. |
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese) | |
[20] |
YE C R, TENORIO F A, REDOÑA E D, MORALES-CORTEZANO P S, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517.
doi: 10.1007/s00122-015-2526-9 |
[29] | 查中萍, 殷得所, 万丙良, 焦春海. 水稻种质资源开花期耐热性分析. 湖北农业科学, 2016, 55(1): 17-19. |
ZHA Z P, YIN D S, WAN B L, JIAO C H. Analyzing of rice germplasm heat resistance during flowering stage. Hubei Agricultural Sciences, 2016, 55(1): 17-19. (in Chinese) | |
[30] |
LIU G, ZHA Z P, CAI H Y, QIN D D, JIA H T, LIU C Y, QIU D F, ZHANG Z J, WAN Z H, YANG Y Y, WANG B L, YOU A Q, JIAO C H. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). International Journal of Molecular Sciences, 2020, 21: 1155.
doi: 10.3390/ijms21031155 |
[31] | 邱东峰, 葛平娟, 刘刚, 杨金松, 陈建国, 张再君. 优质水稻新种质 ZY56 的创制及评价. 中国农业科学, 2021, 54(6): 1081-1091. |
QIU D F, GE P J, LIU G, YANG J S, CHEN J G, ZHANG Z J. Breeding and evaluation of elite rice line ZY56. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091. (in Chinese) | |
[32] | 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异. 作物学报, 2011, 37(5): 820-831. |
ZHOU W H, XUE D W, ZHANG G P. Protein response of rice leaves to high temperature stress and its difference of genotypes at different growth stage. Acta Agronomica Sinica, 2011, 37(5): 820-831. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00820 |
[1] | DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634. |
[2] | XIE Jun, YIN XueWei, WEI Ling, WANG ZiFang, LI QingHu, ZHANG XiaoChun, LU YuanYuan, WANG QiuYue, GAO Ming. Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field [J]. Scientia Agricultura Sinica, 2023, 56(4): 697-710. |
[3] | ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440. |
[4] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[5] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[6] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[7] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[8] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[9] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[10] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[11] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[12] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[13] | ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. |
[14] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[15] | JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889. |
|