Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 3950-3963.doi: 10.3864/j.issn.0578-1752.2019.22.002

• MOLECULAR GENETICS • Previous Articles     Next Articles

Identification NADP-ME Gene of Foxtail Millet and Its Response to Stress

ZHAO JinFeng,DU YanWei,WANG GaoHong,LI YanFang,ZHAO GenYou,WANG ZhenHua,CHENG Kai,WANG YuWen(),YU AiLi()   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences/Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi
  • Received:2019-07-03 Accepted:2019-09-22 Online:2019-11-16 Published:2019-11-16
  • Contact: YuWen WANG,AiLi YU E-mail:gzswyw@163.com;yuailimail@126.com

Abstract:

【Objective】 The objectives of this study are to identify the NADP-ME family genes (SiNADP-MEs) from foxtail millet (Setaria italica) genome, study the response of different members to abiotic stress, and to lay a theoretical foundation for revealing the role of SiNADP-ME genes in stress signal pathway of foxtail millet. 【Method】 The members of NADP-ME family in the foxtail millet genome were identified by bioinformatics methods. The protein and gene sequence of identified members were analyzed using software such as GSDS2.0, plantCARE, Clustalx, MEGA6.0 and the website ExPASy. Real-time quantitative PCR (qRT-PCR) was used to detect the expression levels of SiNADP-ME genes under different stresses at seedling stage, under drought and different light intensities stress at different growth stages. 【Result】 The NADP-ME family of foxtail millet consists of seven members, which were unevenly distributed on chromosomes 2, 3, 5, and 7 of foxtail millet. Conservative functional domain analysis revealed that all seven genes contain the conserved characteristic domains of NADP-ME. Amino acid sequence alignment revealed that the sequences were very conserved and the similarity was very high among the members. The sequence identity of 7 SiNADP-ME members was 77.30%, while the identity of NADP-MEs in different species was 56.52%. Sequence analysis showed that the sequences of SiNADP-ME1, 4, 5, and 6 were longer, encoding 576, 639, 652, and 636 amino acids residues respectively, while the sequences of SiNADP-ME2, 3, and 7 were shorter, encoding 213, 265 amino acids residues respectively. Gene structure analysis showed that SiNADP-ME1 has two alternative transcript, SiNADP-ME5 has three alternative transcript, and other genes have no alternative transcript. SiNADP-ME1, 2, 3 and 7 contain fewer introns, while SiNADP-ME4, 5 and 6 contain more introns. The prediction of protein parameters showed that the molecular weight span among members is large, ranging from 161.94 to 725.43 kD, the isoelectric point from 5.32 to 8.05, the instability index from 23.01 to 45.01, the aliphatic index from 89.19 to 107.77, and the grand average of hydropathicity from -0.218 to 0.004. Subcellular localization predictions show that SiNADP-ME members are mainly localized in chloroplasts, mitochondrial and cytoplasmic. Cis-elements analysis revealed that hormonal, stress, light, and other growth-related cis-elements are present in the promoter region of the SiNADP-ME members. Cluster analysis revealed that SiNADP-ME genes were present before the isolation of monocotyledonous and dicotyledonous plants. The homologous pairs of different species present in the phylogenetic tree revealed that they may evolve from a common ancestor, suggesting that they may have similar functions in certain signaling pathways. Stress expression analysis of seedling stage showed that the expression levels of all the SiNADP-ME family genes were significantly induced under the four stresses applied in this paper. The highest relative expression levels of SiNADP-ME1 under ABA, low temperature and NaCl treatment were 460.53, 411.50 and 15.24 folds than that of the control respectively, while the highest relative expression levels of SiNADP-ME6 under ABA, low temperature, PEG and NaCl treatment were 211.13, 15.21, 772.41 and 643.99 folds than that of the control respectively. Further analysis showed that the expression levels of SiNADP-ME1 and SiNADP-ME6 were up-regulated under drought stress at jointing, heading and filling stage.【Conclusion】 Seven members of NADP-ME gene family were identified from foxtail millet genome. All SiNADP-ME genes contain the typical characteristic domains of the NADP-ME, and their sequences are very conserved. All of the SiNADP-ME genes are involved in plant abiotic stress response, especially SiNADP-ME1 and SiNADP-ME6 may play an important role in response to abiotic stress.

Key words: foxtail millet, NADP-ME, gene expression, abiotic stress

Table 1

Primers used in this study"

基因 Gene 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
SiNADP-ME1 AGGAGCATCCAGGTCATCGT ACTCGTCGTTGAGCAAGGTCT
SiNADP-ME2 AAAATTTATGGTAGATGTCAGGTCC TGACTACCTTCTGCCAAATCCT
SiNADP-ME3 TTACACACCGACTGTTGACGAG TGAGCACCCAAATCTCCAAGT
SiNADP-ME4 CTCCGATTGAAGAGTGCCG TGTGAATGCCCTTCCAACTC
SiNADP-ME5 GCAAGATATGGCACAACTCACC CCAGCACCCAGGAATAGGAA
SiNADP-ME6 ACCTATCATCCTCGCTCTATCAA CAAATGGGCTTCCACTTCC
SiNADP-ME7 AAATTTTATGGTAGATGTCAGGTCC TTTCATCCACTGGTGAGAACTTC
β-Actin GGGCAGTTGCTATCCACATC ATCACGCCACAAGACCAGAC

Table 2

Parameters of predicted foxtail millet NADP-ME genes"

基因
Gene
基因 ID
Gene ID
染色体位置
Chr. location
基因长度
Genome
length
(bp)
氨基酸
数目
Number of
amino acid
等电点
pI
分子量
Molecular weight
(kD)
内含子数Intro number 不稳定
指数Instability index
脂肪系数Aliphatic index 平均疏水指数
Grand average of hydropathicity
SiNADP-ME1 Seita.3G109300 278989-7282388 3400 576 5.60 637.72 8 39.31 91.46 -0.176
SiNADP-ME2 Seita.3G284800 26806748-26808875 2128 213 5.47 233.24 6 32.64 91.60 -0.209
SiNADP-ME3 Seita.4G119800 12185662-12187990 2329 265 5.32 296.11 8 38.32 107.77 0.004
NSiADP-ME4 Seita.5G134300 11688238-11693473 5236 639 6.31 700.38 19 45.01 89.19 -0.138
SiNADP-ME5 Seita.5G301800 35587449-35592805 5357 652 6.28 725.43 19 44.52 89.49 -0.218
SiNADP-ME6 Seita.5G314300 36545367-36550031 4665 636 8.05 698.51 18 42.98 92.25 -0.133
SiNADP-ME7 Seita.7G040900 12423964-12426409 2446 149 5.40 161.94 4 23.01 97.52 -0.054

Fig. 1

Gene structure of SiNADP-ME genes"

Table 3

Prediction of subcellular localization of SiNADP-ME protein"

基因 Gene 预测位置 Localization 可信度 Reliability
SiNADP-ME1 细胞质Cytoplasmic ;叶绿体Chloroplast ;线粒体Mitochondrial 2.254;1.083;0.957
SiNADP-ME2 细胞质Cytoplasmic ;细胞外Extracellular ; 细胞核Nuclear 3.030;0.452;0.401
SiNADP-ME3 细胞质Cytoplasmic ;线粒体Mitochondrial ;叶绿体Chloroplast 1.834;0.753;0.752
SiNADP-ME4 叶绿体Chloroplast ;线粒体Mitochondrial ;细胞质Cytoplasmic 2.491;1.274;0.390
SiNADP-ME5 线粒体Mitochondrial ;叶绿体Chloroplast ;过氧化物酶体Peroxisomal 1.463;1.380;0.829
SiNADP-ME6 线粒体Mitochondrial ;叶绿体Chloroplast ;过氧化物酶体Peroxisomal 2.206;1.616;0.449
SiNADP-ME7 细胞质Cytoplasmic;细胞外Extracellular;细胞核Nuclear 1.351;1.144;0.598

Table 4

Putative cis-elements in the promoter of SiNADP-MEs"

顺式元件
Cis-element
典型序列
Typical sequence
特性
Characteristic
基因
Gene
ABRE ACGTG 脱落酸响应 Abscisic acid responsiveness SiNADP-ME1,2,4,5,6,7
CACGTG SiNADP-ME2,4,6
GCCGCGTGGC SiNADP-ME1,4,6
TCA-element TCAGAAGAGG 水杨酸响应 Salicylic acid responsiveness SiNADP-ME4,7
CGTCA-motif CGTCA 茉莉酸甲酯响应 MeJA-responsiveness SiNADP-ME1,3,4,5,6,7,
TGACG-motif TGACG SiNADP-ME3,4,5,6,7
P-box CCTTTTG 赤霉素响应 Gibberellin-responsive element
SiNADP-ME1,3,6
GARE-motif TCTGTTG SiNADP-ME3,
TATC-box TATCCCA SiNADP-ME6
TGA-element AACGAC 生长素响应 Auxin-responsive element SiNADP-ME1,5
LTR CCGAAA 低温响应 Low-temperature responsiveness SiNADP-ME4,5
MBS CAACTG 干旱响应 Drought-inducibility SiNADP-ME3,4,5,,7
TC-rich repeats GTTTTCTTAC 防御和应激反应响应 Defense and stress responsiveness SiNADP-ME6
G-box CACGTT 光响应 Light responsiveness SiNADP-ME4,5,7
CACGTG SiNADP-ME2,4,6
CACGTC SiNADP-ME1,2,4
TACGTG SiNADP-ME1,2,6
Sp1 GGGCGG 光响应 Light responsive element SiNADP-ME2,6,7
GT1-motif GGTTAA SiNADP-ME1,2,4,5
3-AF1 binding site TAAGAGAGGAA SiNADP-ME2,3
TCCC-motif TCTCCCT 光响应 Part of a light responsive element SiNADP-ME2,4,7
GATA-motif AAGGATAAGG SiNADP-ME2,3
GATAGGG SiNADP-ME5,6
GC-motif CCCCCG 缺氧特异性诱导 Anoxic specific inducibility SiNADP-ME1,2,4,7
CAT-box GCCACT 分生组织响应 Meristem expression SiNADP-ME1,2,4,6,7
ARE AAACCA 厌氧响应 Essential for the anaerobic induction SiNADP-ME4,5
O2-site GATGACATGG 玉米蛋白代谢调控 Zein metabolism regulation SiNADP-ME1,4,5
CCAAT-box CAACGG MYBHv1结合位点 MYBHv1 binding site SiNADP-ME1,5
RY-element CATGCATG 种子特异性调控 Seed-specific regulation SiNADP-ME1,4
MSA-like (T/C)C(T/C)AACGG(T/C)(T/C)A 细胞周期调控 Cell cycle regulation SiNADP-ME1
circadian CAAAGATATC 昼夜节律 Circadian control SiNADP-ME3
motif I gGTACGTGGCG 根特异性 Root specific SiNADP-ME6

Fig. 2

Amino acid sequence alignment of NADP-MEs OsNADP-ME2:水稻Oryza sativa,XP_015640686;TaNADP-ME1:小麦Triticum aestivum,ABW77317;ZmNADP-ME2:玉米Zea mays,XP_008656303;SbNADP-ME1:高粱Sorghum bicolor,XP_002440734;ZmNADP-ME1:玉米Zea mays,NP_001150965;OsNADP-ME1:水稻Oryza sativa,BAA03949;TaNADP-ME2:小麦Triticum aestivum,CDM81737;AtNADP-M2:拟南芥Arabidopsis thaliana,NP_178093;AtNADP-M1:拟南芥Arabidopsis thaliana,NP_197960;SbNADP-ME2:高粱Sorghum bicolor,XP_021312641;PpNADP-ME1:小立碗藓Physcomitrella patens,PNR56966;PpNADP-ME2:小立碗藓Physcomitrella patens,XP_024371400;PtNADP-ME1:北美云杉Picea sitchensis,AEX13395;PtNADP-ME2:北美云杉Picea sitchensis,AEX13397。The amino acids with an entire homology are shown by a black background, and those shared non-identical conserved identity by a gray background (≥ 60% similarity)"

Fig. 3

Phylogenetic relationships of NADP-ME proteins from different species"

Fig. 4

Expression profile of SiNADP-ME gene in foxtail millet Light green,dark green, black, light red and dark red are used to represent gene expression levels. Green indicates weak gene expression, red indicates strong gene expression"

Fig. 5

Relative expression of SiNADP-ME1 and SiNADP-ME6 under normal and drought conditions during different growth stages Single asterisk show the discrepancy on 0.05 levels notable and double asterisk show the discrepancy on 0.01 levels notable. The same as below"

Fig. 6

Relative expression of SiNADP-ME1 and SiNADP-ME6 under light and drought conditions"

[1] 智慧, 牛振刚, 贾冠清, 柴杨, 李伟, 王永芳, 李海权, 陆平, 白素兰, 刁现民 . 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012,38(5):800-807.
ZHI H, NIU Z G, JIA G Q, CHAI Y, LI W, WANG Y F, LI H Q, LU P, BAI S L, DIAO X M . Variation and correlation analysis of hay forage quality traits of foxtail millet [Setaria italica (L.)Beauv.]. Acta Agronomica Sinica, 2012,38(5):800-807. (in Chinese)
[2] DEVOS K M, WANG Z M, BEALES J, SASAKI T, GALE M D . Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theoretical and Applied Genetics, 1998,96:63-68.
[3] JAYARAMAN A, PURANIK S, RAI N K, VIDAPU S, SAHU P P, LATA C, PRASAD M . cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Molecular Biotechnology, 2008,40:241-251.
[4] 郭元元 . 盐胁迫下甜高粱NADP-ME基因的功能分析[D]. 济南: 山东师范大学, 2017.
GUO Y Y . Functional analysis of NADP-ME gene in sweet sorghum under salt stress[D]. Jinan: Shandong Normal University, 2017. (in Chinese)
[5] 董庆龙, 王海荣, 安淼, 余贤美, 王长君 . 苹果NADP依赖的苹果酸酶基因克隆, 序列和表达分析. 中国农业科学, 2013,46(9):1857-1866.
DONG Q L, WANG H R, AN M, YU X M, WANG C J . Cloning, sequence and expression analysis of NADP-malic enzyme genes in apple. Scientia Agricultura Sincia, 2013,46(9):1857-1866. (in Chinese)
[6] 曹冰, 龙翔宇, 肖小虎, 唐朝荣 . 巴西橡胶树中2个NADP-苹果酸酶基因的克隆和表达特性分析. 热带作物学报, 2014,35(5):872-881.
CAO B, LONG X Y, XIAO X H, TANG C R . Molecular cloning and expression analysis of NADP-malic enzyme gene in Hevea brasiliensis. Chinese Journal of Tropical Crops, 2014,35(5):872-881. (in Chinese)
[7] 陈莉敏 . 水稻(Oryza sativa L.)NADP-ME4基因表达与非生物胁迫关系研究[D]. 哈尔滨: 东北林业大学, 2015.
CHEN L M . The study on relation of rice NADP-ME4 gene and abiotic stresses[D]. Harbin: Northeast Forestry University, 2015. (in Chinese)
[8] 李秀峰, 张欣欣, 高野哲夫, 柳参奎 . 水稻(Oryza sativa L.)苹果酸酶(OsNADP-ME3)基因在逆境下的表达特性研究. 基因组学与应用生物学, 2012,31(4), 327-332.
LI X F, ZHANG X X, TAKANO T, LIU S K . Expression characteristics of rice (Oryza sativa L.) malic enzyme (OsNADP-ME3) gene under environmental stress. Genomics and Applied Biology, 2012,31(4):327-332. (in Chinese)
[9] EDWARDS G, ANDREO C S . NADP-malic enzyme form plants. Phytochemistry, 1992, 31: 1845-1857.
[10] LAI L B, TAUSTA S L, NELSON T M . Differential regulation of transcripts encoding cytosolic NADP-malic enzymes in C3 and C4 Flaveria species. Plant Physiology, 2002, 128: 140-149.
[11] LAI L B, WANG L, NELSON T M . Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiology, 2002, 128(1): 125-139.
[12] BARKANT L, EVANS M A, EDWARDS G E . Increasing UV-B induces biphasic leaf cell expansion in Phaseolus vulgaris, suggesting multiple mechanisms for controlling plant growth. Photochemistry and Photobiology, 2006,82(6):9.
[13] SCHAAF J, WALTER M H, HESS D . Primary metabolism in plant defense (regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental Cues). Plant Physiology, 1995,108(3):949-960.
[14] MARTIONIA E, RENTSCH D . Malate compartmentation-responses to a complex metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1994,45(1):447-467.
[15] CHI W, YANG J, WU N H, FANG Z . Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Bioscience Biotechnology and Biochemistry, 2004,68(9):1865-1874.
[16] DOUBNEROVÁ HYSKOVÁ V, MIEDZIŃSKA L, DOBRÁ J, VANKOVA R, RYSLAVÁ H . Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress. Journal of Plant Physiology, 2014,171(5):19-25.
[17] SCHROEDER J I, KWAK J M, ALLEN G J . Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature, 2001,410(6826):327-330.
[18] LIU S K, CHENG Y X, ZHANG X X, GUAN Q J, NISHIUCHI K, TAKANO T . Expression of an NADP-malic enzyme gene in rice (Oryza sativa L.) is induced by environmental stresses; over- expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Molecular Biology, 2007,64(1/2):49-58.
[19] CHENG Y, LONG M . A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnology Letters, 2007,29(7):1129-1134.
[20] 程玉祥, 杨茹 . 毛果杨NADP-苹果酸酶基因家族分析. 植物生理学报, 2011,47(3):249-255.
CHENG Y X, YANG R . Analysis of NADP-Malic enzyme gene family in Populus trichocarpa Torr. & Gray. Plant Physiology Journal, 2011,47(3):249-255. (in Chinese)
[21] FU Z Y, ZHANG Z B, LIU Z H, HU X J, XU P . The effects of abiotic stresses on the NADP-dependent malic enzyme in the leaves of the hexaploid wheat. Biologia Plantarum(Prague), 2011,55(1):196-200.
[22] ZHANG G Y, LIU X, QUAN Z W, CHENG S F, XU X, PAN S K, XIE M, ZENG P, YUE Z, WANG W L, TAO Y, BIAN C, HAN C L, XIA Q J, PENG X H, CAO R, YANG X H, ZHAN D L, HU J C, ZHANG Y X, LI H N, LI H, LI N, WANG J Y, WANG C C, WANG R Y, GUO T, CAI Y J, LIU C Z, XIANG H T, SHI Q X, HUANG P, CHEN Q C, LI Y R, WANG J, ZHAO Z H, WANG J . Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012,30:549-554.
[23] BENNETZEN J L, SCHMUTZ J, WANG H, PERCIFIELD R, HAWKINS J, PONTAROLI A C, ESTEP M, FENG L, VAUGHN J N, GRIMWOOD J, JEN-KINS J, BARRY K, LINDQUIST E, HELLSTEN U, DESHPANDE S, WANG X W, WU X M, MITROS T, TRIPLETT J, YANG X H, YE C Y, MAURO-HERRERA M, WANG L, LI P H, SHARMA M, SHARMA R, RONALD P C, PANAUD O, KELLOGG E A, BRUTNELL T P, DOUST A N, TUSKAN G A, ROKHSAR D, DEVOS K M . Reference genome sequence of the model plant Setaria. Nature Biotechnology, 2012,30:555-561.
[24] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . A novel cis-acting element in anArabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994(6):251-264.
[25] ROTHERMEL B A, NELSON T . Primary structure of the maize NADP-dependent malic enzyme. Journal of Biological Chemistry, 1989,264(33):19587-19592.
[26] LARKIN M A, BLACKSHIELDS G, BROWN N P, CHENNA R, MCGETTIGAN P A, MCWILLIAM H, VALENTIN F, WALLACE I M, WILM A, LOPEZ R . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
[27] TAMURA K, STECHER G, PETERSON D, FILIPSKI A, KUMAR S . MEGA6: Molecular evolutionary genetics analysis version6.0. Molecular Biology and Evolution, 2013(30):2725-2729.
[28] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△Ct . Methods, 2001,25(4):402-408.
[29] NARUSAKA Y, NAKASHIMA K, SHINWARI ZK, SAKUMA Y, FURIHATA T, ABE H, NARUSAKA M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K . Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. The Plant Journal, 2003,621(34):137-148.
[30] NAKASHIMA K, YAMAGUCHI-SHINOZAKI K . ABA signaling in stress-response and seed development. Plant Cell Reports, 2013,32:959-970.
[31] VERMA V, RAVINDRAN P, KUMAR P P . Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016,16:86.
[32] ZHANG J, JIA W, YANG J, ISMAIL A M . Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 2006,97:111-119.
[33] FU Z Y, ZHANG Z B, LIU Z H, HU X J, XU P . The effects of abiotic stresses on the NADP-dependent malic enzyme in the leaves of the hexaploid wheat. Biologia Plantarum (Prague), 2011,55(1):196-200.
[34] CUSHMAN J C . Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative crassulacean acid metabolism plant, Mesembryanthemum crystallinum. FEBS Journal, 2010,208(2):259-266.
[35] SUN S B, SHEN Q R, WANG J M, LIU Z P . Induced expression of the gene for NADP-malic enzyme in leaves of Aloe vera L. under salt stress. Acta Biochimica Et Biophysica Sinica, 2003,5:423-429.
[36] CHI W, YANG J, WU N, FANG Z . Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Bioscience Biotechnology and Biochemistry, 2004,68(9):1865-1874.
[37] BARI R, JONES J D . Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009,69:473-488.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[3] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[4] JIA GuanQing, DIAO XianMin. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China [J]. Scientia Agricultura Sinica, 2022, 55(4): 653-665.
[5] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[6] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[7] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[8] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[9] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[10] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[11] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[12] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[13] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!