Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4869-4879.doi: 10.3864/j.issn.0578-1752.2021.22.013

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Changes in Phenolic Acids of Luffa cylindrica Pulp During Browning Based on Metabolomics

WANG YaHui1,2(),LIU XiaoHong1,YONG MingLi1,XIONG AiSheng2,SU XiaoJun1()   

  1. 1Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014
    2College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing 210095
  • Received:2021-01-28 Accepted:2021-03-24 Online:2021-11-16 Published:2021-11-19
  • Contact: XiaoJun SU E-mail:2019204036@njau.edu.cn;xiaojunsu@jaas.ac.cn

Abstract:

【Objective】Browning is the main element affecting the commercial value of Luffa cylindrica. The principal consideration of browning is linked to the metabolism of phenolic acids. Studying the changes of phenolic acid during the browning process of Luffa is helpful to understand the physiological mechanism of browning, so as to provide the basis for the storage and processing, breed selection and utilization of germplasm resources of Luffa. 【Method】Browning-resistant Luffa cultivar 2D-2 and browning-prone cultivar 35D-7 were used as experiment materials. Their browning degree, total phenol content and polyphenol oxidase activity after fresh cutting for different time were measured. Ultra high-performance liquid chromatography-mass spectrometry (UPLC-MS) was utilized to analyze the metabolomic of Luffa pulp before and after browning in boiling water bath. 【Result】 After fresh-cut browning treatment, the content of polyphenols and the polyphenol oxidase activity in the flesh of both two Luffa cultivars were increased. Luffa 35D-7 had severer browning degree. The total phenol content after 24 h storage was much more than 3 times of that of 2D-2, and the polyphenol oxidase activity achieved the top at 12 h, reaching 174.23 U·g-1·min-1. Based on metabolomics, the substrate of enzymatic browning reaction and the difference of metabolites in browning-prone Luffa 35D-7 before and after browning were analyzed. A total of 420 metabolites were detected, 229 of which were differential metabolites. After browning, the contents of 140 kinds of differential metabolites were substantially decreased, while 89 kinds were increased. KEGG pathway enrichment analysis demonstrated that metabolites related to phenylpropanoid biosynthesis, proline metabolism and flavonoid biosynthesis displayed significant changes. The results of qualitative and quantitative analysis of metabolomics suggested the content of p-coumaric acid was the highest in the phenolic acids identified in the flesh of the tested Luffa, followed by coniferin and gentisic acid. After browning treatment, 35 different metabolites were classified as phenolic acid metabolites. Among them, the content of coniferaldehyde, 3-aminosalicylic acid and phenethyl caffeate decreased most obviously, while the content of syringin, 2,5-dihydroxy benzoic acid O-hexside and isochlorogenic acid A increased significantly, and the log2 fold change was more than 10. 【Conclusion】The main phenolic substances in the flesh of 35D-7 were p-coumaric, and the main phenolic acid metabolites involved in the browning process of 35D-7 were coniferaldehyde, syringin and isochlorogenic acid A etc. The results could help further reveal the physiological mechanism of Luffa browning and provide basis for the improvement of Luffa variety.

Key words: Luffa, pulp, enzymatic browning, metabolomics, phenolic acids

Fig. 1

Browning of the Luffa pulp at different placement time after fresh cutting The white lines in the lower right corner represent 2 cm"

Fig. 2

Phenols content in Luffa pulp at different placement time after fresh cutting Different lowercase letters indicate significant differences at the P<0.05 level. The same as below"

Fig. 3

PPO enzyme activity in Luffa pulp at different placement time after fresh cutting"

Fig. 4

Overlap total ion chromatogram of all samples"

Fig. 5

Cluster heatmap of metabolite content changes during Luffa browning treatment"

Fig. 6

Enrichment of differential metabolite pathway during Luffa browning treatment"

Table 1

Partial differential metabolites during Luffa browning treatment"

KEGG通路
KEGG pathway
代谢物
Metabolite
结构式
Formula
变化倍数
(褐变处理/对照)
Fold change (BR/CK)
Log2变化倍数
Log2 Fold change
变化趋势
Change trends
苯丙素的生物合成
Phenylpropanoid biosynthesis
松柏醇 Coniferyl alcohol C10H12O3 2.06E-01 -2.28 下降 Down
咖啡酸 Caffeic acid C9H8O4 7.17E-02 -3.80 下降 Down
对香豆酸 p-coumaric acid C9H8O3 1.40E-01 -2.84 下降 Down
紫丁香苷 Syringin C17H24O9 1.93E+05 17.56 升高 Up
松柏醛 Coniferaldehyde C10H10O3 3.46E-05 -14.82 下降 Down
芥子酸 Sinapic acid C11H12O5 1.49E-01 -2.75 下降 Down
阿魏酸 Ferulic acid C10H10O4 9.54E-02 -3.39 下降 Down
脯氨酸代谢
Purine metabolism
腺苷-3′,5′-环单磷酸水合物 Cyclic AMP C10H12N5O6P 4.00E+02 8.65 升高 Up
腺苷-3′-磷酸 3′-Aenylic acid C10H14N5O7P 8.32E+00 3.06 升高 Up
鸟苷3′,5′-环单磷酸 Guanosine 3′,5′-cyclic monophosphate C10H12N5O7P 4.95E+00 2.31 升高 Up
2′-脱氧鸟苷 Deoxyguanosine C10H13N5O4 5.65E+00 2.50 升高 Up
2′-脱氧腺苷 Deoxyadenosine C10H13N5O3 2.01E+02 7.65 升高 Up
鸟嘌呤 Guanine C5H5N5O 3.35E-01 -1.58 下降 Down
2′-脱氧腺苷-5′-单磷酸 2′-Deoxyadenosine-5′-monophosphate C10H14N5O6P 5.65E+00 2.50 升高 Up
腺苷 Adenosine C10H13N5O4 2.15E+02 7.75 升高 Up
黄嘌呤 Xanthine C5H4N4O2 2.93E-01 -1.77 下降 down
类黄酮生物合成
Flavonoid biosynthesis
木犀草素 Luteolin C15H10O6 4.84E-05 -14.34 下降 Down
表儿茶素 L-epicatechin C15H14O6 4.68E-01 -1.10 下降 Down
短叶松素 Pinobanksin C15H12O5 1.16E-02 -6.42 下降 Down
柚皮素查尔酮 Naringenin chalcone C15H12O5 2.80E-02 -5.16 下降 Down
芹菜素 Apigenin C15H10O5 1.12E-05 -16.45 下降 Down

Fig. 7

Relative content of phenolic acid metabolites in Luffa pulp (Top 10)"

Fig. 8

Top 10 fold change differential metabolites of phenolic acids during Luffa browning treatment"

[1] 朱海生, 康娟, 刘建汀, 陈敏氡, 李永平, 王彬, 林碧英, 温庆放. 丝瓜多酚氧化酶PPO基因家族的克隆与表达分析. 核农学报, 2018(8): 1502-1512.
ZHU H S, KANG J, LIU J T, CHEN M D, LI Y P, WANG B, LIN B Y, WEN Q F. Cloning and expression analysis of polyphenol oxidase PPO gene family from Luffa cylindrical. Journal of Nuclear Agricultural Sciences, 2018(8): 1502-1512. (in Chinese)
[2] 李京赞, 刘玉德, 石文天, 陶春生. 植物果蔬的褐变及抑制的研究. 包装与食品机械, 2019, 37(1): 63-68.
LI J Z, LIU Y D, SHI W T, TAO C S. Advances in research on browning and inhibition of plant fruits and vegetables. Packaging and Food Machinery, 2019, 37(1): 63-68. (in Chinese)
[3] 花秀凤, 陈铣, 黄斌斌. 普通丝瓜果肉褐变的变异及低褐变品种的筛选. 中国农学通报, 2013, 29(19): 103-106.
HUA X F, CHEN X, HUANG B B. Luffa cylindrica roem flesh browning variation and low browning varieties selection. Chinese Agricultural Science Bulletin, 2013, 29(19): 103-106. (in Chinese)
[4] 王辉, 王成, 娄丽娜, 苏小俊. 丝瓜果肉耐褐变种质资源的筛选及初步应用. 长江蔬菜, 2013(14): 20-21, 22.
WANG H, WANG C, LOU L N, SU X J. Selection and preliminary application of anti-browning Luffa germplasm resources. Journal of Changjiang Vegetables, 2013(14): 20-21, 22. (in Chinese)
[5] 黄树苹, 张敏, 谈杰, 王春丽, 陈霞, 张洪源, 谈太明. 普通丝瓜果肉褐变程度的主基因+多基因遗传模型分析. 中国农学通报, 2018, 34(19): 50-56.
HUANG S P, ZHANG M, TAN J, WANG C L, CHEN X, ZHANG H Y, TAN T M. Genetic model analysis of major gene + polygene of flesh browning in Luffa cylindrica. Chinese Agricultural Science Bulletin, 2018, 34(19): 50-56. (in Chinese)
[6] 康玉妹, 薛珠政, 刘建汀. 18个丝瓜新组合主要农艺性状聚类分析及褐变度鉴定. 福建农业科技, 2020(5): 20-26.
KANG Y M, XUE Z Z, LIU J T. Clustering analysis on the agronomic characters of 18 new combinations of Luffa and the identification of browning degree. Fujian Agricultural Science and Technology, 2020(5): 20-26. (in Chinese)
[7] 周向军, 高义霞, 袁毅君, 张志昌, 张继. 丝瓜过氧化物酶的特性和抑制作用研究. 中国酿造, 2011, 30(10): 81-85.
ZHOU X J, GAO Y X, YUAN Y J, ZHANG Z C, ZHANG J. Study on characteristics and inhibition effects ofperoxidase from Luffa cylindrica (Linn.)Roem. China Brewing, 2011, 30(10): 81-85. (in Chinese)
[8] ZHU H S, LIU J T, WEN Q F, CHEN M D, WANG B, ZHANG Q R, XUE Z Z. De novo sequencing and analysis of the transcriptome during the browning of fresh-cut Luffa cylindricaFusi-3’ fruits. PLoS ONE, 2017, 12(11): e0187117.
doi: 10.1371/journal.pone.0187117
[9] WANG Y H, LIU X H, ZHANG R R, YAN Z M, XIONG A S, SU X J. Sequencing, assembly, annotation, and gene expression: novel insights into browning-resistant Luffa cylindrica. PeerJ, 2020, 8: e9661.
doi: 10.7717/peerj.9661
[10] 朱海生, 温文旭, 刘建汀, 叶新如, 陈敏氡, 王彬, 张前荣, 李永平, 温庆放. 丝瓜苯丙氨酸解氨酶基因PAL克隆及表达分析. 植物遗传资源学报, 2018, 19(2): 305-313.
ZHU H S, WEN W X, LIU J T, YE X R, CHEN M D, WANG B, ZHANG Q R, LI Y P, WEN Q F. Cloning and expression analysis of phenylalanine ammonia-lyase PAL gene from Luffa cylindrical. Journal of Plant Genetic Resources, 2018, 19(2): 305-313. (in Chinese)
[11] 朱海生, 刘建汀, 王彬, 陈敏氡, 张前荣, 叶新如, 林珲, 李永平, 温庆放. 丝瓜过氧化物酶基因的克隆及其在果实褐变中的表达分析. 农业生物技术学报, 2018, 26(1): 43-52.
ZHU H S, LIU J T, WANG B, CHEN M D, ZHANG Q R, YE X R, LIN H, LI Y P, WEN Q F. Cloning of peroxidase gene from Luffa (Luffa cylindrical) and its expression analysis in fruit browning. Journal of Agricultural Biotechnology, 2018, 26(1): 43-52. (in Chinese)
[12] LEE J, MATTHEIS J P, RUDELL D R. Antioxidant treatment alters metabolism associated with internal browning in ‘Braeburn’ apples during controlled atmosphere storage. Postharvest Biology and Technology, 2012, 68: 32-42.
doi: 10.1016/j.postharvbio.2012.01.009
[13] TAO N, WANG R H, XU X, DONG T T, ZHANG S, LIANG M, WANG Q G. Xanthosine is a novel anti-browning compound in potato identified by widely targeted metabolomic analysis and in vitro test. Postharvest Biology and Technology, 2021, 171: 111367.
doi: 10.1016/j.postharvbio.2020.111367
[14] 温文旭, 朱海生, 温庆放, 陈敏氡, 林碧英, 薛珠政. 超高效液相色谱法分析丝瓜酚类物质组分及其含量. 园艺学报, 2016, 43(7): 1391-1401.
WEN W X, ZHU H S, WEN Q F, CHEN M D, LIN B Y, XUE Z Z. Determination of polyphenols in Luffa by ultra performance liquid chromatography. Acta Horticulturae Sinica, 2016, 43(7): 1391-1401. (in Chinese)
[15] 朱海生, 庄尹宏, 刘建汀, 王彬, 陈敏氡, 张前荣, 温庆放, 李大忠, 薛珠政. 丝瓜总酚提取和测定方法的优化. 福建农业学报, 2016, 31(11): 1204-1209.
ZHU H S, ZHUANG Y H, LIU J T, WANG B, CHEN M D, ZHANG Q R, WEN Q F, LI D Z, XUE Z Z. Extraction and determination of total phenol in Luffa (Luffa cylindrical Roem.), Fujian Journal of Agricultural Science, 2016, 31(11): 1204-1209. (in Chinese)
[16] LIM W Y, CHEUN C F, WONG C W. Inhibition of enzymatic browning in sweet potato (Ipomoea batatas (L.)) with chemical and natural anti-browning agents. Journal of Food Processing and Preservation, 2019, 43: e14195.
[17] 李思源, 李培瑜, 刘奕彤, 刘海杰, 张泽俊, 沙坤. 代谢组学在食品科学中的应用进展. 食品与发酵工业, 2021, 47(5): 252-258.
LI S Y, LI P Y, LIU Y T, LIU H J, ZHANG Z J, SHA K. Application progress of metabolomics in food science. Food and Fermentation Industries, 2021, 47(5): 252-258. (in Chinese)
[18] 娄丽娜, 刘哲, 苏小俊. 普通丝瓜耐褐变研究进展. 长江蔬菜, 2015(4): 1-4.
LOU L N, LIU Z, SU X J. Research progress of flesh browning resistance in Luffa(L.). Journal of Changjiang Vegetables, 2015(4): 1-4. (in Chinese)
[19] 郝英超, 罗磊, 刘云宏, 周燕燕. 酶促褐变中酚类化合物代谢机理研究进展. 农产品加工·学刊, 2013(5): 55-58, 66.
HAO Y C, LUO L, LIU Y H, ZHOU Y Y. Metabolic mechanism of phenolic compounds in enzymatic browning. Aem Roducts Rocessing, 2013(5): 55-58, 66. (in Chinese)
[20] 温文旭. 丝瓜褐变过程酚类物质的分析与研究[D]. 福州: 福建农林大学, 2017.
WEN W X. Study and analysis of polyphenols in luffa browning[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese)
[21] ELIA N A, EDMUNDO M. Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama. Postharvest Biology and Technology, 2004, 33(3): 275-283.
doi: 10.1016/j.postharvbio.2004.03.009
[22] 康娟, 庄尹宏, 林碧英, 温庆放, 温文旭, 朱海生. 丝瓜多酚氧化酶及过氧化物酶酶学特性的研究. 福建农业学报, 2017, 32(8): 854-858.
KANG J, ZHUANG Y H, LIN B Y, WEN Q F, WEN W X, ZHU H S. Polyphenol oxidase and peroxidase in Luffa cylindrica. Fujian Journal of Agricultural Sciences, 2017, 32(8): 854-858. (in Chinese)
[23] 王丛巧. 温差对铁皮石斛松柏苷、紫丁香苷影响及相关基因表达分析[D]. 福州: 福建农林大学, 2019.
WANG C Q. Temperature difference on syringin and coniferin contain in Dendrobium catenatum and related gene expression[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese)
[24] MAI F, GLOMB M A. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. Journal of Agricultural and Food Chemistry, 2013, 61(11): 2868-2874.
doi: 10.1021/jf305182u
[25] 王佳宏, 郁志芳, 杜传来. 芋艿褐变底物及多酚氧化酶特性研究. 食品工业科技, 2008, 29(2): 141-145.
WANG J H, YU Z F, DU C L. Browning substrates and characterization of polyphenol oxidase from taro. Science and Technology of Food Industry, 2008, 29(2): 141-145. (in Chinese)
[26] 袁江, 张绍铃, 曹玉芬, 吴俊, 田路明, 陶书田, 董星光. 梨果实酚类物质与酶促褐变底物的研究. 园艺学报, 2011, 38(1): 7-14.
YUAN J, ZHANG S L, CAO Y F, WU J, TIAN L M, TAO S T, DONG X G. Polyphenolic compound and substances determination of enzymatic browning in pear. Acta Horticulturae Sinica, 2011, 38(1): 7-14. (in Chinese)
[27] 程丽林, 张长峰, 王庆国. 高效液相色谱法测定马铃薯中绿原酸和原儿茶酸. 食品工业科技, 2016, 37(13): 299-303.
CHENG L L, ZHANG C F, WANG Q G. Determination of chlorogenic acid and protocatechuic acid in potatoes by HPLC. Science and Technology of Food Industry, 2016, 37(13): 299-303. (in Chinese)
[28] 全先庆, 张渝洁, 单雷, 毕玉平. 高等植物脯氨酸代谢研究进展. 生物技术通报, 2007(1): 14-18.
QUAN X Q, ZHANG Y J, SHAN L, BI Y P. Advances in proline metabolism researches of higher plants. Biotechnology Bulletin, 2007(1): 14-18. (in Chinese)
[29] 王丽媛, 丁国华, 黎莉. 脯氨酸代谢的研究进展. 哈尔滨师范大学自然科学学报, 2010, 26(2): 84-89.
WANG L Y, DING G H, LI L. Progress in synthesis and metabolism of proline. Natural Science Journal of Harbin Normal University, 2010, 26(2): 84-89. (in Chinese)
[30] 郑洁, 赵其阳, 张耀海, 焦必宁. 超高效液相色谱法同时测定柑橘中主要酚酸和类黄酮物质. 中国农业科学, 2014, 47(23): 4676-4687.
ZHENG J E, ZHAO Q Y, ZHANG Y H, JIAO B N. Simultaneous determination of main flavonoids and phenolic acids in Citrus fruit by ultra performance liquid chromatography. Scientia Agricultura Sinica, 2014, 47(23): 4676-4687. (in Chinese)
[31] 白永亮, 余铭, 袁根良, 杜冰, 鲁旺旺, 黄守耀, 杨公明. 大蕉后熟期的褐变相关性及褐变底物鉴定. 食品科学, 2012, 33(4): 271-275.
BAI Y L, YU M, YUAN G L, DU B, LU W W, HUANG S Y, YANG G M. Correlations between browning degree and PPO or POD activity of Dajiao banana (Musa paradisiaca ABB cv. Dajiao) and preliminary identification of browning substrates during postharvest ripening. Food Science, 2012, 33(4): 271-275. (in Chinese)
[32] 孙海龙, 张静茹, 陆致成, 鲁晓峰, 吴强, 于潞. 李果实酚类物质及其生物活性研究进展. 果树学报, 2018, 35(2): 1541-1550.
SUN H L, ZHANG J R, LU Z C, LU X F, WU Q, YU L. Advances in the research of phenolic compounds and their bioactivities in plum fruits. Journal of Fruit Science, 2018, 35(2): 1541-1550. (in Chinese)
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] WANG Ji,ZHANG Xin,HU JingRong,YU ZhiHui,ZHU YingChun. Analysis of Lipolysis and Oxidation Ability of Fermentation Strains in Sterilized Pork Pulp [J]. Scientia Agricultura Sinica, 2022, 55(9): 1846-1858.
[4] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[5] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[6] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[7] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[8] YU LongTao,YANG HeYan,SU YuChen,YAN WeiYu,WU XiaoBo. The Effect of Flumethrin on Metabolism of Worker Larvae of Apis mellifera with LC-MS Technique [J]. Scientia Agricultura Sinica, 2021, 54(12): 2689-2698.
[9] ZHAO Shan,ZHONG LingLi,ZHOU Hong,LI Xi,LEI XinYu,HUANG ShiQun,ZHENG XingGuo,FENG JunYan,LEI ShaoRong,GUO LingAn. Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Scientia Agricultura Sinica, 2020, 53(3): 612-631.
[10] DAI YuQiao,Lü CaiYou,HE LuNan,YI Chao,LIU XueYan,HUANG Wen,CHEN JiaMin. Metabolic Changes in the Processing of Yunkang 10 Sun-Dried Green Tea based on Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(2): 357-370.
[11] ZHANG LiCui,MA Chuan,FENG Mao,LI JianKe. Evaluation and Optimization of Metabolite Extraction Protocols for Royal Jelly by High Resolution Mass Spectrometry and Metabolomics [J]. Scientia Agricultura Sinica, 2020, 53(18): 3833-3845.
[12] CHEN QinCao,DAI WeiDong,LIN ZhiYuan,XIE DongChao,LÜ MeiLing,LIN Zhi. Effects of Shading on Main Quality Components in Tea (Camellia Sinensis (L) O. Kuntze) Leaves Based on Metabolomics Analysis [J]. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077.
[13] XU YanYang,YAO GuiXiao,LIU PingXiang,ZHAO Jie,WANG XinLu,SUN JunMao,QIAN YongZhong. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products [J]. Scientia Agricultura Sinica, 2019, 52(18): 3163-3176.
[14] YANG TianGe, DENG Hong, LI Han, MENG YongHong, LEI JiaLei, MA Jing, GUO YuRong . Optimization of Ultra-High Pressure Sterilization Conditions on the Kiwi Fruit Pulp Produced by Cold Crushing Method and Its Sterilization Effect During Storage Period [J]. Scientia Agricultura Sinica, 2018, 51(7): 1368-1377.
[15] SU Fan, XUE Jia, YANG Xi, DENG Hong, MENG YongHong, GUO YuRong. Effects of Phenolic Acids on Copigmentation and Stability of Anthocyanins in Red-Fleshed Apple [J]. Scientia Agricultura Sinica, 2017, 50(4): 732-742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!