Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (4): 651-660.doi: 10.3864/j.issn.0578-1752.2019.04.007

• PLANT PROTECTION • Previous Articles     Next Articles

Expression and Function Analysis of Endocuticle Structural Glycoprotein Gene LmAbd-2 in Locusta migratoria

JIA Pan1,2,ZHANG Jing1,2,YANG Yang1,2,LIU WeiMin1,ZHANG JianZhen1,ZHAO XiaoMing1()   

  1. 1Research Institute of Applied Biology, Shanxi University, Taiyuan 030006
    2College of Life Science, Shanxi University, Taiyuan 030006
  • Received:2018-09-29 Accepted:2018-11-15 Online:2019-02-16 Published:2019-02-27
  • Contact: XiaoMing ZHAO E-mail:zxming@sxu.edu.cn

Abstract:

【Objective】The objective of this study is to analyze the sequence and expression characteristics of endocuticle structural glycoprotein gene LmAbd-2 that identified from Locusta migratoria transcriptome, explore its function by Hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM) based on RNAi with dsLmAbd-2, and to discuss the effect on the formation of endocuticle during L. migratoria molting.【Method】The cDNA sequence of LmAbd-2 was obtained according to the transcriptome database of L. migratoria, and was cloned by reverse-transcription PCR (RT-PCR) and sequenced. The amino acid sequence of LmAbd-2 was translated by ExPASy tool, and its signal peptide and structural domain were analyzed by using SignaIP4.1Server and SMART software, respectively. Meanwhile, the O-linked glycosylation sites were predicted by using NetOGlyc4.0 Server. The homologous sequences of Abd-2 from locust and other insect species were aligned by GENEDOC software and evolutionary tree was constructed by using the MEGA 6.0 software with the neighbor-joining (NJ) method. Expression profiles of LmAbd-2 in different tissues at day 2 of 5th instar nymphs and developmental days of 4th instar nymphs (N4D1-N4D6), 5th instar nymphs (N5D1-N5D8), and the early stage of adults (AD1-AD4) were assayed by using reverse-transcription quantitative PCR (RT-qPCR). The biological function of LmAbd-2 was analyzed by combination of RNAi and H&E staining and TEM methods. 【Result】The results of sequence analysis showed that the length of the LmAbd-2 cDNA is 683 bp and full length of its ORF is 459 bp, encoding 152 amino acids. The functional domain analysis showed that the protein encoded by LmAbd-2 contains one signal peptide and one chitin binding domain (ChtBD4), which belongs to RR-1 subclass of the CPR family. Sequence alignment analysis showed that it is highly conserved among species, and the similarity with SgAbd-2 is 92.5%, and it contains conserved motif (PTPPPIP) in N-terminal and has a potential O-linked glycosylation site (T116) at which glycosylation modification may occur. Phylogenetic tree analysis showed that LmAbd-2 has a close genetic relationship with SgAbd-2 of Schistocerca gregaria. The results of RT-qPCR revealed that LmAbd-2 was highly expressed in the integument, but lower or no expression in other tested tissues, and showed periodic expression during molting. After injection of dsLmAbd-2 on day 3 of 4th instar nymphs and day 4 of 5th instar nymphs, the insects could normally molt to adults and showed no macroscopic phenotype; however, the cuticle of the adults was thinner, and there were significantly fewer endocuticular lamellae than those in the control.【Conclusion】An endocuticle structural glycoprotein gene LmAbd-2 was obtained according to the L. migratoria transcriptome database. The protein encoded by LmAbd-2 belongs to RR-1 subclass of CPR family. LmAbd-2 was mainly expressed in integument among all the tested tissues and showed periodic expression at the early stage of 4th instar nymphs, 5th instar nymphs and adults. The results of RNAi suggested that LmAbd-2 was involved in the formation of endocuticle during L. migratoria molting.

Key words: Locusta migratoria, endocuticle, glycoprotein, LmAbd-2, RNAi

Table 1

Species and GenBank accession number for phylogenetic tree used in this study"

目Order 物种Species 基因Gene GenBank登录号 GenBank accession number
鳞翅目Lepidoptera 玉带凤蝶Papilio polytes PpAbd-2 XP_013141188.1
柑橘凤蝶Papilio xuthus PxAbd-2 NP_001299525.1
棉铃虫Helicoverpa armigera HaAbd-2 XP_021201029.1
斜纹夜蛾Spodoptera litura SlAbd-2 XP_022816544.1
半翅目Hemiptera 臭虫Cimex lectularius ClAbd-2 XP_014247089.1
褐飞虱Nilaparvata lugens NlAbd-2 XP_022195400.1
直翅目Orthoptera 飞蝗Locusta migratoria LmAbd-2 ASQ42722.1
沙漠蝗Schistocerca gregaria SgAbd-2 Q7M4F3.1
蜚蠊目Blattaria 堆砂白蚁Cryptotermes secundus CsAbd-2 XP_023704658.1
内华达古白蚁Zootermopsis nevadensis ZnAbd-2 XP_021932412.1
德国小蠊Blattella germanica BgAbd-2 PSN37147.1
鞘翅目Coleoptera 山松甲虫Dendroctonus ponderosae DpAbd-2 XP_019764279.1
蜣螂Onthophagus taurus OtAbd-2 XP_022906571.1
天牛Anoplophora glabripennis AgAbd-2 XP_018574122.1
赤拟谷盗Tribolium castaneum TcAbd-2 XP_974125.1

Table 2

Primer sequences used in this study"

基因 Gene 引物序列Primer sequence (5′-3′) 用途 Application 产物长度 Product length (bp)
LmAbd-2 F:taatacgactcactatagggATGCAGCTGTTGGTATGCCT dsLmAbd-2合成
dsLmAbd-2 synthesis
196
R:taatacgactcactatagggGCTCCTGGGCGGCGATGCCG
GFP F:taatacgactcactatagggTGGAGAGGGTGAAGG dsGFP 合成
dsGFP synthesis
571
R:taatacgactcactatagggGGGCAGATTGTGTGGAC
LmAbd-2 F:GTGTTTGACCCTGCTGGTG RT-qPCR 106
R:CCGTTGCCGTTTCGTATT
β-actin F:CGAAGCACAGTCAAAGAGAGGTA 156
R:GCTTCAGTCAAGAGAACAGGATG

Fig. 1

Sequence analysis of LmAbd-2"

Fig. 2

Multiple sequence alignments and phylogenetic analysis of LmAbd-2 and Abd-2 from different insect species"

Fig. 3

The relative expression of LmAbd-2 in different tissues and different developmental stages"

Fig. 4

Effect of LmAbd-2 on the formation of cuticle by H&E staining and TEM after injection of dsRNA"

[1] MOUSSIAN B, SEIFARTH C, MÜLLER U, BERGER J, SCHWARZ H . Cuticle differentiation during Drosophila embryogenesis. Arthropod Structure and Development, 2006,35(3):137-152.
[2] VINCENT J F, WEGST U G . Design and mechanical properties of insect cuticle. Arthropod Structure and Development, 2004,33(3):187-199.
doi: 10.1016/j.asd.2004.05.006 pmid: 18089034
[3] NOH M Y, MUTHUKRISHNAN S, KRAMER K J, ARAKANE Y . Development and ultrastructure of the rigid dorsal and flexible ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2017,91:21-33.
doi: 10.1016/j.ibmb.2017.11.003 pmid: 29117500
[4] WILLIS J H . Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochemistry and Molecular Biology, 2010,40(3):189-204.
doi: 10.1016/j.ibmb.2010.02.001 pmid: 20171281
[5] KAROUZOU M V, SPYROPOULOS Y, ICONOMIDOU V A, CORNMAN R S, HAMODRAKAS S J, WILLIS J H . Drosophila cuticular proteins with the R&R Consensus: Annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochemistry and Molecular Biology, 2007,37(8):754-760.
[6] CORNMAN R S, TOGAWA T, DUNN W A, HE N, EMMONS A C, WILLIS J H . Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genomics, 2008,9:22.
[7] FUTAHASHI R, OKAMOTO S, KAWASAKI H, ZHONG Y S, IWANAGA M, MITA K, FUJIWARA H . Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2008,38(12):1138-1146.
doi: 10.1016/j.ibmb.2008.05.007 pmid: 19280704
[8] IOANNIDOU Z S, THEODOROPOULOU M C, PAPANDREOU N C, WILLIS J H, HAMODRAKAS S J . CutProtFam-Pred: Detection and classification of putative structural cuticular proteins from sequence alone, based on profile Hidden Markov Models. Insect Biochemistry and Molecular Biology, 2014,52:51-59.
doi: 10.1016/j.ibmb.2014.06.004 pmid: 4143468
[9] DITTMER N T, TETREAU G, CAO X, JIANG H, WANG P, KANOST M R . Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2015,62:100-113.
doi: 10.1016/j.ibmb.2014.12.010 pmid: 25576653
[10] PAN P L, YE Y X, LOU Y H, LU J B, CHENG C, SHEN Y, MOUSSIAN B, ZHANG C X . A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(20):5175-5180.
doi: 10.1073/pnas.1716951115
[11] GUAN X, MIDDLEBROOKS B W, ALEXANDER S, WASSERMAN S A . Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(45):16794-16799.
doi: 10.1073/pnas.0607616103 pmid: 17075064
[12] ARAKANE Y, LOMAKIN J, GEHRKE S H, HIROMASA Y, TOMICH J M, MUTHUKRISHNAN S, BEEMAN R W, KRAMER K J, KANOST M R . Formation of rigid, non-flight forewings (Elytra) of a beetle requires two major cuticular proteins. PLoS Genetics, 2012,8(4):e1002682.
doi: 10.1371/journal.pgen.1002682 pmid: 22570623
[13] QIAO L, XIONG G, WANG R X, HE S Z, CHEN J, TONG X L, HU H, LI C L, GAI T T, XIN Y Q, LIU X F, CHEN B, XIANG Z H, LU C, DAI F Y . Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics, 2014,196(4):1103-1115.
doi: 10.1534/genetics.113.158766 pmid: 24514903
[14] MUN S, YOUNG NOH M, DITTMER N T, MUTHUKRISHNAN S, KRAMER K J, KANOST M R, ARAKANE Y . Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Scientific Reports, 2015,5:10484.
doi: 10.1038/srep10484 pmid: 25994234
[15] NOH M Y, MUTHUKRISHNAN S, KRAMER K J, ARAKANE Y . Tribolium castaneum RR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genetics, 2015,11(2):e1004963.
doi: 10.1371/journal.pgen.1004963 pmid: 25664770
[16] XIONG G, TONG X L, GAI T T, LI C, QIAO L, MONTEIRO A, HU H, HAN M J, DING X, WU S Y, XIANG Z H, LU C, DAI F Y . Body shape and coloration of silkworm larvae are influenced by a novel cuticular protein. Genetics, 2017,207(3):1053-1066.
doi: 10.1534/genetics.117.300300 pmid: 28923848
[17] LU J B, LUO X M, ZHANG X Y, PAN P L, ZHANG C X . An ungrouped cuticular protein is essential for normal endocuticle formation in the brown planthopper. Insect Biochemistry and Molecular Biology, 2018,100:1-9.
doi: 10.1016/j.ibmb.2018.06.001
[18] PETKAU G, WINGEN C, JUSSEN L C, RADTKE T, BEHR M . Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. The Journal of Biological Chemistry, 2012,287(25):21396-21405.
doi: 10.1074/jbc.m112.359984 pmid: 3375561
[19] 王燕, 李大琪, 刘晓健, 李涛, 马恩波, 范仁俊, 张建珍 . 飞蝗表皮蛋白Obstructor家族基因的分子特性及基于RNAi的功能分析. 中国农业科学, 2015,48(1):73-82.
doi: 10.3864/j.issn.0578-1752.2015.01.08
WANG Y, LI D Q, LIU X J, LI T, MA E B, FAN R J, ZHANG J Z . Molecular characterization and RNAi-based functional analysis of Obstructor family genes in Locusta migratoria. Scientia Agricultura Sinica, 2015,48(1):73-82. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.01.08
[20] TAJIRI R, OGAWA N, FUJIWARA H, KOJIMA T . Mechanical control of whole body shape by a single cuticular protein obstructor-E in Drosophila melanogaster. PLoS Genetics, 2017,13(1):e1006548.
[21] JAN S, LIU S, HAFEEZ M, ZHANG X, DAWAR F U, GUO J, GAO C, WANG M . Isolation and functional identification of three cuticle protein genes during metamorphosis of the beet armyworm, Spodoptera exigua. Scientific Reports, 2017,7:16061.
doi: 10.1038/s41598-017-16435-w pmid: 29167522
[22] ANDERSEN S O . Amino acid sequence studies on endocuticular proteins from the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 1998,28(5/6):421-434.
[23] ZHAO X M, GOU X, QIN Z Y, LI D Q, WANG Y, MA E B, LI S, ZHANG J Z . Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome. Scientific Reports, 2017,7:45462.
doi: 10.1038/srep45462 pmid: 5377371
[24] 赵小明, 贾盼, 勾昕, 刘卫敏, 马恩波, 张建珍 . 飞蝗内表皮蛋白基因LmAbd-5的表达与功能分析. 中国农业科学, 2017,50(10):1817-1826.
doi: 10.3864/j.issn.0578-1752.2017.10.007
ZHAO X M, JIA P, GOU X, LIU W M, MA E B, ZHANG J Z . Expression and functional analysis of endocuticle structural glycoprotein gene LmAbd-5 in Locusta migratoria. Scientia Agricultura Sinica, 2017,50(10):1817-1826. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.10.007
[25] ZHAO X M, QIN Z Y, LIU W M, LIU X J, MOUSSIAN B, MA E B, LI S, ZHANG J Z . Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria. Insect Biochemistry and Molecular Biology, 2018,92:1-11.
doi: 10.1016/j.ibmb.2017.11.001 pmid: 29113754
[26] SONG T Q, YANG M L, WANG Y L, LIU Q, WANG H M, ZHANG J, LI T . Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Insect Science, 2016,23(4):520-530.
doi: 10.1111/1744-7917.12342 pmid: 27430427
[27] 杨亚亭, 赵小明, 秦忠玉, 刘卫敏, 马恩波, 张建珍 . 飞蝗表皮蛋白基因LmNCP1的分子特性及功能分析. 中国农业科学, 2018,51(7):1303-1314.
doi: 10.3864/j.issn.0578-1752.2018.07.008
YANG Y T, ZHAO X M, QIN Z Y, LIU W M, MA E B, ZHANG J Z . Molecular characteristics and function analysis of cuticle protein gene LmNCP1 in Locusta migratoria. Scientia Agricultura Sinica, 2018,51(7):1303-1314. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.07.008
[28] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[29] CHARLES J P . The regulation of expression of insect cuticle protein genes. Insect Biochemistry and Molecular Biology, 2010,40(3):205-213.
doi: 10.1016/j.ibmb.2009.12.005 pmid: 20060042
[1] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[7] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[8] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[9] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[10] FU ChaoRan, LI YaZi, WU Han, ZHAO Dan, GUO Wei, GUO XiaoChang. Cloning, Expression and Functional Analysis of SeDuox from Spodoptera exigua [J]. Scientia Agricultura Sinica, 2021, 54(18): 3881-3891.
[11] YU WeiDong,PAN BiYing,QIU LingYu,HUANG Zhen,ZHOU Tai,YE Lin,TANG Bin,WANG ShiGui. The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[14] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[15] MA Wen,LIU Jiao,ZHANG XueYao,SHEN GuoHua,QIN XueMei,ZHANG JianQin. Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria [J]. Scientia Agricultura Sinica, 2019, 52(8): 1389-1399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!