Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4121-4131.doi: 10.3864/j.issn.0578-1752.2021.19.008
• PLANT PROTECTION • Previous Articles Next Articles
MENG XiangKun(),WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun()
[1] | 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5):1-9. |
LIU W C, LIU Z D, HUANG C, LU M H, LIU J, YANG Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Protection, 2016, 42(5):1-9. (in Chinese) | |
[2] | 全国农业技术推广服务中心. 2017年全国农业有害生物抗药性监测结果及科学用药建议. 中国植保导刊, 2018, 38(4):52-56. |
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2017. China Plant Protection, 2018, 38(4):52-56. (in Chinese) | |
[3] | 全国农业技术推广服务中心. 2018年全国农业有害生物抗药性监测结果及科学用药建议. 中国植保导刊, 2019, 39(3):63-67, 72. |
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2018. China Plant Protection, 2019, 39(3):63-67, 72. (in Chinese) | |
[4] | 全国农业技术推广服务中心. 2019年全国农业有害生物抗药性监测结果及科学用药建议. 中国植保导刊, 2020, 40(3):64-69. |
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2019. China Plant Protection, 2020, 40(3):64-69. (in Chinese) | |
[5] |
WEI Y B, YAN R, ZHOU Q L, QIAO L Y, ZHU G N, CHEN M L. Monitoring and mechanisms of chlorantraniliprole resistance in Chilo suppressalis (Lepidoptera: Crambidae) in China. Journal of Economic Entomology, 2019, 112(3):1348-1353.
doi: 10.1093/jee/toz001 |
[6] |
LU Y H, WANG G R, ZHONG L Q, ZHANG F C, BAI Q, ZHENG X S, LU Z X. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Protection, 2017, 100:196-202.
doi: 10.1016/j.cropro.2017.07.006 |
[7] |
MAO K K, LI W H, LIAO X, LIU C Y, QIN Y, REN Z J, QIN X Y, WAN H, SHENG F, LI J H. Dynamics of insecticide resistance in different geographical populations of Chilo suppressalis (Lepidoptera: Crambidae) in China 2016-2018. Journal of Economic Entomology, 2019, 112(4):1866-1874.
doi: 10.1093/jee/toz109 |
[8] |
KALSI M, PALLI S R. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2017, 90:43-52.
doi: 10.1016/j.ibmb.2017.09.009 |
[9] |
MENG X K, YANG X M, WU Z L, SHEN Q W, MIAO L J, ZHENG Y, QIAN K, WANG J J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer, Chilo suppressalis. Pest Management Science, 2020, 76(11):3626-3635.
doi: 10.1002/ps.v76.11 |
[10] |
DERMAUW W, VAN LEEUWEN T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance. Insect Biochemistry and Molecular Biology, 2014, 45:89-110.
doi: 10.1016/j.ibmb.2013.11.001 |
[11] |
SUN Y, XU L, CHEN Q, QIN W J, HUANG S J, JIANG Y, QIN H G. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of Chilo suppressalis (Walker). Pest Management Science, 2018, 74(6):1416-1423.
doi: 10.1002/ps.2018.74.issue-6 |
[12] |
XU L, ZHAO J, SUN Y, XU D J, XU G C, XU X L, ZHANG Y L, HUANG S J, HAN Z J, GU Z Y. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker). Pest Management Science, 2019, 75(3):718-725.
doi: 10.1002/ps.2019.75.issue-3 |
[13] |
ZHAO J, XU L, SUN Y, SONG P P, HAN Z J. UDP- glycosyltransferase genes in the striped rice stem borer, Chilo suppressalis (Walker), and their contribution to chlorantraniliprole resistance. International Journal of Molecular Sciences, 2019, 20(5):1064.
doi: 10.3390/ijms20051064 |
[14] | 李波, 韩兰芝, 彭于发. 二化螟人工饲养技术. 应用昆虫学报, 2015, 52(2):498-503. |
LI B, HAN L Z, PENG Y F. Development of a standardized artificial diet and rearing technique for the striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae). Chinese Journal of Applied Entomology, 2015, 52(2):498-503. (in Chinese) | |
[15] |
MENG X K, DONG F, QIAN K, MIAO L J, YANG X M, GE H C, WU Z L, WANG J J. Transcriptome analysis reveals global gene expression changes of Chilo suppressalis in response to sublethal dose of chlorantraniliprole. Chemosphere, 2019, 234:648-657.
doi: 10.1016/j.chemosphere.2019.06.129 |
[16] | 徐红星, 王国荣, 鲁艳辉, 杨亚军, 郑许松, 田俊策, 吕仲贤. 二化螟实时荧光定量PCR内参基因筛选和表达稳定性评价. 中国水稻科学, 2019, 33(1):75-84. |
XU H X, WANG G R, LU Y H, YANG Y J, ZHENG X S, TIAN J C, LÜ Z X. Screening reference genes and evaluating of their expression stability for qRT-PCR normalization in Chilo suppressalis (Lepidoptera: Pyralididae). Chinese Journal of Rice Science, 2019, 33(1):75-84. (in Chinese) | |
[17] | XU J, LU M X, CUI Y D, DU Y Z. Selection and evaluation of reference genes for expression analysis using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). Journal of Economic Entomology, 2017, 110(2):683-691. |
[18] |
DERMAUW W, ILIAS A, RIGA M, TSAGKARAKOU A, GRBIC M, TIRRY L, VAN LEEUWEN T, VONTAS J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 2012, 42(7):455-465.
doi: 10.1016/j.ibmb.2012.03.002 |
[19] |
LIAO C Y, XIA W K, FENG Y C, LI G, LIU H, DOU W, WANG J J. Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pesticide Biochemistry and Physiology, 2016, 132:72-80.
doi: 10.1016/j.pestbp.2015.11.002 |
[20] |
RIGA M, TSAKIRELI D, ILIAS A, MOROU E, MYRIDAKIS A, STEPHANOU E G, NAUEN R, DERMAUW W, VAN LEEUWEN T, PAINE M, VONTAS J. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochemistry and Molecular Biology, 2014, 46:43-53.
doi: 10.1016/j.ibmb.2014.01.006 |
[21] |
WANG X L, PUINEAN A M, O’REILLY A O, WILLIAMSON M S, SMELT C L C, MILLAR N S, WU Y D. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. Insect Biochemistry and Molecular Biology, 2017, 86:50-57.
doi: 10.1016/j.ibmb.2017.05.006 |
[22] | YIN Q, QIAN L, SONG P P, JIAN T Y, HAN Z J. Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in Plutella xylostella. Journal of Asia-Pacific Entomology, 2019, 22(1):189-193. |
[23] |
LUO L, SUN Y J, WU Y J. Abamectin resistance in Drosophila is related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways. Insect Biochemistry and Molecular Biology, 2013, 43(8):627-634.
doi: 10.1016/j.ibmb.2013.04.006 |
[24] |
XIANG M, ZHANG L, LU Y, TANG Q L, LIANG P, SHI X Y, SONG D L, GAO X W. A P-glycoprotein gene serves as a component of the protective mechanisms against 2-tridecanone and abamectin in Helicoverpa armigera. Gene, 2017, 627:63-71.
doi: 10.1016/j.gene.2017.06.010 |
[25] |
TIAN L X, YANG J Q, HOU W J, XU B Y, XIE W, WANG S L, ZHANG Y J, ZHOU X G, WU Q J. Molecular cloning and characterization of a P-glycoprotein from the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Molecular Sciences, 2013, 14(11):22891-22905.
doi: 10.3390/ijms141122891 |
[26] |
ENDERS L S, RAULT L C, HENG-MOSS T M, SIEGFRIED B D, MILLER N J. Transcriptional responses of soybean aphids to sublethal insecticide exposure. Insect Biochemistry and Molecular Biology, 2020, 118:103285.
doi: 10.1016/j.ibmb.2019.103285 |
[27] |
TERRIERE L C. Induction of detoxication enzymes in insects. Annual Review of Entomology, 1984, 29:71-88.
doi: 10.1146/ento.1984.29.issue-1 |
[28] |
HE C, LIANG J J, LIU S N, WANG S L, WU Q J, XIE W, ZHANG Y J. Changes in the expression of four ABC transporter genes in response to imidacloprid in Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 2019, 153:136-143.
doi: 10.1016/j.pestbp.2018.11.014 |
[29] |
JIN M H, LIAO C Y, CHAKRABARTY S, ZHENG W G, WU K M, XIAO Y T. Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm, Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2019, 154:46-59.
doi: 10.1016/j.pestbp.2018.12.007 |
[30] | MERZENDORFER H. ABC transporters and their role in protecting insects from pesticides and their metabolites//COHEN E. Target Receptors in the Control of Insect Pests: Part II. 2014, 46:1-72. |
[31] |
SUN H, PU J, CHEN F, WANG J D, HAN Z J. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper, Laodelphax striatellus. Insect Molecular Biology, 2017, 26(3):343-355.
doi: 10.1111/imb.2017.26.issue-3 |
[32] |
XU Z F, SHI L, PENG J F, SHEN G M, WEI P, WU Q, HE L. Analysis of the relationship between P-glycoprotein and abamectin resistance in Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology, 2016, 129:75-82.
doi: 10.1016/j.pestbp.2015.10.021 |
[33] |
ZUO Y Y, HUANG J L, WANG J, FENG Y, HAN T T, WU Y D, YANG Y H. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Insect Molecular Biology, 2018, 27(1):36-45.
doi: 10.1111/imb.12338 pmid: 28753233 |
[34] |
BAKSHI M, OELMÜLLER R. WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior, 2014, 9(2):e27700.
doi: 10.4161/psb.27700 |
[35] |
HU B, HU S Z, HUANG H, WEI Q, REN M M, HUANG S F, TIAN X R, SU J Y. Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology, 2019, 155:58-71.
doi: 10.1016/j.pestbp.2019.01.008 |
[36] |
WILDING C S. Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Current Opinion in Insect Science, 2018, 27:89-96.
doi: 10.1016/j.cois.2018.04.006 |
[37] |
CHEN L, ZHANG T T, GE M Y, LIU Y H, XING Y P, LIU L, LI F L, CHENG L G. The Nrf2-Keap1 pathway: A secret weapon against pesticide persecution in Drosophila Kc cells. Pesticide Biochemistry and Physiology, 2020, 164:47-57.
doi: 10.1016/j.pestbp.2019.12.008 |
[38] |
CHENG X Y, HU J H, LI J X, CHEN J, WANG H, MAO T T, XUE B, LI B. The silk gland damage and the transcriptional response to detoxifying enzymes-related genes of Bombyx mori under phoxim exposure. Chemosphere, 2018, 209:964-971.
doi: 10.1016/j.chemosphere.2018.06.167 |
[39] |
MAO T T, LI F C, FANG Y L, WANG H, CHEN J, LI M X, LU Z T, QU J W, LI J X, HU J H, CHENG X Y, NI M, LI B. Effects of chlorantraniliprole exposure on detoxification enzyme activities and detoxification-related gene expression in the fat body of the silkworm, Bombyx mori. Ecotoxicology and Environmental Safety, 2019, 176:58-63.
doi: 10.1016/j.ecoenv.2019.03.074 |
[40] | SHI L, SHI Y, LIU M F, ZHANG Y, LIAO X L. Transcription factor CncC potentially regulates the expression of multiple detoxification genes that mediate indoxacarb resistance in Spodoptera litura. Insect Science, 2021, https://doi.org/10.1111/1744-7917.12860. |
[1] | ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639. |
[2] | LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761. |
[3] | DU Yu,WANG Yong,MENG QingYong,ZHU JiangJiang,LIN YaQiu. Knockdown Goat KLF12 to Promote Subcutaneous Adipocytes Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(1): 184-196. |
[4] | LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727. |
[5] | ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109. |
[6] | LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964. |
[7] | WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917. |
[8] | ZHOU Rong-yan, WEI Yan-hui, XI Jian-zhong, LI Lan-hui, CHEN Hui, GAO Li-jie, ZHANG Zhen-hong. Transcriptional Activity of Goat PRNP Gene Promoter [J]. Scientia Agricultura Sinica, 2016, 49(10): 1990-1997. |
[9] | WANG Ya-xian, YANG Fan, WANG Hua-yan. Expression and Regulation of Sall4 and Screening Core Regulation Region of Sall4 Promoter [J]. Scientia Agricultura Sinica, 2016, 49(1): 176-185. |
[10] | XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078. |
[11] | LIU Hui, LI De-jun, DENG Zhi. Advances in Research of Transcriptional Regulatory Network in Response to Cold Stress in Plants [J]. Scientia Agricultura Sinica, 2014, 47(18): 3523-3533. |
[12] | ZHOU Min, LI Ying, SHEN Xu, XU Hai-Ping, ZHANG Cheng-Guang, ZHANG Xi-Quan. cDNA Cloning, Sequence Analysis and Tissue Specific Expression of Vasoactive Intestinal Peptide Type 1 Receptor (VIPR-1) in Quails [J]. Scientia Agricultura Sinica, 2012, 45(3): 529-539. |
[13] |
.
cDNA Cloning of lactoferin and Its Characteristics in the Tianzhu White Yak [J]. Scientia Agricultura Sinica, 2009, 42(3): 1030-1038 . |
|