Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (24): 4823-4839.doi: 10.3864/j.issn.0578-1752.2022.24.004
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
WANG ShuTing1(),KONG YuGuang2,ZHANG Zan3,CHEN HongYan1(
),LIU Peng4
[1] | 苏伟, 赵晓凤, 孙中平, 张明政, 邹再超, 王伟, 史园莉. 基于Sentinel-2A影像的玉米冠层叶绿素含量估算. 光谱学与光谱分析, 2019, 39(5): 1535-1542. |
SU W, ZHAO X F, SUN Z P, ZHANG M Z, ZOU Z C, WANG W, SHI Y L. Estimating the corn canopy chlorophyll content using the Sentinel-2A image. Spectroscopy and Spectral Analysis, 2019, 39(5): 1535-1542. (in Chinese) | |
[2] | 周敏姑, 邵国敏, 张立元, 刘治开, 韩文霆. 基于无人机遥感的冬小麦叶绿素含量多光谱反演. 节水灌溉, 2019, (9): 40-45. |
ZHOU M G, SHAO G M, ZHANG L Y, LIU Z K, HAN W T. Multi-spectral inversion of SPAD value of winter wheat based on unmanned aerial vehicle remote sensing. Water Saving Irrigation, 2019, (9): 40-45. (in Chinese) | |
[3] | 陈硕博. 无人机多光谱遥感反演棉花光合参数与水分的模型研究[D]. 西安: 西北农林科技大学, 2019. |
CHEN S B. Modeling of cotton photosynthetic parameters and water content retrieval by multi-spectral remote sensing of UAV[D]. Xi’an: Northwest A&F University, 2019. (in Chinese) | |
[4] |
HATAM Z, SABET M S, MALAKOUTI M J, BIDGOLI A M, HOMAEE M. Zinc and potassium fertilizer recommendation for cotton seedlings under salinity stress based on gas exchange and chlorophyll fluorescence responses. South African Journal of Botany, 2020, 130: 155-164.
doi: 10.1016/j.sajb.2019.11.032 |
[5] | 鱼欢, 邬华松, 王之杰. 利用SPAD和Dualex快速、无损诊断玉米氮素营养状况. 作物学报, 2010, 36(5): 840-847. |
YU H, WU H S, WANG Z J. Evaluation of SPAD and Dualex for in season corn nitrogen status estimation. Acta Agronomica Sinica, 2010, 36(5): 840-847. (in Chinese) | |
[6] |
LI X J, DU H Q, ZHOU G M, MAO F J, ZHANG M, HAN N, FAN W L, LIU H, HUANG Z H, HE S B, MEI T T. Phenology estimation of subtropical bamboo forests based on assimilated MODIS LAI time series data. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173(6): 262-277.
doi: 10.1016/j.isprsjprs.2021.01.018 |
[7] |
KOTIKOT A M, FLORES A, GRIFFIN R E, SEDAH A, NYAGA J, MUGO R, LIMAYE A, IRWIN D E. Mapping threat to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 131-139.
doi: 10.1016/j.jag.2018.05.009 |
[8] |
HOLZMAN M E, CARMONA F, RIVAS R, NICLOS R. Early assessment of crop yield from remotely sensed water stress and solar radiation data. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 297-308.
doi: 10.1016/j.isprsjprs.2018.03.014 |
[9] |
GHOSH S, MISHRA D R, GITELSON A A. Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico—A methodological approach using MODIS. Remote Sensing of Environment, 2016, 173: 39-58.
doi: 10.1016/j.rse.2015.11.015 |
[10] |
LIAQAT M U, CHEEMA M J M, HUANG W J, MAHMOOD T, ZAMAN M, KHAN M M. Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in Irrigated Indus Basin. Computers and Electronics in Agriculture, 2017, 138: 39-47.
doi: 10.1016/j.compag.2017.04.006 |
[11] |
MOKHTARI A, NOORY H, POURSHAKOURI F, HAGHIGHATMEHE P, AFRASIABIAN Y, RAZAVI M, FEREYDOONI F, NAENI A S. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 231-245.
doi: 10.1016/j.isprsjprs.2019.06.011 |
[12] | 张卓然, 常庆瑞, 张延龙, 班松涛, 由明明. 基于支持向量机的棉花冠层叶片叶绿素含量高光谱遥感估算. 西北农林科技大学(自然科学版), 2018, 46(11): 39-45. |
ZHANG Z R, CHANG Q R, ZHANG Y L, BAN S T, YOU M M. Hyperspectral estimation of chlorophyll remote sensing content of cotton canopy leaves based on support vector machine. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(11): 39-45. (in Chinese) | |
[13] | LIU J B, HAN J C, CHEN X, SHI L, ZHANG L. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117202. |
[14] | 张东彦, 宋晓宇, 马智宏, 杨贵军, 黄文江, 王纪华. 扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究. 中国农业科学, 2010, 43(11): 2239-2245. |
ZHANG D Y, SONG X Y, MA Z H, YANG G J, HUANG W J, WANG J H. Assessment of the developed pushbroom imaging spectrometer in single leaf scale. Scientia Agricultura Sinica, 2010, 43(11): 2239-2245. (in Chinese) | |
[15] | 唐普恩, 丁建丽, 葛翔宇, 张振华. 基于Sentinel-2A影像干旱区棉花叶片SPAD数字制图. 生态学报, 2020, 40(22): 8326-8335. |
TANG P E, DING J L, GE X Y, ZHANG Z H. SPAD digital mapping of cotton leaves in arid area based on Sentinel-2A image. Acta Ecologica Sinica, 2020, 40(22): 8326-8335. (in Chinese) | |
[16] |
MALHI R K M, KIRAN G S. Empirical modelling for retrieval of foliar traits in cotton crop using spatial data. Current Science, 2019, 116(12): 2089-2096.
doi: 10.18520/cs/v116/i12/2089-2096 |
[17] |
BALLESTEROS R, ORTEGA J F, HERNANDEZ D. Onion biomass monitoring using UAV based RGB imaging. Precision Agriculture, 2018, 19(5): 840-857.
doi: 10.1007/s11119-018-9560-y |
[18] | 奚雪, 赵庚星, 高鹏, 崔昆, 李涛. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例. 中国农业科学, 2020, 53(24): 5005-5016. |
XI X, ZHAO G X, GAO P, CUI K, LI T. Inversion of soil salinity in coastal winter wheat growing area based on sentinel satellite and unmanned aerial vehicle multi-spectrum—A case study in Kenli District of the Yellow River Delta. Scientia Agricultura Sinica, 2020, 53(24): 5005-5016. (in Chinese) | |
[19] |
史舟, 徐冬云, 滕洪芬, 胡月明, 潘贤章, 张甘霖. 土壤星地传感技术现状与发展趋势. 地理科学进展, 2018, 37(1): 79-92.
doi: 10.18306/dlkxjz.2018.01.009 |
SHI Z, XU D Y, TENG H F, HU Y M, PAN X Z, ZHANG G L. Soil information acquisition based on remote sensing and proximal soil sensing: Current status and prospect. Progress in Geography, 2018, 37(1): 79-92. (in Chinese)
doi: 10.18306/dlkxjz.2018.01.009 |
|
[20] | 陈俊英, 王新涛, 张智韬, 韩佳, 姚志华, 魏广飞. 基于无人机-卫星遥感尺度的土壤盐渍化监测方法. 农业机械学报, 2019, 50(12): 161-169. |
CHEN J Y, WANG X T, ZHANG Z T, HAN J, YAO Z H, WEI G F. Soil salinization monitoring method based on UAV satellite remote sensing scale up. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 161-169. (in Chinese) | |
[21] | 田明璐, 班松涛, 常庆瑞, 马文君, 殷紫, 王力. 基于无人机成像光谱仪数据的棉花叶绿素含量反演. 农业机械学报, 2016, 47(11): 285-293. |
TIAN M L, BAN S T, CHANG Q R, MA W J, YIN Z, WANG L. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV based imaging spectroradiometer. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. (in Chinese) | |
[22] | 毛智慧, 邓磊, 孙杰, 张爱武, 陈向阳, 赵云. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究. 光谱学与光谱分析, 2018, 38(9): 2923-2931. |
MAO Z H, DENG L, SUN J, ZHANG A W, CHEN X Y, ZHAO Y. Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction. Spectroscopy and Spectral Analysis, 2018, 38(9): 2923-2931. (in Chinese) | |
[23] | CHEN H Y, MA Y, ZHU A X, WANG Z R, GENG X Z, WEI Y N. Soil salinity inversion based on differentiated fusion of satellite image and ground spectra. International Journal of Applied Eaeth Observation and Geoinformation, 2021, 101(2): 1-11. |
[24] | 齐小玲, 吴健平. 多源遥感影像融合及其关键技术探讨. 现代测绘, 2003, 26(3): 20-22. |
QI X L, WU J P. Study on multi-source RS images fusion and its key techniques. Modern Surveying and Mapping, 2003, 26(3): 20-22. (in Chinese) | |
[25] |
PENG Y, NGUY-ROBERTSON A, ARKEBAUER T, GITELSON A A. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sensing, 2017, 9(3): 226.
doi: 10.3390/rs9030226 |
[26] | 贾博中. 基于MODIS与无人机的内蒙古沿黄平原区玉米信息反演与产量估测[D]. 内蒙古: 内蒙古农业大学, 2021. |
JIA B Z. Maize information inversion and yield estimation a plain along the Yellow River in Inner Mongolia based on MODIS and UAV[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2021. (in Chinese) | |
[27] |
JIN X L, LI Z H, FENG H K, XU X G, YANG G J. Newly combined spectral indices to improve estimation of total leaf chlorophyll content in cotton. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4589-4600.
doi: 10.1109/JSTARS.2014.2360069 |
[28] | 易秋香. 基于Sentinel-2多光谱数据的棉花叶面积指数估算. 农业工程学报, 2019, 35(16): 189-197. |
YI Q X. Remote estimation of cotton LAI using Sentinel-2 multispectral data. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 189-197. (in Chinese) | |
[29] | 刘金然. 基于无人机遥感影像的棉花主要生长参数反演[D]. 济南: 山东师范大学, 2019. |
LIU J R. Inversion of cotton main growth parameters based on UAV sensing image[D]. Ji’nan: Shandong Normal University, 2019. (in Chinese) | |
[30] | 张卓然. 棉花高光谱特征及其农学参数遥感反演研究[D]. 杨凌: 西北农林科技大学, 2018. |
ZHANG Z R. Research on hyperspecrtal characteristic of cotton and remote sensing inversion about cotton agronomic parameters[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
[31] |
ZHANG S M, ZHAO G X, LANG K, SU B W, CHEN X N, XI X, ZHANG H B. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors, 2019, 19(7): 1485.
doi: 10.3390/s19071485 |
[32] | 李敏. 基于RS和GIS的县域棉花信息提取及分区管理研究——以山东省夏津县为例[D]. 泰安: 山东农业大学, 2012. |
LI M. Cotton information extraction and management zoning based on RS and GIS at county scale—A case study in Xiajin county, Shandong province[D]. Taian: Shandong Agricultural University, 2012. (in Chinese) | |
[33] | 张同瑞, 赵庚星, 高明秀, 常春艳, 王卓然. 基于近地多光谱和OLI影像的黄河三角洲冬小麦种植区盐分估算及遥感反演——以山东省垦利县和无棣县为例. 自然资源学报, 2016, 31(6): 1051-1060. |
ZHANG T R, ZHAO G X, GAO M X, CHANG C Y, WANG Z R. Soil salinity estimation and remote sensing inversion based on near-ground multispectral and TM imagery in winter wheat growing area in the Yellow River Delta—Case study in Kenli county and Wudi county, Shandong province. Journal of Natural Resources, 2016, 31(6): 1051-1060. (in Chinese) | |
[34] | 梁亮, 杨敏华, 张连蓬, 林卉, 周兴东. 基于SVR算法的小麦冠层叶绿素含量高光谱反演. 农业工程学报, 2012, 28(20): 163-172. |
LIANG L, YANG M H, ZHANG L P, LIN H, ZHOU X D. Chlorophyll content inversion with hyperspectral technology for wheat canopy based on support vector regression algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20): 163-172. (in Chinese) | |
[35] | 李粉玲, 王力, 刘京, 常庆瑞. 基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算. 农业机械学报, 2015, 46(9): 273-281. |
LI F L, WANG L, LIU J, CHANG Q R. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese) | |
[36] |
CAO Q, MIAO Y X, SHEN J N, YU W F, YUAN F, CHENG S S, HUANG S Y, WANG H Y, YANG W, LIU F Y. Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with crop circle actice crop canopy sensor. Precision Agriculture, 2016, 17: 136-154.
doi: 10.1007/s11119-015-9412-y |
[37] |
HABOUSANE D, MILLER J R, PATTEY E, ZARCO-TEJADA P J, STRACHAN I B. Hyperspectra vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 2004, 90(3): 337-352.
doi: 10.1016/j.rse.2003.12.013 |
[38] | 纪伟帅, 陈红艳, 王淑婷, 张玉婷. 基于无人机多光谱的华北平原花岭期棉花叶片SPAD建模方法研究. 中国农学通报, 2021, 37(22): 143-150. |
JI W S, CHEN H Y, WANG S T, ZHANG Y T. Modeling method of cotton leaves SPAD at flowering and boll stage in North China Plain based on UAV multispectrum. Chinese Agricultural Science Bulletin, 2021, 37(22): 143-150. (in Chinese) | |
[39] | 王丹阳, 陈红艳, 王桂峰, 丛津桥, 王向峰, 魏学文. 无人机多光谱反演黄河口重度盐渍土盐分的研究. 中国农业科学, 2019, 52(10): 1698-1709. |
WANG D Y, CHEN H Y, WANG G F, CONG J Q, WANG X F, WEI X W. Salinity inversion of severe soil in the Yellow River estuary based on UAV multi-spectral. Scientia Agricultura Sinica, 2019, 52(10): 1698-1709. (in Chinese) | |
[40] |
MIURA T, HUETE A, YOSHIOKA H. An empirical investigation of cross sensor relationships of NDVI and red/near infrared reflectance using EO-1 hyperion data. Remote Sensing of Environment, 2006, 100(2): 223-236.
doi: 10.1016/j.rse.2005.10.010 |
[41] |
TRISHCHENKO A P. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17 and METOP-A. Remote Sensing of Environment, 2009, 113(2): 335-341.
doi: 10.1016/j.rse.2008.10.002 |
[42] | 陈文娇, 翁永玲, 范兴旺, 曹一茹. 基于光谱转换的土壤盐分反演与动态分析. 东南大学学报(自然科学版), 2017. 47(6): 1233-1238. |
CHEN W J, WENG Y L, FAN X W, CAO Y R. Soil salinity retrieval and dynamic analysis based on spectral band inter-calibration. Journal of Southeast University (Natural Science Edition), 2017, 47(6): 1233-1238. (in Chinese) | |
[43] |
MA Y, CHEN H Y, ZHAO G X, WANG Z R, WANG D Y. Spectral index fusion for salinized soil salinity inversion using Sentinel-2A and UAV images in a coastal area. IEEE Access, 2020, 8: 159595-159608.
doi: 10.1109/ACCESS.2020.3020325 |
[44] | 刘爽, 吴永波. 城市土壤压实对树木叶片叶绿素及光合生理特性的影响. 生态环境学报, 2010, 19(1): 172-176. |
LIU S, WU Y B. The impact of soil compaction on chlorophyll and photosynthetic characteristics of trees. Ecology and Environmental Sciences, 2010, 19(1): 172-176. (in Chinese) | |
[45] | 李美平, 朱宇恩, 尚晋伟, 郑国璋. 城市路口差异对行道树叶片叶绿素含量的影响研究. 环境污染与防治, 2010, 32(9): 37-40, 49. |
LI M P, ZHU Y E, SHANG J W, ZHENG G Z. Influence of road intersection difference on chlorophyll content of roadside tree. Environmental Pollution & Control, 2010, 32(9): 37-40, 49. (in Chinese) | |
[46] | 李萍, 赵庚星, 高明秀, 常春燕, 王卓然, 张同瑞, 安德玉, 贾吉超. 黄河三角洲土壤含水量状况的高光谱估测与遥感反演. 土壤学报, 2015, 52(6): 1262-1272. |
LI P, ZHAO G X, GAO M X, CHANG C Y, WANG Z R, ZHANG T R, AN D Y, JIA J C. Hyperspectral estimation and remote sensing reteieval of soil water regime in the Yellow River Delta. Acta Pedologica Sinica, 2015, 52(6): 1262-1272. (in Chinese) | |
[47] | FAN X W, WENG Y L, TAO J M. Towards decadal soil salinity mapping using Landsat time series data. Internationl Journal of Applied Earth Observation and Geoinformation, 2016, 52: 32-41. |
[48] |
依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 安申群, 马春玥. 基于随机森林算法的棉花叶片叶绿素含量估算. 作物学报, 2019, 45(1): 81-90.
doi: 10.3724/SP.J.1006.2019.84058 |
ABLET E, SAWUT M, MAIMAITIAILI B, AN S Q, MA C Y. Estimation of leaf chlorophyll content in cotton based on the random forest approach. Acta Agronomica Sinica, 2019, 45(1): 81-90. (in Chinese)
doi: 10.3724/SP.J.1006.2019.84058 |
|
[49] | 王烁, 常庆瑞, 刘梦云, 严林, 李媛媛, 刘秀英. 基于高光谱遥感的棉花叶片叶绿素含量估算. 中国农业大学学报, 2017, 22(4): 16-27. |
WANG S, CHANG Q R, LIU M Y, YAN L, LI Y Y, LIU X Y. Estimation on chlorophyll content of cotton based on optimized spectral index. Journal of China Agricultural University, 2017, 22(4): 16-27. (in Chinese) | |
[50] | 黄春燕. 基于高光谱数据的北疆棉花遥感监测研究[D]. 石河子: 石河子大学, 2005. |
HUANG C Y. Study on monitoring of remote sensing of cotton in north of XinJiang with hyperspectral data[D]. Shihezi: Shihezi University, 2005. (in Chinese) |
[1] | WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685. |
[2] | GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865. |
[3] | FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906. |
[4] | MA Xiao,CHEN PengFei. Improvement of Row Detection Method Before Wheat Canopy Closure Using Multispectral Images of UAV Image [J]. Scientia Agricultura Sinica, 2022, 55(20): 3926-3938. |
[5] | LI MeiXuan,ZHU XiCun,BAI XueYuan,PENG YuFeng,TIAN ZhongYu,JIANG YuanMao. Remote Sensing Inversion of Nitrogen Content in Apple Canopy Based on Shadow Removal in UAV Multi-Spectral Remote Sensing Images [J]. Scientia Agricultura Sinica, 2021, 54(10): 2084-2094. |
[6] | FengZhi SHI,RuiYan WANG,YuHuan LI,Hong YAN,XiaoXin ZHANG. LAI Estimation Based on Multi-Spectral Remote Sensing of UAV and Its Application in Saline Soil Improvement [J]. Scientia Agricultura Sinica, 2020, 53(9): 1795-1805. |
[7] | ZHAO Jing,LI ZhiMing,LU LiQun,JIA Peng,YANG HuanBo,LAN YuBin. Weed Identification in Maize Field Based on Multi-Spectral Remote Sensing of Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. |
[8] | XI Xue,ZHAO GengXing,GAO Peng,CUI Kun,LI Tao. Inversion of Soil Salinity in Coastal Winter Wheat Growing Area Based on Sentinel Satellite and Unmanned Aerial Vehicle Multi-Spectrum— A Case Study in Kenli District of the Yellow River Delta [J]. Scientia Agricultura Sinica, 2020, 53(24): 5005-5016. |
[9] | WANG KeJian,LI Li,LÜ Qiang,YI ShiLai,ZHENG YongQiang,XIE RangJin,MA YanYan,HE ShaoLan,DENG Lie. UAV Spray Technology for the Citrus Orchard: Taking Control of the Diaphorina citri and Phyllocnistis citrella as Examples [J]. Scientia Agricultura Sinica, 2020, 53(17): 3509-3517. |
[10] | GONG ChangWei,MA Yu,YANG Rui,RUAN YanWei,WANG XueGui,LIU Yue. Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV) [J]. Scientia Agricultura Sinica, 2020, 53(12): 2385-2398. |
[11] | CHEN PengFei, LIANG Fei. Cotton Nitrogen Nutrition Diagnosis Based on Spectrum and Texture Feature of Images from Low Altitude Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229. |
[12] | ZHANG ChunLan, YANG GuiJun, LI HeLi, TANG FuQuan, LIU Chang, ZHANG LiYan. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm [J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867. |
[13] | HE Ying, DENG Lei, MAO ZhiHui, SUN Jie. Remote Sensing Estimation of Canopy SPAD Value for Maize Based on Digital Camera [J]. Scientia Agricultura Sinica, 2018, 51(15): 2886-2897. |
[14] | LI Jie, FENG YueHua, MOU GuiTing, XU GuiLing, LUO QiangXin, LUO KangJie, HUANG ShiFeng, SHI Xin, GUAN ZhengCe, YE Yong, HUANG YouGang. Construction and Application Effect of the Leaf Value Model Based on SPAD Value in Rice [J]. Scientia Agricultura Sinica, 2017, 50(24): 4714-4724. |
[15] | GAN PING, DONG YanSheng, SUN Lin, YANG GuiJun, LI ZhenHai, YANG Fan, WANG LiZhi, WANG JianWen. Evaluation of Maize Waterlogging Disaster Using UAV LiDAR Data [J]. Scientia Agricultura Sinica, 2017, 50(15): 2983-2992. |
|