Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (4): 697-710.doi: 10.3864/j.issn.0578-1752.2023.04.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Control Irrigation on Grain Yield and Greenhouse Gas Emissions in Ridge Cultivation Direct-Seeding Paddy Field

XIE Jun1(), YIN XueWei1,2, WEI Ling2, WANG ZiFang1, LI QingHu2, ZHANG XiaoChun2, LU YuanYuan2, WANG QiuYue2, GAO Ming1()   

  1. 1College of Resources and Environment, Southwest University, Chongqing 400715
    2Special Crop Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 402160
  • Received:2022-01-08 Accepted:2022-02-23 Online:2023-02-16 Published:2023-02-24

Abstract:

【Objective】Paddy fields are one of the important sources of greenhouse gas emissions, while farming practices and water management can reduce greenhouse gas emissions from field to a certain extent. Ridge cultivation and direct-seeding is a new kind of rice planting pattern that saves costs and increases economic efficiency. The impact of water management of ridge cultivation and control irrigation on grain yield and greenhouse gas emissions were explored for increasing grain yield and reducing greenhouse gas emissions, so as to provide a theoretical basis and technical approaches for the innovation of high-yield and emission-reduction. 【Method】In this study, a rice-radish rotation system under the ridge cultivation from 2019 to 2021 was conducted to use as the research object. Four treatments were set up, including traditional flooded furrow irrigation (TFI: the height of irrigation was about 5 cm above the ridge), controlled furrow irrigation 1 (CFI1: the height of irrigation was about 5 cm below the ridge), controlled furrow irrigation 2 (CFI2: the height of irrigation was about 10 cm below the ridge), and control furrow irrigation 3 (CFI3: the height of irrigation was about 15 cm below the ridge). The greenhouse gas emissions and global warming potential (GWP) of rice-radish season were investigated by airtight static box-gas chromatography, and the rice yield, soil reducing substances, ammonium nitrogen and nitrate nitrogen were measured. Finally, the optimal irrigation patterns were identified with both reducing the GWP and increasing the rice yield. 【Result】Based on the three-year experimental results, compared with TFI treatment, controlled irrigation could significantly reduce the cumulative emission of CH4 by 22.81%-78.47% in the rice season, of which CFI3 had the most significant effect; CFI2 treatment significantly increased the cumulative emission of N2O by 20.45%-59.90%, CFI3 significantly reduced the cumulative N2O emissions by 12.08%-68.64%, and CFI1 had no significant effect on the cumulative N2O emissions. For radish season, compared with TFI controlled irrigation could significantly reduce the cumulative emission of CH4 by 34.87%-53.31%, among which CFI2 and CFI3 had the most significant effects; CFI1, CFI2 and CFI3 treatments could significantly increase the cumulative emission of N2O by 35.00%-120.00%. The results of two-way ANOVA showed that control irrigation, the interaction of control irrigation and year had an extremely significance on the cumulative emission of CH4 (P<0.01). The control irrigation, year, the interaction of control irrigation and year had an extremely significance on cumulative N2O emissions (P<0.01). Compared with TFI, controlled irrigation treatment could significantly reduce GWP by 20.24%-74.87% in rice season; CFI1 and CFI2 treatments increased rice yield by 12.34%-33.97%, CFI3 treatment had no significant effect on yield. Controlling irrigation reduced GHGI by 29.37%-75.92%. Controlled irrigation affected CH4 emissions by reducing the total amount of reducing substances, active reducing substances and reducing Fe2+ by 15.00%-30.84%, 53.45%-71.65% and 60.47%, respectively. It also affected N2O emissions by reducing NH4+ by 7.51%-9.87% and increasing NO3- by 5.81%-8.55%. 【Conclusion】Controlled irrigation affected GHG emissions through soil properties such as NO3-, NH4+, and reducing substances. Therefore, CFI1 and CFI2 had the best effects in terms of reducing GWP and increasing rice yield. Under the conditions of ridge cultivation and direct-seeding in paddy field, the depth of irrigation with two-thirds or half of the depth of traditional furrow irrigation flooding was the best water management method to alleviate greenhouse gas emissions and increase rice production.

Key words: ridge cultivation, direct-seeding, water management, greenhouse gas, rice, radish

Fig. 1

Changes in daily mean air temperature and cumulative rainfall during the experimental period"

Fig. 2

Schematic diagram of different control irrigation treatments for ridge-growing direct-seeding rice"

Table 1

Growth period of rice and radish in different years"

作物类型
Crop type
2019-2020 2020-2021 2021-2022
播种期
Sowing date
收获期
Harvest date
播种期
Sowing date
收获期
Harvest date
播种期
Sowing date
收获期
Harvest date
水稻 Rice 2019.05.14 2019.09.16 2020.05.09 2020.09.20 2021.05.06 2021.09.07
萝卜 Radish 2019.10.15 2020.02.02 2020.10.11 2021.01.22 / /

Fig. 3

Variation characteristics of soil temperature (5 cm soil layer)in paddy field under furrow water management"

Fig. 4

The impact of water management in furrows on greenhouse gas emission fluxes from rice fields Black arrows indicate the time to start water management"

Fig. 5

The impact of water management in furrow on CH4 cumulative emission in radish season"

Fig. 6

The impact of water management in furrow on N2O cumulative emission in radish season"

Table 3

Two-way ANOVA of cumulative emissions of N2O and CH4 from 2019 to 2021"

温室气体Greenhouse gas 因素Factor df F P
CH4 控制灌溉Control irrigation 4 547.71 <0.01
年份 Year 2 2.66 >0.05
控制灌溉×年份Control irrigation×Year 8 35.11 <0.01
N2O 控制灌溉 Control irrigation 4 195.40 <0.01
年份 Year 2 36.26 <0.01
控制灌溉×年份Control irrigation×Year 8 15.47 <0.01

Fig. 7

The impact of water management in furrows on rice yield"

Fig. 8

The impact of water management in furrow on GHGI in rice season"

Table 4

The impact of water management in furrows on soil properties in 2021 rice season"

灌水处理
Irrigation treatment
硝态氮
NO3--N
(mg·kg-1)
铵态氮
NH4+-N
(mg·kg-1)
还原物质总量
Total reducing
substance (cmol·kg-1)
活性还原物质
Active reducing
substance (cmol·kg-1)
还原性铁
Reducing Fe
(cmol·kg-1)
还原性锰
Reducing Mn
(cmol·kg-1)
TFI 50.01±3.88b 19.45±0.31a 10.41±1.39a 2.75±0.42a 0.86±0.28a 0.42±0.08a
CFI1 55.31±2.55ab 17.82±1.12b 8.85±0.24b 2.67±0.32a 0.84±0.29a 0.38±0.08a
CFI2 60.47±3.02a 17.53±1.05b 9.14±0.58ab 1.28±0.29b 0.62±0.14a 0.34±0.05a
CFI3 62.37±1.31a 17.99±1.09b 7.20±1.02b 0.78±0.32b 0.34±0.02b 0.31±0.06a

Table 2

Effects of furrow water management on cumulative greenhouse gas emissions and GWP in rice season"

年份
Year
灌水处理
Irrigation treatment
CH4
(kg·hm-2)
N2O
(kg·hm-2)
全球增温潜势
GWP (kg CO2 eq·hm-2)
2019 TFI 404.73±20.21a 2.27±0.07b 10794.71±601.11a
CFI1 245.80±9.10b 2.07±0.10b 6791.66±257.30b
CFI2 188.83±5.12c 3.25±0.13a 5689.34±168.99c
CFI3 179.27±5.68c 1.33±0.06c 4878.09±159.88d
2020 TFI 430.57±25.24a 2.07±0.07b 11381.11±651.86a
CFI1 312.73±10.64b 2.09±0.06b 8441.07±283.88b
CFI2 165.85±2.38c 3.31±0.08a 5132.63±83.34c
CFI3 92.72±2.28d 1.82±0.05c 2860.36±71.90d
2021 TFI 280.81±9.16a 2.64±0.15b 7806.97±273.70a
CFI1 216.77±11.46b 2.71±0.14b 6226.83±328.22b
CFI2 159.73±3.62c 3.18±0.12a 4940.89±126.26c
CFI3 151.00±4.29c 1.62±0.12c 4257.76±143.01d
[1]
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2021.
[2]
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2013.
[3]
ZOU J W, HUANG Y, QIN Y M, LIU S W, SHEN Q R, PAN G X, LU Y Y, LIU Q H. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology, 2009, 15(1): 229-242. doi:10.1111/j.1365-2486.2008.01775.x.

doi: 10.1111/j.1365-2486.2008.01775.x.
[4]
WANG H, ZHANG Y, ZHANG Y J, MCDANIEL M D, SUN L, SU W, FAN X R, LIU S H, XIAO X. Water-saving irrigation is a ‘win-win’ management strategy in rice paddies - With both reduced greenhouse gas emissions and enhanced water use efficiency. Agricultural Water Management, 2020, 228: 105889. doi:10.1016/j. agwat.2019.105889.

doi: 10.1016/j. agwat.2019.105889.
[5]
ZHONG C, LIU Y, XU X T, YANG B J, AAMER M, ZHANG P, HUANG G Q. Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system. Environmental Pollution, 2021, 276: 116696. doi:10.1016/j.envpol.2021.116696.

doi: 10.1016/j.envpol.2021.116696.
[6]
JIANG Y, LIAO P, VAN GESTEL N, SUN Y N, ZENG Y J, HUANG S, ZHANG W J, VAN GROENIGEN K J. Lime application lowers the global warming potential of a double rice cropping system. Geoderma, 2018, 325: 1-8. doi:10.1016/j.geoderma.2018.03.034.

doi: 10.1016/j.geoderma.2018.03.034.
[7]
LIU S W, ZHANG L, JIANG J Y, CHEN N N, YANG X M, XIONG Z Q, ZOU J W. Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Science of the Total Environment, 2012, 426: 166-171. doi:10.1016/j.scitotenv.2012.02.003.

doi: 10.1016/j.scitotenv.2012.02.003.
[8]
熊丽萍, 吴家梅, 纪雄辉, 彭华, 李尝君. 水旱轮作系统中土壤CH4和N2O排放研究进展. 农业环境科学学报, 2020, 39(4): 863-871. doi:10.11654/jaes.2020-0101.

doi: 10.11654/jaes.2020-0101.
XIONG L P, WU J M, JI X H, PENG H, LI C J. A review on soil CH4 and N2O emissions from paddy-upland rotation systems. Journal of Agro-Environment Science, 2020, 39(4): 863-871. doi:10.11654/jaes.2020-0101. (in Chinese)

doi: 10.11654/jaes.2020-0101.
[9]
CAI Z C, TSURUTA H, GAO M, XU H, WEI C F. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology, 2003, 9(1): 37-45. doi:10.1046/j.1365-2486. 2003.00562.x.

doi: 10.1046/j.1365-2486.2003.00562.x.
[10]
郑华斌, 姚林, 刘建霞, 贺慧, 陈阳, 黄璜. 种植方式对水稻产量及根系性状的影响. 作物学报, 2014, 40(4): 667-677. doi:10.3724/SP.J.1006.2014.00667.

doi: 10.3724/SP.J.1006.2014.00667.
ZHENG H B, YAO L, LIU J X, HE H, CHEN Y, HUANG H. Effect of ridge & terraced cultivation on rice yield and root trait. Acta Agronomica Sinica, 2014, 40(4): 667-677. doi:10.3724/SP.J.1006.2014.00667. (in Chinese)

doi: 10.3724/SP.J.1006. 2014.00667.
[11]
DELLA LUNGA D, BRYE K R, SLAYDEN J M, HENRY C G, WOOD L S. Relationships among soil factors and greenhouse gas emissions from furrow-irrigated Rice in the mid-southern, USA. Geoderma Regional, 2021, 24: e00365. doi:10.1016/j.geodrs.2021.e00365.

doi: 10.1016/j.geodrs.2021.e00365.
[12]
CHEN L M, YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. Innovative furrow ridging fertilization under a mechanical direct seeding system improves the grain yield and lodging resistance of early indica rice in South China. Field Crops Research, 2021, 270: 108184. doi:10.1016/j.fcr.2021.108184.

doi: 10.1016/j.fcr.2021.108184.
[13]
高明. 稻田长期垄作免耕下土壤肥力及环境效应的研究[D]. 重庆: 西南农业大学, 2001.
GAO M. Research on soil fertility and environmental effects under long-term ridge and no-tillage rice field[D]. Chongqing: Southwest Agricultural University, 2001. (in Chinese)
[14]
WANG Z Q, GU D J, BEEBOUT S S, ZHANG H, LIU L J, YANG J C, ZHANG J H. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. The Crop Journal, 2018, 6(5): 495-508. doi:10.1016/j.cj.2018.05.004.

doi: 10.1016/j.cj.2018.05.004.
[15]
XU Y Y, WANG Y X, MA X C, LIU X, ZHANG P, CAI T, JIA Z K. Ridge-furrow mulching system and supplementary irrigation can reduce the greenhouse gas emission intensity. Science of the Total Environment, 2020, 717: 137262. doi:10.1016/j.scitotenv.2020.137262.

doi: 10.1016/j.scitotenv.2020.137262.
[16]
SETYANTO P, PRAMONO A, ADRIANY T A, SUSILAWATI H L, TOKIDA T, PADRE A T, MINAMIKAWA K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Science and Plant Nutrition, 2018, 64(1): 23-30. doi:10.1080/00380768.2017.1409600.

doi: 10.1080/00380768.2017.1409600.
[17]
MANEEPITAK S, ULLAH H, DATTA A, SHRESTHA R P, SHRESTHA S, KACHENCHART B. Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double-rice paddy field in the Central Plain of Thailand. European Journal of Agronomy, 2019, 107: 18-29. doi:10.1016/j.eja.2019.04.002.

doi: 10.1016/j.eja.2019.04.002.
[18]
OO A Z, SUDO S, INUBUSHI K, MANO M, YAMAMOTO A, ONO K, OSAWA T, HAYASHIDA S, PATRA P K, TERAO Y, ELAYAKUMAR P, VANITHA K, UMAMAGESWARI C, JOTHIMANI P, RAVI V. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems & Environment, 2018, 252: 148-158. doi:10.1016/j.agee.2017.10.014.

doi: 10.1016/j.agee.2017.10.014.
[19]
PANDEY A, MAI V T, VU D Q, BUI T P L, MAI T L A, JENSEN L S, DE NEERGAARD A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agriculture, Ecosystems & Environment, 2014, 196: 137-146. doi:10.1016/j.agee.2014.06.010.

doi: 10.1016/j.agee.2014.06.010.
[20]
HOU H J, YANG S H, WANG F T, LI D, XU J Z. Controlled irrigation mitigates the annual integrative global warming potential of methane and nitrous oxide from the rice-winter wheat rotation systems in Southeast China. Ecological Engineering, 2016, 86: 239-246. doi:10.1016/j.ecoleng.2015.11.022.

doi: 10.1016/j.ecoleng.2015.11.022.
[21]
YANG S H, PENG S Z, XU J Z, LUO Y F, LI D X. Methane and nitrous oxide emissions from paddy field as affected by water-saving irrigation. Physics and Chemistry of the Earth, Parts A/B/C, 2012, 53/54: 30-37. doi:10.1016/j.pce.2011.08.020.

doi: 10.1016/j.pce.2011.08.020.
[22]
HOU H J, PENG S Z, XU J Z, YANG S H, MAO Z. Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 2012, 89(7): 884-892. doi:10.1016/j.chemosphere.2012.04.066.

doi: 10.1016/j.chemosphere.2012.04.066.
[23]
CARRIJO D R, LUNDY M E, LINQUIST B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Research, 2017, 203: 173-180. doi:10.1016/j.fcr.2016.12.002.

doi: 10.1016/j.fcr.2016.12.002.
[24]
BROOKS S A, ANDERS M M, YEATER K M. Effect of furrow irrigation on the severity of false smut in susceptible rice varieties. Plant Disease, 2010, 94(5): 570-574. doi:10.1094/pdis-94-5-0570.

doi: 10.1094/PDIS-94-5-0570 pmid: 30754472
[25]
FENG Z Y, QIN T, DU X Z, SHENG F, LI C F. Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China. Agricultural Water Management, 2021, 250: 106830. doi:10.1016/j.agwat.2021.106830.

doi: 10.1016/j.agwat.2021.106830.
[26]
LAGOMARSINO A, AGNELLI A E, LINQUIST B, ADVIENTO- BORBE M A, AGNELLI A, GAVINA G, RAVAGLIA S, FERRARA R M. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere, 2016, 26(4): 533-548. doi:10.1016/S1002-0160(15)60063-7.

doi: 10.1016/S1002-0160(15)60063-7.
[27]
LIANG K M, ZHONG X H, HUANG N R, LAMPAYAN R M, PAN J F, TIAN K, LIU Y Z. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in South China. Agricultural Water Management, 2016, 163: 319-331. doi:10. 1016/j.agwat.2015.10.015.

doi: 10. 1016/j.agwat.2015.10.015.
[28]
XU Y, ZHAN M, CAO C G, TIAN S Y, GE J Z, LI S Y, WANG M Y, YUAN G Y. Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in Central China. Agriculture, Ecosystems & Environment, 2016, 221: 87-98. doi:10. 1016/j.agee.2016.01.021.

doi: 10. 1016/j.agee.2016.01.021.
[29]
申丽娟. 侯光炯学术思想:历史、 哲学与表达[D]. 重庆: 西南大学, 2014.
SHEN L J. Research on history, philosophy and expression of Hou Kuangchun's academic thought[D]. Chongqing: Southwest University, 2014. (in Chinese)
[30]
岳以翛. 西南地区山地农业机械化的发展现状及对策研究: 以重庆地区为例[D]. 重庆: 重庆三峡学院, 2018.
YUE Y X. Research on the development status and countermeasures of mountain agricultural mechanization in Southwest China. Chongqing: Chongqing Three Gorges University, 2018. (in Chinese)
[31]
许轲, 唐磊, 张洪程, 郭保卫, 霍中洋, 戴其根, 魏海燕, 韦还和. 不同机械直播方式对水稻分蘖特性及产量的影响. 农业工程学报, 2014, 30(13): 43-52. doi:10.3969/j.issn.1002-6819.2014.13.006.

doi: 10.3969/j.issn.1002-6819.2014.13.006.
XU K, TANG L, ZHANG H C, GUO B W, HUO Z Y, DAI Q G, WEI H Y, WEI H H. Effect of different mechanical direct seeding methods on tiller characteristics and yield of rice. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 43-52. doi:10.3969/j.issn.1002-6819.2014.13.006. (in Chinese)

doi: 10.3969/j.issn.1002-6819.2014.13.006.
[32]
张岳芳, 陈留根, 张传胜, 杨洪建, 盛婧, 朱普平, 郑建初. 水稻机械化播栽对稻田甲烷和氧化亚氮排放的影响. 农业工程学报, 2015, 31(14): 232-241. doi:10.11975/j.issn.1002-6819.2015.14.032.

doi: 10.11975/j.issn.1002-6819.2015.14.032.
ZHANG Y F, CHEN L G, ZHANG C S, YANG H J, SHENG J, ZHU P P, ZHENG J C. Influence of rice mechanical planting methods on methane and nitrous oxide emissions from paddy field. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 232-241. doi:10.11975/j.issn.1002-6819.2015.14.032. (in Chinese)

doi: 10.11975/j.issn.1002-6819.2015.14.032.
[33]
LI H, GUO H Q, HELBIG M, DAI S Q, ZHANG M S, ZHAO M, PENG C H, XIAO X M, ZHAO B. Does direct-seeded rice decrease ecosystem-scale methane emissions? —A case study from a rice paddy in southeast China. Agricultural and Forest Meteorology, 2019, 272/273: 118-127. doi:10.1016/j.agrformet.2019.04.005.

doi: 10.1016/j.agrformet.2019.04.005.
[34]
刘杰, 罗尊长, 肖小平, 余崇祥, 洪曦, 孙耿, 唐海明. 不同栽培和灌溉方式对冷浸稻田还原性物质及水稻生长的影响. 作物研究, 2014, 28(5): 451-454. doi:10.3969/j.issn.1001-5280.2014.05.01.

doi: 10.3969/j.issn.1001-5280.2014.05.01.
LIU J, LUO Z C, XIAO X P, YU C X, HONG X, SUN G, TANG H M. Effects of different tillage and irrigation modes on reducing substances and rice growth of cold spring paddy soil. Crop Research, 2014, 28(5): 451-454. doi:10.3969/j.issn.1001-5280.2014.05.01. (in Chinese)

doi: 10.3969/j.issn.1001-5280.2014.05.01.
[35]
秦川. 稻田垄作免耕提高土壤氮素肥力的作用机制研究[D]. 重庆: 西南大学, 2021.
QIN C. Study on the mechanism of improving soil nitrogen fertility by combination ridge with no-tillage in paddy field[D]. Chongqing: Southwest University, 2021. (in Chinese)
[36]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[37]
张自常, 李鸿伟, 陈婷婷, 王学明, 王志琴, 杨建昌. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 中国农业科学, 2011, 44(24): 4988-4998. doi:10.3864/j.issn.0578-1752.2011.24.003.

doi: 10.3864/j.issn.0578-1752.2011.24.003.
ZHANG Z C, LI H W, CHEN T T, WANG X M, WANG Z Q, YANG J C. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice. Scientia Agricultura Sinica, 2011, 44(24): 4988-4998. doi:10.3864/j.issn.0578-1752.2011.24.003. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.24.003.
[38]
王永明, 徐永记, 纪洋, 冯彦房. 节水灌溉和控释肥施用耦合措施对单季稻田CH4和N2O排放的影响. 环境科学, 2021, 42(12): 6025-6037. doi:10.13227/j.hjkx.202103275.

doi: 10.13227/j.hjkx.202103275.
WANG Y M, XU Y J, JI Y, FENG Y F. Coupling effects of water-saving irrigation and controlled-release fertilizer (CRF) application on CH4 and N2O emission in single cropping paddy field. Environmental Science, 2021, 42(12): 6025-6037. doi:10.13227/j.hjkx.202103275. (in Chinese)

doi: 10.13227/j. hjkx.
[39]
黄容, 高明, 黎嘉成, 徐国鑫, 王富华, 李娇, 陈仕奇. 有机物料等氮量施用对紫色土氮形态及温室气体排放的影响. 中国农业科学, 2018, 51(21): 4087-4101. doi:10.3864/j.issn.0578-1752.2018.21.008.

doi: 10.3864/j.issn.0578-1752.2018.21.008.
HUANG R, GAO M, LI J C, XU G X, WANG F H, LI J, CHEN S Q. Effects of combined application of various organic materials and chemical fertilizer on soil nitrogen formation and greenhouse gas emission under equal nitrogen rates from purple soil. Scientia Agricultura Sinica, 2018, 51(21): 4087-4101. doi:10.3864/j.issn.0578-1752.2018.21.008. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.21.008.
[40]
王蕾, 董彦宏, 王连峰. 不同水分含量下黑土氧化亚氮排放差异. 大连交通大学学报, 2021, 42(5): 84-88. doi:10.13291/j.cnki.djdxac.2021.05.016.

doi: 10.13291/j.cnki.djdxac.2021.05.016.
WANG L, DONG Y H, WANG L F. Difference of nitrous oxide emission in black soil under different water content. Journal of Dalian Jiaotong University, 2021, 42(5): 84-88. doi:10.13291/j.cnki.djdxac.2021.05.016. (in Chinese)

doi: 10.13291/j.cnki.djdxac.2021.05.016.
[41]
向伟, 王雷, 刘天奇, 李诗豪, 翟中兵, 李成芳. 生物炭与无机氮配施对稻田温室气体排放及氮肥利用率的影响. 中国农业科学, 2020, 53(22): 4634-4645. doi:10.3864/j.issn.0578-1752.2020.22.010.

doi: 10.3864/j.issn.0578-1752.2020.22.010.
XIANG W, WANG L, LIU T Q, LI S H, ZHAI Z B, LI C F. Effects of biochar plus inorganic nitrogen on the greenhouse gas and nitrogen use efficiency from rice fields. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645. doi:10.3864/j.issn.0578-1752.2020.22.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.22.010.
[42]
李健陵, 李玉娥, 周守华, 苏荣瑞, 万运帆, 王斌, 蔡威威, 郭晨, 秦晓波. 节水灌溉、 树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用. 中国农业科学, 2016, 49(20): 3958-3967. doi:10.3864/j.issn.0578-1752.2016.20.010.

doi: 10.3864/j.issn.0578-1752.2016.20.010.
LI J L, LI Y E, ZHOU S H, SU R R, WAN Y F, WANG B, CAI W W, GUO C, QIN X B. Synergistic effects of water-saving irrigation, polymer-coated nitrogen fertilizer and urease/nitrification inhibitor on mitigation of greenhouse gas emissions from the double rice cropping system. Scientia Agricultura Sinica, 2016, 49(20): 3958-3967. doi:10.3864/j.issn.0578-1752.2016.20.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.20.010.
[43]
ISLAM S M M, GAIHRE Y K, ISLAM M R, AKTER M, AL MAHMUD A, SINGH U, SANDER B O. Effects of water management on greenhouse gas emissions from farmers' rice fields in Bangladesh. Science of the Total Environment, 2020, 734: 139382. doi:10.1016/j.scitotenv.2020.139382.

doi: 10.1016/j.scitotenv.2020.139382.
[44]
MEIJIDE A, GRUENING C, GODED I, SEUFERT G, CESCATTI A. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems & Environment, 2017, 238: 168-178. doi:10.1016/j.agee.2016.08.017.

doi: 10.1016/j.agee.2016.08.017.
[1] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[2] LIU Gang, XIA KuaiFei, WU Yan, ZHANG MingYong, ZHANG ZaiJun, YANG JinSong, QIU DongFeng. Breeding and Application of a New Thermo-Tolerance Rice Germplasm R203 [J]. Scientia Agricultura Sinica, 2023, 56(3): 405-415.
[3] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[4] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[5] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[9] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[11] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[12] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[13] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[14] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[15] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!