Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 997-1008.doi: 10.3864/j.issn.0578-1752.2019.06.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Pixel-Based and Object-Oriented Classification of Jujube and Cotton Based on High Resolution Satellite Imagery over Alear, Xinjiang

JI XuSheng1,2,3,4,LI Xu1,5,WAN ZeFu1,2,3,4,YAO Xia1,2,3,4,ZHU Yan1,2,3,CHENG Tao1,2,3,4()   

  1. 1 National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing 210095
    2 Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095
    3 Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs, Nanjing 210095
    4 Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, 5College of Information Engineering, Tarim University, Alear 843300, Xinjiang
  • Received:2018-09-19 Accepted:2019-01-17 Online:2019-03-16 Published:2019-03-22
  • Contact: Tao CHENG E-mail:tcheng@njau.edu.cn

Abstract:

【Objective】Jujube and cotton are widely cultivated in Xinjiang. In this study, we had an insight into the planting area and distribution area of jujube and cotton quickly and accurately by crop identification based on remote sensing technology, which was helpful to policies making and crops precise management.【Method】This paper evaluated the pixel-based and object-oriented classification methods for crop mapping using several mono-temporal (date of image acquisition: May 10, 2016; September 7, 2016; and October 8, 2016) high spatial resolution images of Alear city, Xinjiang. This research involved four different machine learning algorithms, including Spectral Angle Mapping (SAM), Support Vector Machine (SVM), CART Decision Trees (DTs) and Random Forest (RF). 【Result】 The results showed that it had the highest crop classification accuracy when using the satellite images acquired on May, followed by the satellite images acquired on October. Crop classification accuracy was the lowest when using the satellite image acquired on September. In addition, compared to pixel-based classification methods, the classification accuracies were improved when using object-oriented classification methods. The classification accuracies of each period were improved by 4.83%, 7.77%, and 7.22%, respectively. The highest classification accuracy was 93.52% (May 10, 2016), 85.36% (September 7, 2016), and 88.88% (October 8, 2016), respectively.【Conclusion】 The research results suggested that using the image acquired in May, which covers cotton seedling stage, could improve crop classification accuracy for our study area. The cotton in this period was covered by plastic film, and the jujube trees showed obvious spectral characteristics of vegetation. The two crops showed different spectral characteristics in the early stage of growth. Therefore, crop classification should be executed at the early growth stage. What’s more, spectral, texture and spatial features can be combined when using object-oriented classification methods, especially the addition of texture information, so that the overall accuracy of crop classification in each period was improved (except SAM). We can delineate the field boundaries efficiently by this method, which is important for the improvement of local crop field management. Additionally, texture features were more important than spectral and spatial features. Green and red bands had a greater contribute on crop classification.

Key words: Xinjiang, high spatial resolution, satellite image, pixel-based, object-oriented, jujube, cotton, classification

Fig. 1

Location of the study area"

Table 1

Acquired satellite images of study area"

卫星
Satellite
波段类型
Band type
空间分辨率
Spatial resolution (m)
波段
Band
获取时间
Date of image acquisition
SPOT-6 全色Panchromatic 1.5 全色Panchromatic 2016-05-10
多光谱Multispectral 6 蓝Blue
绿Green
红Red
近红外Near-infrared
Pleiades-1 全色Panchromatic 0.5 全色Panchromatic 2016-09-17
多光谱Multispectral 2 蓝Blue
绿Green
红Red
近红外Near-infrared
Worldview-3 全色Panchromatic 0.5 全色Panchromatic 2016-10-08
多光谱Multispectral 2 海岸Coastal
蓝Blue
绿Green
黄色Yellow
红Red
红边Red edge
近红外Near-infrared
近红外2 Near-infrared 2

Fig. 2

The spatial distribution of field samples The base image iWWs a false color image of the study area, R: Red; G: NIR; B: Green, the vector data is the sampling area"

Fig. 3

The flowchart of crop classification"

Table 2

Overall accuracies of crop classification for different growth stages"

获取时间
Date of image acquisition
光谱角制图SAM 支持向量机SVM 决策树DTs 随机森林RF
基于像素
Pixel-based
基于对象
Object-based
基于像素
Pixel-based
基于对象
Object-based
基于像素
Pixel-based
基于对像
Object-based
基于像素
Pixel-based
基于对象
Object-based
OA K OA K OA K OA K OA K OA K OA K OA K
2016-05-10 87.47 0.81 64.62 0.47 78.35 0.67 90.25 0.85 90.93 0.86 92.12 0.88 91.27 0.87 93.52 0.90
2016-09-07 68.56 0.52 67.36 0.50 74.23 0.62 84.04 0.76 76.90 0.66 85.36 0.78 79.37 0.69 84.40 0.77
2016-10-08 78.30 0.67 74.21 0.61 77.53 0.67 88.88 0.83 80.13 0.70 88.77 0.83 82.14 0.73 83.82 0.78

Fig. 4

Comparison of user’s accuracies and producer’s accuracies of jujube and cotton for different stages using pixel-based classification methods"

Fig. 5

Maps of crop classification from the image of September 7, 2016 using four classification methods at pixel and object levels"

Table 3

Comparison of user’s accuracies and producer’s accuracies of jujube and cotton for single stages using pixel-based and object-oriented classification methods"

空间尺度
Spatial scale
光谱角制图SAM 支持向量机SVM 决策树DTs 随机森林RF
枣树Jujube 棉花Cotton 枣树Jujube 棉花Cotton 枣树Jujube 棉花Cotton 枣树Jujube 棉花Cotton
UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA
面向对象
Object-oriented
69.17 50.44 63.81 54.40 96.17 60.61 64.47 96.09 97.65 67.75 67.12 92.49 98.29 62.19 65.76 92.29
基于像素
Pixel-based
70.23 52.45 44.21 49.27 93.24 43.90 52.15 87.86 96.48 47.48 54.55 91.91 96.29 52.54 57.95 90.87

Fig. 6

False color composites of the study area generated with satellite imagery acquired at different stages"

Fig. 7

Importance of features based on the gain ratio"

[1] 新疆维吾尔自治区统计局. 新疆统计年鉴. 北京: 中国统计出版社, 2016.
National Bureau of Statistics of the Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook. Beijing: China Statistics Press, 2016. (in Chinese)
[2] 张焕雪, 李子强, 文宁, 杜鑫, 陶青山, 田亦陈 . 农作物种植面积遥感估算的影响因素研究. 国土资源遥感, 2015,27(4):54-61.
doi: 10.6046/gtzyyg.2015.04.09
ZHANG H X, LI Z Q, WEN N, DU X, TAO Q S, TIAN Y C . Important factors affecting crop acreage estimation based on remote sensing image classification technique. Remote Sensing for Land and Resources, 2015,27(4):54-61. (in Chinese)
doi: 10.6046/gtzyyg.2015.04.09
[3] WALDNER F, CANTO G S, DEFOUNRNY P . Automated annual cropland mapping using knowledge-based temporal features. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,110:1-13.
doi: 10.1016/j.isprsjprs.2015.09.013
[4] DALMAU O S , ALARCÓN T E, OLIVA F E . Crop classification in satellite images through probabilistic segmentation based on multiple sources. Sensors, 2017,17(6):1373.
doi: 10.3390/s17061373 pmid: 5492153
[5] ABOUEL M L, TANTON T . Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification. Remote Sensing, 2003,24(21):4197-4206.
doi: 10.1080/0143116031000139791
[6] ALGANCI U, SERTEL E, OZDOGAN M, ORMECI C . Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern turkey. Photogrammetric Engineering and Remote Sensing, 2013,79(11):1053-1065.
doi: 10.14358/PERS.79.11.1053
[7] SAMANIEGO L, SCHULZ K . Supervised classification of agricultural land cover using a modified K-NN technique (mnn) and Landsat remote sensing imagery. Remote Sensing, 2009,1(4):875-895.
doi: 10.3390/rs1040875
[8] CRIST E P, CICONE R C . Application of the tasseled cap concept to simulated thematic mapper data. Photogrammetric Engineering & Remote Sensing, 1984,50(3):343-352.
[9] WARDLOW B D, EGBERT S L, KASTENS J H . Analysis of time- series MODIS 250 m vegetation index data for crop classification in the us central great plains. Remote Sensing of Environment, 2007,108(3):290-310.
doi: 10.1016/j.rse.2006.11.021
[10] DURO D C, FRANKLIN S E, DUBÉ M G . A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery. Remote Sensing of Environment, 2012,118:259-272.
doi: 10.1016/j.rse.2011.11.020
[11] ALGANCI U, SERTEL E, OZDOGAN M, ORMECI C . Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern turkey. Photogrammetric Engineering and Remote Sensing, 2013,79(11):1053-1065.
doi: 10.14358/PERS.79.11.1053
[12] LIU J, SHAO G, ZHU H, LIU S . A neural network approach for enhancing information extraction from multispectral image data. Canadian Journal of Remote Sensing, 2005,31(6):432-438.
doi: 10.5589/m05-027
[13] OMKAR S, SENTHILNATH J, MUDIGERE D, KUMAR M M . Crop classification using biologically-inspired techniques with high resolution satellite image. Journal of the Indian Society of Remote Sensing, 2008,36(2):175-182.
doi: 10.1007/s12524-008-0018-y
[14] MASSE A . Développement et automatisation de méthodes de classification partir de séries temporelles d’images de télédétection - application aux changements d’occupation des sols et à l’estimation du bilan carbone[D]. Toulouse: Université Toulouse III Paul Sabatier, 2013: 223.
[15] PETITJEAN F, INGLADA J , GANÇARSKI P . Satellite image time series analysis under time warping.IEEE Transactions on Geoscience and Remote Sensing, 50(8):3081-3095.
doi: 10.1109/TGRS.2011.2179050
[16] OSMAN J, INGLADA J, DEJOUX J F . Assessment of a markov logic model of crop rotations for early crop mapping. Computers and Electronics in Agriculture, 2015,113:234-243.
doi: 10.1016/j.compag.2015.02.015
[17] MARIANA B, OVIDIU C . Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 2018,204:509-523.
doi: 10.1016/j.rse.2017.10.005
[18] 刘吉凯, 钟仕全, 梁文海 . 基于多时相Landsat 8 OLI影像的作物种植结构提取. 遥感技术与应用, 2015,30(4):775-783.
doi: 10.11873/j.issn.1004-0323.2015.4.0775
LIU J K, ZHONG S Q, LIANG W H . Extraction on crops planting structure based on multi-temporal Landsat8 OLI images. Remote Sensing of Technology and Application, 2015,30(4):775-783. (in Chinese)
doi: 10.11873/j.issn.1004-0323.2015.4.0775
[19] 黄健熙, 侯焯, 武洪峰, 刘峻明, 朱德海 . 基于时间序列MODIS的农作物类型空间制图方法. 农业机械学报, 2017,48(10):142-148.
doi: 10.6041/j.issn.1000-1298.2017.10.017
HUANG J X, HOU Z, WU H F, LIU J M, ZHU D H . Crop type mapping method based on time-series MODIS data in Heilongjiang province. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(10):142-148. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2017.10.017
[20] MCCARTY J L , NEIGH C S R, CARROLL M L, WOOTEN M R . Extraction smallholder cropped area in Tigray, Ethiopia, with wall-to-wall sub-meter WorldView and moderate resolution Landsat 8 imagery. Remote Sensing of Environment, 2017,202:142-151.
doi: 10.1016/j.rse.2017.06.040
[21] WEI C W, HUANG J F, MANSARAY L, LI Z H, LIU W W, HAN J H . Estimation and mapping of winter oilseed rape LAI from high spatial resolution satellite data based on a hybrid method. Remote Sensing, 2017,9(5):488-503.
doi: 10.3390/rs9050488
[22] 刘克宝, 刘述彬, 陆忠军, 宋茜, 刘艳霞, 张冬梅, 吴文斌 . 利用高空间分辨率遥感数据的农作物种植结构提取. 中国农业资源与区划, 2014,35(1):1-5.
doi: 10.7621/cjarrp.1005-9121.20130601
LIU K B, LIU S B, LU ZJ, SONG X, LIU Y X, ZHANG D M, WU W B . Cropping structure Extraction based on high spatial resolution remotely sensed data. Chinese Journal of Agricultural Resources and Regional Planning, 2014,35(1):1-5. (in Chinese)
doi: 10.7621/cjarrp.1005-9121.20130601
[23] AKBARI M, MAMANPOUSH A R, GIESKE A. MIRANZADEH M., TORABI M, SALEMI H . Crop and land cover classification in Iran using Landsat 7 imagery. International Journal of Remote Sensing, 2006,27(19):4117-4135.
doi: 10.1080/01431160600784192
[24] POTGIETER A B, APAN A, DUNN P, HAMMER G . Estimating crop area using seasonal time series of enhanced vegetation index from modis satellite imagery. Crop Pasture Science, 2007,58(4):316-325.
doi: 10.1071/AR06279
[25] ARVOR D, JONATHAN M , MEIRELLES M S P, DUBREUIL V, DURIEUX L . Classification of MODIS EVI time series for crop mapping in the state of mato grosso, brazil. International Journal of Remote Sensing, 2011, 32(22):7847-7871.
doi: 10.1080/01431161.2010.531783
[26] MYINT S W, PATRICIA G, ANTHONY B, SUSANNE G C, WEN Q H .Per-pixel vs . object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 2011,115(5):1145-1161.
doi: 10.1016/j.rse.2010.12.017
[27] BLASCHKE T, GEOFFREY J H, MAGGI K, STEFAN L, PETER H, ELISABETH A, RAUL Q F, FREEK M, HARALD W, FRIEKE C, DIRK T . Geographic object-based image analysis - towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87:180-191.
doi: 10.1016/j.isprsjprs.2013.09.014 pmid: 3945831
[28] MA L, LI M C, MA X X. CHENG L, DU P J, LIU Y X . A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,130:277-293.
doi: 10.1016/j.isprsjprs.2017.06.001
[29] LI Q Z, CAO X, JI K, ZHANG M, DONG Q H . Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. International Journal of Remote Sensing, 2014,35(16):6076-6088.
doi: 10.1080/01431161.2014.943325
[30] BLASCHKE T . Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):2-16.
doi: 10.1016/j.isprsjprs.2009.06.004
[31] 邓书斌 . ENVI 遥感图像处理方法. 北京: 科学出版社, 2010.
DENG S B. ENVI Remote Sensing Image Processing Method. Beijing: Science Press, 2010. ( in Chinese)
[32] ROERDINK J B, MEIJSTER A . The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta informaticae, 2001,41:187-228.
doi: 10.3233/FI-2000-411207
[33] BLEAU A, LEON L J . Watershed-based segmentation and region merging. computer Vision and Image Understanding, 2000,77(3):317-370.
doi: 10.1006/cviu.1999.0822
[34] PEÑA-BARRAGÁN J M, NGUGI M K, RICHARD E P, JOHAN S . Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 2011,115(6):1301-1316.
doi: 10.1016/j.rse.2011.01.009
[35] ZHONG C, WANG C Z, WU C S . MODIS-based fractional crop mapping in the U.S. midwest with spatially constrained phenological mixture analysis, Remote Sensing, 2015,7(1):512-529.
doi: 10.3390/rs70100512
[36] ZHONG L, HAWKINS T, BIGING G, GONG P . A phenology-based approach to map crop types in the San Joaquin Valley, California. International Journal of Remote Sensing, 2011,32(22):7777-7804.
doi: 10.1080/01431161.2010.527397
[37] HELMHOLZ P, ROTTENSTEINER F, HEIPKE C . Semi-automatic verification of cropland and grassland using very high resolution mono-temporal satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,97:204-218.
doi: 10.1016/j.isprsjprs.2014.09.008
[38] LÖW F, KNÖFEL P, CONRAD C . Analysis of uncertainty in multi- temporal object-based classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:91-106.
doi: 10.1016/j.isprsjprs.2015.03.004
[39] LI Q T, WANG C Z, ZHANG B, LU L L . Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sensing, 2015,7(12):16091-16107.
doi: 10.3390/rs71215820
[40] DURO D C, FRANKLIN S E, DUBÉ M G . A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 2012,118:259-272.
doi: 10.1016/j.rse.2011.11.020
[41] MA L, CHENG L, LI M C, LIU Y X, MA X X . Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,102:14-27.
doi: 10.1016/j.isprsjprs.2014.12.026
[42] LALIBERTE A S, BROWNING D M, RANGO A . A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. International Journal of Applied Earth Observation and Geoinformation, 2012,15:70-78.
doi: 10.1016/j.jag.2011.05.011
[1] YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[5] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[6] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[9] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[10] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[11] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[12] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[13] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[14] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[15] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!