Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (9): 1860-1873.doi: 10.3864/j.issn.0578-1752.2020.09.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Root Exudates on Soil N2O Emissions and Isotopic Signature

Shan ZHUANG1,Wei LIN1,JunJun DING1,Qian ZHENG1,XinYue KOU1,QiaoZhen LI1,YuZhong LI1,2()   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Farming Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 100081;
    2 Environmental Stable Isotope Laboratory, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2019-08-02 Accepted:2019-11-06 Online:2020-05-01 Published:2020-05-13
  • Contact: YuZhong LI E-mail:liyuzhong@caas.cn

Abstract:

【Objective】The aim of this study was to investigate the effects of the main plant root exudates (organic acids, amino acids, sugars) on N2O emission and its microbial processes, so as to provide a support for selecting suitable plants to control soil N2O emissions. 【Method】Three main components of root exudates, including oxalic acid, serine and glucose, were added in the soil, and two levels of concentration were set for each component: low concentration (150 μg C·d -1) and high concentration (300 μg C·d -1). There were totally 7 treatments with a control treatment treated with distilled water, and all treatments were incubated in 120 mL glass bottles in incubator. The gas samples were sampled 7 times within 24 hours after 2-hour incubation each time. After sampling, the N2O emission rate, daily cumulative emission and isotope signatures (δ 15N bulk, δ 18O and SP (intramolecular 15N site preference, δ 15N α-δ 15N β)) were measured, then the optimal sampling time was determined according to their daily variation rules. 【Result】The N2O emission rate of soils increased gradually after adding three components of root exudates, which were higher than the control treatment. The cumulative emission of N2O in the high concentration treatment was: Glucose treatments ((3.2±1.3) mg·kg -1·d -1)>Serine treatments ((2.6±0.5) mg·kg -1·d -1)>Oxalic acid treatments((1.4±0.2) mg·kg -1·d -1), low concentration treatment: Oxalic acid ((2.7±1.3) mg·kg -1·d -1)>Serine ((1.8±0.4) mg·kg -1·d -1)>Glucose ((1.6±0.8) mg·kg -1·d -1); the values of δ 18O of N2O were not different among different root exudate treatments and were stable at 24.1‰-25.6‰, but significantly higher than the control treatment ((20.1±1.5) ‰); the δ 15N bulk value of N2O was related to the component of root exudates added, which was (-20.06±2.22) ‰ of oxalic acid treatment, (-22.33±1.10) ‰ of serine treatment, (-13.86±1.11) ‰ treated of glucose treatment, and (-23.14±3.72) ‰ of the control treatment. The SP value of N2O of each treatment ranged from 13.13‰ to 15.03‰, and the higher the root exudate concentration, the lower the SP value; after a comprehensive analysis of the correction coefficients of four indexes (N2O emission rate, the value of δ 15N bulk, δ 18O and SP) at each sampling time and their daily mean values of 7 treatments, the correction coefficients of all treatments were closest to 1 at the 16th hour after the addition of root exudates. 【Conclusion】In the soil environment with NH+ 4- 300 mg N·kg -1, the root exudates promoted N2O emission and the N2O emission rate increased gradually during the culture time (24 hours). The promotion effect of glucose in high concentration group was the strongest, while that of oxalic acid in low concentration group was the strongest. Compared with the control treatment, the addition of root exudates significantly increased the δ 18O value of N2O; the addition of glucose significantly increased the δ 15N bulk value of N2O. The higher the concentration of root exudates, the stronger the contribution of denitrification to N2O was detected.

Key words: root exudates, nitrification, denitrification, N2O, isotopic signature

Fig. 1

N2O emission rates at different observation time after adding root exudates Error bars represent standard error (n=3). The same as below"

"

处理 Treatment N2O累计排放量 (mg·kg-1·d-1) δ18O (‰) δ15Nbulk (‰) SP (‰)
草酸 Oxalic acid CL 2.68±1.34ab 24.16±1.55a -19.82±7.41abc 17.03±0.40a
CH 1.38±0.24bc 24.08±1.22a -20.31±5.82abc 13.13±2.70b
丝氨酸 Serine AL 1.81±0.45abc 25.33±0.39a -24.44±1.95c 15.71±0.78ab
AH 2.56±0.45ab 24.68±1.11a -20.21±2.11abc 14.35±1.47ab
葡萄糖 Glucose PL 1.61±0.79bc 25.59±0.25a -13.12±1.13a 16.16±1.40a
PH 3.23±1.33a 24.09±2.30a -14.6±4.38ab 15.18±1.04ab
对照 Control treatment 0.90±0.09c 20.06±1.52b -23.14±3.72c 13.29±1.40b
添加根系分泌物 Adding root exudates <0.001** 0.196 0.089 0.032*
组分 Component 0.718 0.495 0.017* 0.718
浓度 Concentration 0.38 0.261 0.726 0.012*
组分×浓度 Component×Concentration 0.0278* 0.611 0.51 0.222

Fig. 2

Isotope signature (δ18O, δ15Nbulk, SP) of N2O at different observation time after adding root exudates"

Fig. 3

Contribution of denitrification-nitrification on N2O"

Fig. 4

The correction coefficient of emission rate and isotope values (δ18O, δ15Nbulk, SP) at different observation time after adding root exudates"

Fig. 5

Comparison of emission rate, isotope signature (δ18O, δ15Nbulk, SP) of N2O at optimal sampling time with daily average"

[1] CHAPUIS LARDY L, WRAGE N, METAY A, CHOTTE J L, BERNOUX M . Soils, a sink for N2O? A review. Global Change Biology, 2010,13(1):1-17.
[2] CONRAD R . Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 1996,60(4):609-640.
pmid: 8987358
[3] SEITZINGER S P, KROEZE C, STYLES R V . Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemosphere - Global Change Science, 2000,2(3/4):267-279.
[4] NEVISON C, HOLLAND E . A reexamination of the impact of anthropogenically fixed nitrogen on atmospheric N2O and the stratospheric O3 layer. Journal of Geophysical Research Atmospheres. 1997,102(D21):25519-25536.
doi: 10.1029/97jd00528 pmid: 11541125
[5] 韩丽梅, 鞠会艳, 杨振明 . 两种基因型大豆根分泌物对大豆根腐病菌的化感作用. 应用生态学报, 2005(1):137-141.
HAN L M, JU H Y, YANG Z M . Allelopathy of root exudates from two genotypes soybeans on root rot pathogenic fungi. Chinese Journal of Applied Ecology, 2005(1):137-141. (in Chinese)
[6] STAVI I, LAL R . Agriculture and greenhouse gases, a common tragedy. A review. Agronomy for Sustainable Development, 2013,33(2):275-289.
[7] 胡春胜, 张玉铭, 秦树平, 王玉英, 李欣晓, 董文旭 . 华北平原农田生态系统氮素过程及其环境效应研究. 中国生态农业学报, 2018,26(10):1501-1514.
HU C S, ZHANG Y M, QIN S P, WANG Y Y, LI X X, DONG W X . Nitrogen processes and related environmental effects on agroecosystem in the North China Plain. Chinese Journal of Eco-Agriculture, 2018,26(10):1501-1514. (in Chinese)
[8] MAN-YOUNG J, REINHARD W, DEULLAE M, ANETTE G, SOO JE P, JONG GEOL, SO JEONG K, SUNG KEUN RHEE . Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. The ISME Journal, 2013, 8(5):1115-1125.
doi: 10.1038/ismej.2013.205 pmid: 24225887
[9] BERNOT M J, DODDS W K, GARDNER W S, MCCARTHY M J, SOBOLEV D, TANK L . Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry. Applied and Environmental Microbiology, 2003,69(10):5950-5956.
doi: 10.1128/aem.69.10.5950-5956.2003 pmid: 14532049
[10] SUTKA R L, OSTROM N E, OSTROM P H, BREZNAK J A, GANDHI H, PITT A J, LI F . Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology, 2006 72(1):638-644.
doi: 10.1128/AEM.72.1.638-644.2006 pmid: 16391101
[11] BAGGS E, MAIR L, MAHMOOD S . A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry, 2007,22(11):1664-1672.
doi: 10.1002/rcm.3456 pmid: 18435506
[12] 丁军军, 张薇, 李玉中, 林伟, 徐春英, 李巧珍 . 不同灌溉量对华北平原菜地N2O排放及其来源的影响. 应用生态学报, 2017,28(7):2269-2276.
doi: 10.13287/j.1001-9332.201707.026 pmid: 29741059
DING J J, ZHANG W, LI Y Z, LIN W, XU C Y, LI Q Z . Effects of soil water condition on N2O emission and its sources in vegetable farmland of North China Plain. Chinese Journal of Applied Ecology, 2017,28(7):2269-2276. (in Chinese)
doi: 10.13287/j.1001-9332.201707.026 pmid: 29741059
[13] 郑欠, 丁军军, 李玉中, 林伟, 徐春英, 李巧珍, 毛丽丽 . 土壤含水量对硝化和反硝化过程N2O排放及同位素特征值的影响. 中国农业科学, 2017,50(24):4747-4758.
ZHENG Q, DING J J, LI Y Z, LIN W, XU C Y, LI Q Z, MAO L L . The effects of soil water content on N2O emissions and isotopic signature of nitrification and denitrification. Scientia Agricultura Sinica, 2017,50(24):4747-4758. (in Chinese)
[14] ČUHEL J, ŠIMEK M, LAΜGHLIN R J, BRU D, CHENEBY D, WATSON CJ, PHILIPPOT L . Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Applied & Environmental Microbiology, 2010,76(6):1870-1878.
doi: 10.1128/AEM.02484-09 pmid: 20118356
[15] HANG-WEI H, DELI C, JI-ZHENG H . Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015,39(5):729-749.
doi: 10.1093/femsre/fuv021 pmid: 25934121
[16] SHUKRA RAJ P, OHKYUNG C, SAMIR KUMAR K, KARTIK C, SUNGPYO K, JAW WOO L . Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system. Science of the Total Environment, 2015,518-519:16-23.
doi: 10.1016/j.scitotenv.2015.02.076 pmid: 25747359
[17] LAI T V, FARQUHARSON R, DENTON M D . High soil temperatures alter the rates of nitrification, denitrification and associated N2O emissions. Journal of Soils and Sediments. 2019,19(5):2176-2189.
[18] BOUWMAN A F, BEUSEN A H W, GRIFFIOEN J, VAN GROENIGEN J W, HEFTING M M, OENEMA O, VAN PUIJENBROEK P J T M, SEITZINGE R S, SLOMP C P, STEHFEST E . Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society of London, 2013,368(1621):91-97.
doi: 10.1098/rstb.2013.0112 pmid: 23713114
[19] JONES D L, NGUYEN C, FINLAY R D . Carbon flow in the rhizosphere: Carbon trading at the soil-root interface. Plant & Soil. 2009,321(1/2):5-33.
[20] BAIS H P, WEIR T L, PERRY L G, GILROY S, VIVANCO J M . The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006,57(1):233-266.
[21] HAICHAR F E Z, SANTAELLA C, HEULIN T, ACHOUAK W . Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 2014,77(7):69-80.
[22] BATEMAN E J, BAGGS E M . Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology & Fertility of Soils, 2005,41(6):379-388.
[23] WU H, WANG X, HE X, ZHANG S, LIANG R, SHEN J . Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland. Science of the Total Environment, 2017,598:697-703.
doi: 10.1016/j.scitotenv.2017.04.150 pmid: 28456121
[24] 马舒坦, 颜晓元 . 甲酸盐和葡萄糖对两种土壤N2O排放的刺激作用. 农业环境科学学报, 2019,38(1):241-248.
MA S T, YAN X Y . Effect of formate and glucose organic carbon on N2O emission from two soils. Journal of Agro-Environment Science, 2019,38(1):241-248. (in Chinese)
[25] LAPALANGARICA FUENTES A, MANRUBIA M, GILES M E, MITCHELL S, DANIELL T J . Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil. Soil Biology & Biochemistry, 2018,120:70-79.
[26] 徐卫红, 刘吉振, 黄河, 熊治廷 . 高锌胁迫下不同大白菜品种生长、Zn吸收及根系分泌物的研究. 中国农学通报, 2006,22(8):458.
XU W H, LIU J Z, HUANG H, XIONG Z Y . Study of Zn stress on plant growth, Zn uptake and root exudates in different cultivars of Chinese Cabbage. Chinese Agricultural Science Bulletin, 2006,22(8):458. (in Chinese)
[27] YUAN Y S, ZHAO W Q, ZHANG Z L, XIAO J, LI D D, LIU Q, YIN H J . Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots. Soil Biology & Biochemistry, 2018,121:16-23.
[28] BOL R, RÖCKMANN T, BLACKWELL M, YAMULKI S . Influence of flooding on δ15N, δ18O, 1δ15N and 2δ15N signatures of N2O released from estuarine soils-A laboratory experiment using tidal flooding chambers. Rapid Communications in Mass Spectrometry, 2004,18(14):1561-1568.
doi: 10.1002/rcm.1519 pmid: 15282780
[29] HU G Q, HE H B, ZHANG W, ZHAO J S, CUI J H, LI B, ZHANG X D . The transformation and renewal of soil amino acids induced by the availability of extraneous C and N. Soil Biology & Biochemistry, 2016,96:86-96.
[30] HENRY S, TEXIER S, HALLET S, BRU D, DAMBREVILLE C, CHÈNEBY D, BIZOUARD F, GERMON J C, PHILIPPOT L . Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: Insight into the role of root exudates. Environmental Microbiology. 2010,10(11):3082-3092.
doi: 10.1111/j.1462-2920.2008.01599.x pmid: 18393993
[31] OBURGER E, JONES D L . Sampling root exudates - mission impossible? Rhizosphere, 2018,6:116-133.
[32] TOYODA S, YOSHIDA N . Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry, 1999,71(20):4711-4718.
[33] OPDYKE M R, OSTROM N E, OSTROM P H . Evidence for the predominance of denitrification as a source of N2O in temperate agricultural soils based on isotopologue measurements. Global Biogeochemical Cycles, 2009,23(4). DOI: 10.1029/2009GB003523.
[34] 房福力, 李玉中 . 基于同位素特征的华北平原菜地N2O排放监测中取样时间的探讨. 植物营养与肥料学报, 2016,22(4):978-987.
FANG F L, LI Y Z . Preliminary research on N2O sampling time based on isotopomer signature measurement of vegetable fields in the North China Plain. Journal of Plant Nutrition and Fertilizers, 2016,22(4):978-987. (in Chinese)
[35] TOYODA S, MUTOBE H, YAMAGISHI H, YOSHIDA N, TANJI Y . Fractionation of N2O isotopomers during production by denitrifier. Soil Biology & Biochemistry, 2005,37(8):1535-1545.
[36] DECOCK C, SIX J . How reliable is the intramolecular distribution of 15N in N2O to source partition N2O emitted from soil? Soil Biology & Biochemistry, 2013,65:114-127.
[37] ZHANG W, LI Y Z, XU C Y, LI Q Z, LIN W . Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH+ 4-fertilized soil of North China. Scientific Reports, 2016,6:29257.
doi: 10.1038/srep29257 pmid: 27387280
[38] TOYODA S, MUTOBE H, YAMAGISHI H, YOSHIDA N, TANJI Y . Fractionation of N2O isotopomers during production by denitrifier. Soil Biology & Biochemistry. 2005,37(8):1535-1545.
[39] JUNG M Y, WELL R, MIN D, GIESEMANN A, RHEE S K . Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. Isme Journal, 2013,8(5):1115-1125.
doi: 10.1038/ismej.2013.205 pmid: 24225887
[40] YAMAZAKI T, HOZUKI T, ARAI K, TOYODA S, KOBA K, FUJIWARA T . Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria. Biogeosciences, 2014,11(10):2679-2689.
doi: 10.5194/bg-11-2679-2014
[41] BRAKER G, LEWICKASZCZEBAK D . Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification a pure culture study. Rapid Communications in Mass Spectrometry, 2014,28(17):1893-1903.
doi: 10.1002/rcm.6975 pmid: 25088133
[42] 张仲新, 李玉娥, 华珞, 万运帆, 姜宁宁 . 不同施肥量对设施菜地N2O排放通量的影响. 农业工程学报, 2010,26(5):269-275.
ZHANG Z X, LI Y E, HUA L, WAN Y F, JIANG N N . Effects of different fertilizer levels on N2O flux from protected vegetable land. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(5):269-275. (in Chinese)
[43] 田慎重, 宁堂原, 迟淑筠, 王瑜, 王丙文, 韩惠芳, 李成庆, 李增嘉 . 不同耕作措施的温室气体排放日变化及最佳观测时间. 生态学报, 2012,32(3):879-888.
TIAN S Z, NING T Y, CHI S Y, WANG Y, WANG B W, HAN H F, LI C Q, LI Z J . Diurnal variations of the greenhouse gases emission and their optimal observation duration under different tillage systems. Acta Ecologica Sinica, 2012,32(3):879-888. (in Chinese)
[44] 徐钰, 刘兆辉, 石璟, 魏建林, 李国生, 王梅, 江丽华 . 北方设施菜地土壤N2O排放通量日变化及最佳观测时间确定. 中国农业气象, 2016,37(5):505-512.
XU Y, LIU Z H, SHI J, WEI J L, LI G S, WANG M, JIANG L H . Diurnal variation characteristic of nitrous oxide from greenhouse vegetable soil during emission peak and its optimal observation duration. Chinese Journal of Agrometeorology, 2016,37(5):505-512. (in Chinese)
[45] 郑循华, 王明星, 王跃思 . 太湖地区农田NO排放不连续测量最佳时间. 环境科学, 2000,21(1):1-6.
ZHENG X H, WANG M X, WANG Y S . Diurnal variation of NO emission from an ecosystem and the optimum observation time for intermittent flux measurement. Environmental Science, 2000,21(1):1-6. (in Chinese)
[46] 王琳, 周晓丽, 马银丽, 巨晓棠, 吉艳芝, 张丽娟 . 铵态氮源和碳源对土壤N2O、CO2释放的影响. 农业资源与环境学报, 2016,33(1):23-28.
WANG L, ZHOU X L, MA Y L, JU X T, JI Y Z, ZHANG L J . Effect of ammonium nitrogen source and carbon source on the CO2 and N2O emissions of soil. Journal of Agricultural Resources and Environment, 2016,33(1):23-28. (in Chinese)
[47] 李贵桐, 李保国, 黄元仿 . 碳源与底物对不同层次土壤产生N2O能力的影响. 土壤与环境, 2002,11(3):227-231.
LI G T, LI B G, HUANG Y F . Effects of carbon and substrate on the N2O productivity of different soil layers. Soil and Environmental Sciences, 2002,11(3):227-231. (in Chinese)
[48] NGUYEN C . Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie, 2003,23:375-396.
[49] HENRY S, TEXIER S, HALLET S, BRU D, DAMBREVILLE C, CHÈNEBY D, BIZOUARD F, GERMON J C, PHILIPPOT L . Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: Insight into the role of root exudates. Environmental Microbiology, 2010,10(11):3082-3092.
doi: 10.1111/j.1462-2920.2008.01599.x pmid: 18393993
[50] MOTHAPO N, CHEN H, CUBETA M A, GROSSMAN J M, FULLER F, SHI W . Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology & Biochemistry, 2015,83:160-175.
doi: 10.1016/j.soilbio.2015.02.001
[51] KOOL D M, WRAGE N, OENEMA O, DOLFING J, VAN GROENIGEN J W . Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO- 3, and N2O: A review. Rapid Communications in Mass Spectrometry, 2010,21(22):3569-3578.
doi: 10.1002/rcm.3249 pmid: 17935120
[52] CASCIOTTI K L, SIGMAN D M, HASTINGS M G, BOHLKE J K, HILKERT A . Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry, 2002,74(19):4905-4912.
doi: 10.1021/ac020113w pmid: 12380811
[53] ROHE L, WELL R, LEWICKA SZCZEBAK D . Use of oxygen isotopes to differentiate between nitrous oxide produced by fungi or bacteria during denitrification. Rapid Communications in Mass Spectrometry, 2017,31(16):1297-1312.
doi: 10.1002/rcm.7909 pmid: 28556299
[54] PÉREZ T, TRUMBORE S, E, TYLER S C, MATSON P A, ORTIZ MONASTERIO I, RAHN T, GRIFFITH D W T . Identifying the agricultural imprint on the global N2O budget using stable isotopes. Journal of Geophysical Research: Atmospheres, 2001,106(9):9869-9878.
[55] HYODO A, MALGHANI S, ZHOU Y, MUSHINSKI R M, WEST J B . Biochar amendment suppresses N2O emissions but has no impact on 15N site preference in an anaerobic soil . Rapid Communications in Mass Spectrometry, 2019,33(2):165-175.
doi: 10.1002/rcm.8305 pmid: 30304571
[56] 郑欠 . 土壤水分和pH对N2O排放及同位素特征值影响的机理研究[D]. 北京: 中国农业科学院, 2018.
ZHENG Q . The study on mechanism of N2O emissions and isotopic signature under different soil water content and pH[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[57] SPEIR T W, KETTLES H A, MORE R D . Aerobic emissions of N2O and N2 from soil cores: Factors influencing production from 13N-labelled NO3 - and NH4 + . Soil Biology & Biochemistry, 1995,27(10):1299-1306.
[58] HENDERSON S L, DANDIE C E, GOYER C, PATTEN C, ZEBARTH B J, BURTON D L, TREVORS J T . Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Applied and Environmental Microbiology, 2010,76:2155-2164.
doi: 10.1128/AEM.02993-09 pmid: 20154105
[59] 贾俊仙, 李忠佩, 车玉萍 . 添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响. 中国农业科学, 2010,43(8):1617-1624.
JIA J X, LI Z P, CHE Y P . Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China. Scientia Agricultura Sinica, 2010,43(8):1617-1624. (in Chinese)
[60] 崔敏, 冉炜, 沈其荣 . 水溶性有机质对土壤硝化作用过程的影响. 生态与农村环境学报, 2006,22(3):45-50.
CUI M, RAN W, SHEN Q R . Effects of dissolved organic matter on nitrification in soil. Journal of Ecology and Rural Environment, 2006,22(3):45-50. (in Chinese)
[61] 王风, 陈思, 杨厚花, 沈仕洲, 张克强, 王晓光 . 葡萄糖添加对室温和冻结过程土壤N2O排放特征影响. 生态科学, 2017,36(3):31-35.
WANG F, CHEN S, YANG H H, SHEN S Z, ZHANG K Q, WANG X G . Effect of glucose addition on N2O emission from three types of cultivated soils under ambient and freezing temperature. Ecological Science, 2017,36(3):31-35. (in Chinese)
[62] 姜宁宁, 李玉娥, 华珞, 万运帆, 石生伟 . 不同氮源及秸秆添加对菜地土壤N2O排放影响. 土壤通报, 2012,43(1):219-223.
JANG N N, LI Y E, HUA L, WAN Y F, SHI S W . Effect of different nitrogen sources and straw adding on N2O emission from vegetable soil. Chinese Journal of Soil Science, 2012,43(1):219-223. (in Chinese)
[63] 林伟, 张薇, 李玉中, 徐春英, 徐春英, 李巧珍, 郑欠 . 有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响. 农业工程学报, 2016,32(19):148-153.
LIN W, ZHANG W, LI Y Z, XU C Y, LI Q Z, ZHENG Q . Effects of combined application of manure and inorganic fertilizer on N2O emissions and sources in vegetable soils. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(19):148-153. (in Chinese)
[64] 林伟, 丁军军, 李玉中, 徐春英, 李巧珍, 郑欠, 庄姗 . 有机肥和无机肥对菜地土壤N2O排放及其来源的影响. 应用生态学报, 2018,29(5):100-108. (in Chinese)
LIN W, DING J J, LI Y Z, XU C Y, LI Q Z, ZHENG Q, ZHUANG S . Effects of organic and inorganic fertilizers on emission and sources of N2O in vegetable soils. Chinese Journal of Applied Ecology, 2018,29(5):100-108. (in Chinese)
[65] MCLAIN J E T, MARTENS D A . Nitrous oxide flux from soil amino acid mineralization. Soil Biology & Biochemistry, 2005,37(2):289-299.
[66] CLARHOLM M, SKYLLBERG U, ROSLING A . Organic acid induced release of nutrients from metal-stabilized soil organic matter- The unbutton model. Soil Biology & Biochemistry, 2015,84:168-176.
doi: 10.1016/j.soilbio.2015.02.019
[67] KEILUWEIT M, BOΜGOURE J J, NICO P S, PETT RIDGE J, KLEBER M . Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 2015,5(6):588-595.
doi: 10.1038/nclimate2580
[68] MALÝ S, KRÁLOVEC J, HAMPEL D . Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of R and K -strategists in soil. Biology & Fertility of Soils, 2009,45(7):753-760.
[69] LIU B, BAKKEN L R, FROSTEGARD A . Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. Fems Microbiology Ecology, 2010,72(3):407-417.
doi: 10.1111/j.1574-6941.2010.00856.x pmid: 20370831
[1] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[2] ZOU WenXin, SU WeiHua, CHEN YuanXue, CHEN XinPing, LANG Ming. Effects of Long-Term Nitrogen Application on Ammonia Oxidizer Communities for Nitrification in Acid Purple Soil [J]. Scientia Agricultura Sinica, 2022, 55(3): 529-542.
[3] ZHANG XueLin,HE TangQing,ZHANG ChenXi,TIAN MingHui,LI XiaoLi,WU Mei,ZHOU YaNan,HAO XiaoFeng. Effects of Arbuscular Mycorrhizal Fungi on Soil N2O Emissions During Maize Growth Periods [J]. Scientia Agricultura Sinica, 2022, 55(10): 2000-2012.
[4] LiYuan ZHANG,JinDong LÜ,XinYue SHI,Na YU,HongTao ZOU,YuLing ZHANG,YuLong ZHANG. Effects of Irrigation Regimes on N2O and NO Emissions from Greenhouse Soil [J]. Scientia Agricultura Sinica, 2021, 54(5): 992-1002.
[5] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[6] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[7] YAO FanYun,LIU ZhiMing,CAO YuJun,LÜ YanJie,WEI WenWen,WU XingHong,WANG YongJun,XIE RuiZhi. Diurnal Variation of N2O and CO2 Emissions in Spring Maize Fields in Northeast China Under Different Nitrogen Fertilizers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3680-3690.
[8] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[9] WU Lei,HE ZhiLong,TANG ShuiRong,WU Xian,ZHANG WenJu,HU RongGui. Greenhouse Gas Emission During the Initial Years After Rice Paddy Conversion to Vegetable Cultivation [J]. Scientia Agricultura Sinica, 2020, 53(24): 5050-5062.
[10] LI YongHua,WU XuePing,HE Gang,WANG ZhaoHui. Benefits of Yield, Environment and Economy from Substituting Fertilizer by Manure for Wheat Production of China [J]. Scientia Agricultura Sinica, 2020, 53(23): 4879-4890.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] DONG Cheng,CHEN ZhiYong,XIE YingXin,ZHANG YangYang,GOU PeiXin,YANG JiaHeng,MA DongYun,WANG ChenYang,GUO TianCai. Effects of Successive Biochar Addition to Soil on Nitrogen Functional Microorganisms and Nitrous Oxide Emission [J]. Scientia Agricultura Sinica, 2020, 53(19): 4024-4034.
[13] YaJing XI,JunYu WANG,YinKun LI,XuePing WU,XiaoXiu LI,BiSheng WANG,ShengPing LI,XiaoJun SONG,CaiCai LIU. Effects of Drip Irrigation Water and Fertilizer Integration Combined with Organic Fertilizers on Soil N2O Emission and Enzyme Activity [J]. Scientia Agricultura Sinica, 2019, 52(20): 3611-3624.
[14] YaJing XI,DongYang LIU,JunYu WANG,XuePing WU,XiaoXiu LI,YinKun LI,BiSheng WANG,MengNi ZHANG,XiaoJun SONG,ShaoWen HUANG. Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil [J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636.
[15] WANG Cong, LI ShuQing, LIU ShuWei, ZOU JianWen. Response of N2O Emissions to Elevated Atmospheric CO2 Concentration and Temperature in Rice-wheat Rotation Agroecosystem [J]. Scientia Agricultura Sinica, 2018, 51(13): 2535-2550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!