Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 346-356.doi: 10.3864/j.issn.0578-1752.2020.02.009

• SPECIAL FOCUS: TEA • Previous Articles     Next Articles

Effects of LED Light Withering at Different Temperatures on Expression of Key Genes in the Upstream of MEP and Formation of Volatiles in Tieguanyin Tea

YOU FangNing1,DENG HuiLi1,HU Juan1,YAO ZhiLing1,WU ShuaiQiang1,QIN YiJia1,TANG TongHua2,SUN Yun1()   

  1. 1 College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea School of Fujian Province, Fuzhou 350002
    2 Shanghang County Jiao Tan Tea Industry Development Co., Ltd., Longyan 364000, Fujian
  • Received:2019-02-28 Accepted:2019-06-05 Online:2020-01-16 Published:2020-02-17
  • Contact: Yun SUN E-mail:sunyun1125@126.com

Abstract:

【Objective】Terpenoids are important aroma components of oolong tea, and the key upstream genes of the MEP are directly involved in the regulation of the synthesis of terpenoid precursors. Withering, a process closely related to the aroma formation of oolong tea, is affected by many factors such as light exposure and temperature. The present study was aimed at investigating the effects of LED light and temperature on the aroma formation of oolong tea during withering process and to provide reference for improving aroma quality of withered leaves of Oolong tea. 【Method】 Firstly, the key upstream genes of MEP (DXS, DXR, HDS, and HDR) in tea which responded to light were selected according to our previous transcriptome data and KEGG pathways. The tea cultivar Tieguanyin was chosen as test materials, which were plucked in Tea Science Teaching and Research Base of Fujian Agriculture and Forestry University with one bud and three leaves. The freshly plucked leaves were treated under white LED light coupling with series temperature ((20℃ (L20), 25℃ (L25), 30℃ (L30), 35℃ (L35) and 40℃ (L40) ), Dark treatment (20℃ (D20), 25℃ (D25), 30℃ (D30), 35℃ (D35), and 40℃ (D40) ), and then the aroma contents and key upstream gene of MEP of withered leaves were determined.【Result】Under L30 treatment, DXS, DXR, HDS and HDR genes in the withered leaves were reached maximum, and which was 4.31, 5.28, 11.77, and 1.59 fold of XY (CK), respectively; these genes in L30 were 2.24, 2.39, 1.86 and 1.60 fold compared to D30 treatment; these genes expression were highest in D30 among Dark group and was 1.92, 2.21, 6.34 and 0.99 fold of XY, respectively. The contents of α-Farnesene and Linalool oxide (I, II) of L20 was the highest, which were increased by 15.05%, 4.92% and 15.13%, respectively, compared to XY. The highest content of Nerolidol, Linalool and Geraniol were occurred in L30 treatment, which were increased by 3.71%, 6.14% and 15.28%, respectively, compared with XY. The content of main aroma components in the LED group of Tieguanyin withered leaves was higher than that of temperature group. The mathematical model was established by principal component analysis method and the aroma components of the withered leaves were evaluated. It was found that the L20 treatment had the highest score and followed by L30, which were consistent with the aroma analysis. 【Conclusion】According to the comprehensive test results, there was no synchronization between the expression of the genes and the aroma contents of Tieguanyin, The gene expression under L30 treatment, aroma contents and principal component analysis scores were higher than that under other treatments. These results were consistent with the withering temperature in Tieguanyin production: when withering temperature was too high (40℃), the related gene expression and the formation of terpenoids in the withered leaves were prohibited.

Key words: Tieguanyin, withering leaves, LED, temperature, aroma, DXS, DXR, HDS, HDR, terpenoids

Table 1

Treatment method of Tieguanyin under different temperatures and LED light withering"

处理名称 Treatment name 样品处理方法 Sample processing method
XY 铁观音鲜叶 Fresh leaves
L20 LED白光+20℃条件下萎凋60 min Withered 60 min at condition of LED white light and 20℃
L25 LED白光+25℃条件下萎凋60 min Withered 60 min at condition of LED white light and 25℃
L30 LED白光+30℃条件下萎凋60 min Withered 60 min at condition of LED white light and 30℃
L35 LED白光+35℃条件下萎凋60 min withered 60 min at condition of LED white light and 35℃
L40 LED白光+40℃条件下萎凋60 min Withered 60 min at condition of LED white light and 40℃
D20 20℃无光条件下萎凋60 min Withered 60 min at condition of dark and 20℃
D25 25℃无光条件下萎凋60 min Withered 60 min at condition of dark and 25℃
D30 30℃无光条件下萎凋60 min Withered 60 min at condition of dark and 30℃
D35 35℃无光条件下萎凋60 min withered 60min at condition of dark and 35℃
D40 40℃无光条件下萎凋60 min withered 60 min at condition of dark and 40℃

Table 2

Primer sequences"

引物名称 Primer name 序列 Sequence (5'→3') 用途 Function
DXS-qF GGATGGTGGGTGGTTCAG 实时荧光定量PCR qRT-PCR
DXS-qR ATGAGAACAGGTCCAGGTGC 实时荧光定量PCR qRT-PCR
DXR-qF CGGGATAAACTACCTTGACATT 实时荧光定量PCR qRT-PCR
DXR-qR TTCCTCGCCCACAAGTCAT 实时荧光定量PCR qRT-PCR
HDS-qF AACCCTCTCTTTCTCTCTCTCG 实时荧光定量PCR qRT-PCR
HDS-qR TCTGTTGTGGTCATCGTTTG 实时荧光定量PCR qRT-PCR
HDR-qF GTGTTGAGAGGGCAGTCCA 实时荧光定量PCR qRT-PCR
HDR-qR AGCAGGCAGAACCACGACA 实时荧光定量PCR qRT-PCR
GDPDH-qF TTTGGTGAGAAAGCAGTAG 内参基因Reference gene
GDPDH-qR TGGGCAGCAGCCTTATCCT 内参基因Reference gene

Fig. 1

Relative expression of DXS and DXR during LED light withering process under different temperatures"

Fig. 2

Relative expression of HDS and HDR during LED light withering process under different temperatures"

Table 3

Relative content of aroma components of Tieguanyin withered leaves under different temperature and LED light treatments (%)"

香气组分
Volatile compounds
处理 Treatment 处理 Treatment
XY D20 D25 D30 D35 D40 XY L20 L25 L30 L35 L40
芳醇氧化物II Linalool oxide II (X1) 0.06 7.93 10.00 10.20 9.09 8.64 0.06 15.19 11.14 13.44 8.95 9.68
α-法呢烯 α-Farnesene (X2) 0.08 7.15 4.83 6.24 6.69 3.54 0.08 15.13 5.14 8.56 6.99 4.18
香叶醇 Geraniol (X3) 2.38 11.51 11.10 16.50 10.42 9.70 2.38 16.34 11.58 17.66 13.08 12.37
乙酸叶醇酯 3-Hexen-1-ol,acetate,(Z) (X4) 2.32 12.58 8.15 14.44 5.79 4.76 2.32 15.18 10.28 13.57 12.51 10.41
芳樟醇 Linalool (X5) 4.32 8.88 8.29 9.83 8.84 7.88 4.32 9.45 9.33 10.46 9.01 8.60
芳醇氧化物I Linalool oxide I (X6) 2.33 4.32 5.33 4.51 4.96 4.91 2.33 7.25 6.99 6.43 5.63 5.39
顺式-己酸-3-己烯酯 Hexanoic acid,3-hexenyl ester,(Z) (X7) 0.12 3.11 2.33 3.13 4.28 3.78 0.12 7.05 2.33 3.13 4.17 3.05
苯乙醇 Phenylethyl Alcohol (X8) 0.48 0.92 2.56 2.24 1.45 2.29 0.48 3.57 2.60 3.15 1.62 1.87
橙花叔醇 Nerolidol (X9) 0.33 2.53 2.93 3.56 3.36 2.40 0.33 3.54 3.40 4.04 3.51 2.96
脱氢芳樟醇 1,5,7-Octatrien-3-ol,3,7-dimethyl (X10) 0.95 3.39 2.89 2.79 3.69 2.29 0.95 3.49 3.92 4.11 3.82 1.40
吲哚 Indole (X11) 1.20 1.76 2.37 2.13 3.23 2.36 1.20 3.12 3.02 3.39 3.50 2.59
叶醇 3-Hexen-1-ol (X12) 0.87 1.09 1.01 0.80 2.17 2.01 0.87 2.99 2.05 2.04 3.97 3.47
水杨酸甲酯 Methyl salicylate (X13) 0.14 1.86 1.99 2.54 2.66 2.81 0.14 2.36 2.81 3.01 3.42 3.83
丁酸-3-己烯酯 Butanoic acid,3-hexenyl ester,(E) (X14) 0.05 0.80 1.40 0.91 2.38 2.22 0.05 1.69 1.15 1.66 2.12 2.35
香叶基丙酮 5,9-Undecadien-2-one,6,10-dimethyl-,(E) (X15) 0.66 1.20 0.96 0.77 0.67 1.18 0.66 1.33 0.99 0.81 0.70 0.68
2-庚醇 2-Heptanol (X16) 0.08 1.31 2.63 1.45 1.40 1.87 0.08 1.08 2.12 1.23 1.29 1.24
己酸己酯 Hexanoic acid,hexyl ester (X17) 0.15 0.36 0.30 0.51 0.39 0.25 0.15 0.92 0.21 0.26 0.31 0.15
顺-3-己烯酸顺-3-己烯酯 cis-3-Hexenyl, cis-3-hexenoate (X18) 0.19 0.45 0.35 0.37 0.44 0.44 0.19 0.85 0.30 0.36 0.47 0.41
2-甲基丁酸顺-3-己烯酯cis-3-Hexenyl-2-methylbutyrate (X19) 0.28 0.47 0.23 0.33 0.36 0.18 0.28 0.64 0.24 0.30 0.35 0.15
苯甲醇 Benzyl alcohol (X20) 1.33 1.00 0.52 0.71 0.55 0.53 1.33 0.63 0.67 0.47 0.54 0.61
1,2-苯二甲酸双(2-甲基丙基)酯
1,2-Benzenedicarboxylic acid, bis (2-methylpropyl) ester (X21)
0.87 0.29 0.45 0.39 0.29 0.43 0.87 0.58 0.26 0.27 0.26 0.16
十四烷 Tetradecane (X22) 0.17 0.38 0.35 0.29 0.24 0.30 0.17 0.47 0.24 0.19 0.20 0.31
反式2-己烯基己酸 Hexanoic acid,2-hexenyl ester,(E) (X23) 0.17 0.17 0.15 0.26 0.22 0.15 0.17 0.43 0.11 0.15 0.17 0.10
2-硝基乙基苯 Benzene,(2-nitroethyl) (X24) 0.04 0.31 0.35 0.42 0.47 0.27 0.04 0.43 0.38 0.47 0.44 0.34
2,2,3,3-四甲基丁烷 2,2,3,3-tetramethyl butane (X25) 0.28 0.42 0.23 0.38 0.19 0.36 0.28 0.22 0.05 0.01 0.17 0.02

Fig. 3

Aroma components of Tieguanyin withered leaves treated with different temperatures and LED light"

Table 4

Characteristic value and cumulative contribution rate on principal component"

主成分
Principal component
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累计贡献率
Cumulative contribution rate (%)
F1 12.842 51.367 51.367
F2 5.345 21.379 72.746
F3 1.992 7.968 80.714
F4 1.646 6.586 87.300
F5 1.102 4.408 91.708

Table 5

The load matrix on principal component"

主成分
Principal component
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25
F1 0.96 0.85 0.89 0.76 0.90 0.89 0.84 0.78 0.93 0.73 0.83 0.54 0.73 0.61 0.35 0.41 0.60 0.72 0.41 -0.80 -0.58 0.43 0.42 0.91 -0.34
F2 0.01 0.47 0.00 0.18 -0.17 -0.12 0.37 0.05 -0.25 -0.06 -0.37 -0.29 -0.57 -0.44 0.60 -0.34 0.76 0.57 0.81 0.44 0.63 0.63 0.82 -0.21 0.62
F3 0.16 -0.11 0.17 0.13 0.26 0.05 -0.28 0.21 0.13 0.20 -0.29 -0.69 -0.13 -0.36 0.38 0.67 -0.08 -0.29 -0.18 -0.07 -0.13 0.23 -0.22 0.04 0.32
F4 0.02 -0.13 -0.26 -0.41 -0.22 0.07 0.22 0.12 -0.19 -0.36 -0.07 0.20 0.16 0.47 0.42 0.40 -0.03 0.26 -0.28 -0.27 0.03 0.45 -0.07 -0.21 0.14
F5 -0.16 -0.05 0.07 0.15 0.16 -0.35 0.14 -0.51 0.07 -0.01 -0.16 0.04 0.23 0.19 -0.09 -0.03 -0.01 0.07 0.09 0.04 -0.42 0.14 -0.07 0.15 0.51

Table 6

The result of comprehensive evaluation on aroma quality"

处理 Treatment F1 F2 F3 F4 F5 F 排序Ranking
L20 92.18 8.57 5.16 -11.13 -0.98 48.85 1
L30 81.68 1.06 7.69 -11.91 -0.33 42.02 2
D30 69.21 2.70 8.30 -11.75 1.42 36.10 3
L35 69.82 0.06 3.48 -8.99 1.28 35.64 4
L25 65.62 -0.91 6.98 -8.16 -1.06 33.51 5
L40 61.44 -1.91 3.70 -6.54 0.87 31.07 6
D20 58.48 4.04 6.32 -9.82 1.57 30.85 7
D35 59.71 -0.07 3.41 -5.74 0.22 30.58 8
D25 57.31 0.17 7.13 -6.42 -0.88 29.60 9
D40 51.69 -0.94 4.10 -3.31 -0.37 26.46 10
对照 XY 12.17 0.94 1.34 -2.51 -0.13 6.39 11
[1] 徐燕 . 茶树萜类合成途径关键基因克隆及表达研究[D]. 杭州: 浙江大学, 2013.
XU Y . Studies on cloning and expression of the key genes involved in the terpenoids metabolic pathway of tea plant[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[2] CHENG A X, LOU Y G, MAO Y B, LU S, WANG L J, CHEN X Y . Plant terpenoids: Biosynthesis and ecological function. Journal of Integrative Plant Biology, 2007,49(2):179-186.
[3] 付建玉 . 茶树倍半萜类物质代谢及其对虫害胁迫响应[D]. 北京: 中国农业科学院, 2017.
FU J Y . The sesquiterpene metabolism and response to diverse biotic stresses in tea plant[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2017. (in Chinese)
[4] 蒋正中 . 茶树MEP途径中HDSHDR基因的cDNA全长克隆、功能分析与表达特征研究[D]. 合肥: 安徽农业大学, 2013.
JIANG Z Z . Molecular cloning, functional identification and expression characteristic of the HDR, HDS gene from MEP pathway in Camellia sinensis[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
[5] 宛晓春, 夏涛 . 茶树次生代谢. 北京: 科学出版社, 2015: 145-149.
WAN X C, XIA T. Secondary Metabolism of Tea Plants. Beijing: Science Press, 2015: 145-149. (in Chinese)
[6] LIU H T, LIU B, ZHAO C X, MICHAEL P, LIN C T . The action mechanisms of plant cryptochromes. Trends in Plant Science, 2011,16(12):684-691.
[7] 俞少娟, 王婷婷, 陈寿松, 林宏政, 金心怡 . 光对茶树生产与茶叶品质影响及其应用研究进展. 福建茶叶, 2016,38(5):3-5.
YU S J, WANG T T, CHEN S S, LIN H Z, JIN X Y . Effects of light on tea production and tea quality and research progress of its application. Tea in Fujian, 2016,38(5):3-5. (in Chinese)
[8] 游芳宁, 陈寿松, 周子维, 李鑫磊, 郝志龙, 孙云 . 不同的光照萎凋时间对铁观音风味组分影响. 热带作物学报, 2018,39(9):1856-1862.
YOU F N, CHEN S S, ZHOU Z W, LI X L, HAO Z L, SUN Y . Effect of flavor components on different illumination time during withering process in Tieguanyin tea. Chinese Journal of Tropical Crops, 2018,39(9):1856-1862. (in Chinese)
[9] FU X M, CHEN Y Y, MEI X, KATSUNO T, KOBAYASHI E, DONG F, WATANABE N, YANG Z Y . Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports, 2015,5:16858.
[10] 陈寿松, 金心怡, 林宏政, 俞少娟, 周子维, 孙云 . 乌龙茶LED补光萎凋品质特性研究. 农业机械学报, 2016,47(7):282-289.
CHEN S S, JIN X Y, LIN H Z, YU S J, ZHOU Z W, SUN Y . Research on quality characteristic using LED as supplementary lighting during withering process in Oolong tea. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(7):282-289. (in Chinese)
[11] 陈寿松, 金心怡, 游芳宁, 周子维, 李鑫磊, 郝志龙, 孙云 . 多次间歇LED光照射对铁观音风味组分的影响. 农业工程学报, 2018,34(2):308-314.
CHEN S S, JIN X Y, YOU F N, ZHOU Z W, LI X L, HAO Z L, SUN Y . Influence of multi intermittence radiation by LED on flavor components in Tieguanyin tea. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(2):308-314. (in Chinese)
[12] 黄藩, 陈琳, 周小芬, 叶阳, 朱宏凯 . 蓝光、红光对工夫红茶萎凋中鲜叶氨基酸和儿茶素组分含量的影响. 福建农业学报, 2015,30(5):509-515.
HUANG F, CHEN L, ZHOU X F, YE Y, ZHU H K . Effect of red and blue light exposure during withering on amino acid and catechin contents of congou black tea. Fujian Journal of Agricultural Sciences, 2015,30(5):509-515. (in Chinese)
[13] 张灵枝, 王登良, 毛明辉 . 不同光照强度晒青对单枞茶品质的影响. 食品科学, 2005,26(6):185-188.
ZHANG L Z, WANG D L, MAO M H . Effects of Different Light-Intensity Withering on Quality of Dancong Tea. Food Science, 2005,26(6):185-188. (in Chinese)
[14] 陈济斌, 金心怡, 郝志龙, 江丽萍, 方守龙, 刘素惠 . 节能日光萎凋设施及其对白茶萎凋效果研究. 农业工程学报, 2012,28(19):171-177.
CHEN J B, JIN X Y, HAO Z L, JIANG L P, FANG S L, LIU S H . Research of sunlight withering room and its withering effect on white tea. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(19):171-177. (in Chinese)
[15] LIN Y L, LAI Z X . Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree. Plant Science, 2010,178(4):359-365.
[16] 中华人民共和国国家质量监督检验检疫总局. 茶叶感官审评方法: GB/T 23776-2009. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Method of Tea Sensory Assessment: GB/T 23776-2009 . Beijing: China Standards Press, 2009. (in Chinese)
[17] YANG Z Y, BALDERMANN S, WATANABE N . Recent studies of the volatile compounds in tea. Food Research International, 2013,53(2):585-599.
[18] ZHENG X Q, LI Q S, XIANG L P, LIANG Y R . Recent advances in volatiles of teas. Molecules, 2016,21(3):338.
[19] CHEN S, LIU H H, ZHAO X M, LI X L, SHAN W N, WANG X X, WANG S S, YU W Q, YANG Z B, YU X M . Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Research International, 2020,128:108778.
[20] LIU P P, YIN J F, CHEN G S, WANG F, XU Y Q . Flavor characteristics and chemical compositions of oolong tea processed using different semi-fermentation times. Journal of Food Science and Technology-Mysore, 2018,55(25):1185-1195.
[21] XU Y Q, LIU P P, SHI J, GAO Y, WANG Q S, YIN J F . Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chemistry, 2018,249:176-183.
[22] 苗爱清, 吕海鹏, 孙世利, 王力, 庞式, 赖兆祥, 曾琼 . 岭头单枞乌龙茶HS-SPME/GC-MS/GC-O研究. 中国茶叶学会、台湾茶协会. 第六届海峡两岸茶业学术研讨会论文集(摘要), 2010: 1.
MIAO A Q, LV H P, SUN S L, WANG L, PANG S, LAI Z X, ZENG Q , Research on aroma components of Lingtou Dancong Oolong tea by HS-SPME-GC-MS and GC-O//China Tea Society, Taiwan Tea Association. Papers of the Sixth Cross-Strait Tea Industry Symposium (abstract), 2010: 1.(in Chinese)
[23] 陈宗懋, 杨亚军 . 中国茶经. 上海: 上海文化出版社, 2011: 565-573.
CHEN Z M, YANG Y J . Chinese Tea Classics. Shanghai: Shanghai Culture Press, 2011: 565-573. (in Chinese)
[24] 黄建琴, 王文杰, 丁勇, 袁自春, 王烨军, 胡善国, 叶靖 . 冷冻萎凋对工夫红茶品质的影响. 中国茶叶, 2005(2):18-19.
HUANG J Q, WANG W J, DING Y, YUAN Z C, WANG Y J, HU S G, YE J , Effect of frozen withering on the quality of Gongfu black tea. China Tea, 2005(2):18-19. (in Chinese)
[25] 王华夫, 竹尾忠一, 伊奈和夫, 李名君 . 祁门红茶的香气特征. 茶叶科学, 1993(01):61-68.
WANG H F, TADAKAZU T, INA K, LI M J . Journal of Tea Science, 1993(1):61-68. (in Chinese)
[26] 宛晓春 . 茶叶生物化学. 北京: 中国农业出版社, 2003.
WAN X C . Tea Biochemistry. Beijing: China Agriculture Press, 2003. (in Chinese)
[27] 滑金杰, 袁海波, 王伟伟, 江用文, 刘千录, 陈根生, 汪芳 . 萎凋温度对鲜叶主要生化成分和酶活动态变化规律的影响. 茶叶科学, 2015,35(1):73-81.
HUA J J. YUAN H B, WANG W W, JIANG Y W, LIU Q L, CHEN G S, WANG F . Effects of withering temperature on the changes of main biochemical components and enzyme activities in fresh leaves. Journal of Tea Science, 2015,35(1):73-81. (in Chinese)
[28] 项丽慧, 林馥茗, 孙威江, 吴扬, 陈明招, 张沁芳, 周乐乐, 翁睿 . LED黄光对工夫红茶萎凋过程香气相关酶基因表达活性影响. 茶叶科学, 2015,35(6):559-566.
XIANG L H, LIN F M, SUN W J, WU Y, CHEN M Z, ZHANG Q F, ZHOU L L, WEN R . Effects of LED yellow light on the expression levels of aroma related genes and the enzyme activity in withering process of Kongou Black tea. Journal of Tea Science, 2015,35(6):559-566. (in Chinese)
[29] 朱宏凯, 何华锋, 叶阳, 董春旺, 桂安辉, 高明珠, 陈琳 . 温度对工夫红茶揉捻理化品质的影响. 现代食品科技, 2017,33(5):168-175.
ZHU H K, HE H F, YE Y, DONG C W, GUI A H, GAO M Z, CHEN L . Influence of rolling temperature on physicochemical quality of Congou Black Tea. Modern Food Science and Technology, 2017,33(5):168-175. (in Chinese)
[30] 袁海波, 尹军峰, 叶国柱, 许勇泉, 汪芳 . 茶叶香型及特征物质研究进展. 中国茶叶, 2009,31(9):11-15.
YUAN H B, YI J F, YE G Z, XU Y Q, WANG F . Research progress on tea flavor and characteristic substances. China Tea, 2009,31(9):11-15. (in Chinese)
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[5] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[6] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[7] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[8] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[9] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[10] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[11] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[12] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[13] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[14] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[15] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!