Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (8): 1389-1399.doi: 10.3864/j.issn.0578-1752.2019.08.009

• PLANT PROTECTION • Previous Articles     Next Articles

Enzymatic Characteristics and Metabolic Analysis to Malathion and p,p’-DDT of LmGSTS2 from Locusta migratoria

MA Wen1,LIU Jiao2,ZHANG XueYao2,SHEN GuoHua3,QIN XueMei1(),ZHANG JianQin1()   

  1. 1 Modern Research Center For Traditional Chinese Medicine, Shanxi University, Taiyuan 030006
    2 Institute of Applied Biology, Shanxi University, Taiyuan 030006
    3 Shanxi Provincial Institute for Food and Drug Control, Taiyuan 030001
  • Received:2018-11-23 Accepted:2018-12-27 Online:2019-04-16 Published:2019-04-26
  • Contact: XueMei QIN,JianQin ZHANG E-mail:qinxm@sxu.edu.cn;jiangqinzh3@sxu.edu.cn

Abstract:

【Objective】 Glutathione S-transferase sigma2 (LmGSTS2) from Locusta migratoria was expressed in Escherichia coli and purified in order to analyze the enzymatic characteristics. The objective of this research was to study the effect of LmGSTS2 on malathion and p,p’-DDT metabolism. The detoxification ability of LmGSTS2 was assessed by using LmGSTs2 RNA interference (RNAi) and insecticide bioassay. It will provide a theoretical basis for management of locust resistance and rational insecticide application.【Method】LmGSTS2 was expressed in BL21 (DE3) cells and purified by Ni-NTA affinity chromatography. The activities of LmGSTS2 under different conditions (temperature and pH) were detected using CDNB as substrate. Under the optimal conditions (pH 7, 27℃), malathion and p,p’-DDT were incubated with purified LmGSTS2 protein. The metabolic detoxification ability of LmGSTS2 to malathion and p,p’-DDT was evaluated by ultra performance liquid chromatography (UPLC). Furthermore, 3 μg of dsLmGSTs2 was injected into 2nd instar nymph, RNAi efficiency of LmGSTs2 was tested at 24 h after dsLmGSTs2 injection and the sensitivity of L. migratoria to malathion was analyzed at 24 h after malathion exposure. 【Result】 LmGSTs2 was induced to express in E. coli. After SDS-PAGE detection, it was found that an extra band around 25 kD in the total protein of pET28a/BL21 (DE3)-LmGSTS2 after induction compared with pET28a/BL21(DE3) and uninduced pET28a/BL21(DE3)-LmGSTS2, which is regarded as the target protein size, indicating that LmGSTS2 was successfully expressed in the bacteria. The results of the study on the enzymatic characteristics of the purified LmGSTS2 protein showed that the optimum reaction pH was 6-8, the enzyme activity reached the peak at pH=7, the optimum reaction temperature was 25-30℃, and the activity was the highest at 27℃. LmGSTS2 was exposed to malathion and p,p’-DDT respectively at pH 7, 27℃. The results of UPLC showed that the peak area of malathion after incubation with LmGSTS2 decreased by 83.6%, 84.0% and 84.6%, respectively, compared with GSH+insecticide, active LmGSTS2+insecticide and inactive LmGSTS2+GSH+insecticide (P<0.05). However, there was no significant change in the peak area of p,p’-DDT compared with the control group (P>0.05), indicating that LmGSTS2 could metabolize malathion, but had no effect on the metabolism of p,p’-DDT. The role of LmGSTS2 in the detoxification process of malathion was further verified by RNA interference. The dsRNA of the target gene was injected into the 2nd instar nymph. After 24 h, the mRNA expression of LmGSTs2 was inhibited by 96%. The sensitivity test showed that compared with the control group, the sensitivity of L. migratoria to malathion increased after gene silencing, and the mortality increased from 29.9% to 45.2%, indicating that LmGSTS2 was involved in the detoxification process of malathion in L. migratoria. 【Conclusion】 LmGSTS2 was expressed and purified in vitro, and the optimal reaction condition of the enzyme was pH=7, 27℃ using CDNB as substrate. In vivo and in vitro assays for malathion metabolism showed that LmGSTS2 was involved in the metabolic detoxification in L. migratoria. In vitro assay for p,p’-DDT metabolism showed that LmGSTS2 was not involved in the metabolism of p,p’-DDT.

Key words: Locusta migratoria, insecticide, glutathione-S-transferases, ultra performance liquid chromatography (UPLC), RNA interference (RNAi)

Table 1

The detection conditions of UPLC for insecticides"

杀虫剂
Insecticide
流动相
Mobile phase (A%)
洗脱时间
Elution time (min)
检测波长
Detection wavelength (nm)
上样量
Sample application (μL)
柱温
Temperature (℃)
马拉硫磷Malathion 80 8 210 2 35
p,p’-DDT 92 10 232 2 35

Table 2

The sequences of dsRNA and RT-qPCR primers of LmGSTs2"

引物 Primer 引物序列Sequence of primer (5′-3′)
dsLmGSTs2F taatacgactcactatagggGAAGAAGACATGGCAGTCTC
dsLmGSTs2R taatacgactcactatagggCTGGTATTTCAAGTACAGTACGT
RT-LmGSTs2F ATGGCGCCAAAATTCAAGTTAC
RT-LmGSTs2R TCACAGAGGCCACTGCTGTAGA

Fig. 1

Expression and purification of LmGSTS2 M:10—180 kD蛋白分子量标准 10-180 kD protein molecular weight standards。A:LmGSTS2的表达 Expression of LmGSTS2。1:BL21(DE3);2:pET28a/BL21(DE3);3:未诱导pET28a/BL21(DE3)-LmGSTS2 pET28a/BL21(DE3)-LmGSTS2 before induction;4:诱导后的pET28a/BL21(DE3)-LmGSTS2 pET28a/BL21(DE3)-LmGSTS2 after induction。B:LmGSTS2的纯化 Purification of LmGSTS2。 1:未纯化的LmGSTS2总蛋白Total protein of LmGSTS2 before purification;2:过柱穿透液 Flow through fraction;3—12:不同浓度咪唑缓冲液洗脱组分Elution components with different concentrations of imidazole buffer"

Fig. 2

Activity changes of LmGSTS2 under different conditions"

Fig. 3

Chromatograms of malathion metabolized by LmGSTS2 A: Active LmGSTS2+GSH+malathion; B: GSH+malathion; C: Active LmGSTS2+ malathion; D: Inactive LmGSTS2+GSH+malathion"

Table 3

Chromatographic peak area of insecticides in different groups (mAu×min)"

A B C D
马拉硫磷峰面积 Peak area of malathion 34.98±4.20 213.40±31.80* 218.47±15.19* 226.76±19.16*
p,p’-DDT峰面积 Peak area of p,p’-DDT 177.80±14.88 169.34±8.95 193.07±7.19 178.57±13.63

Fig. 4

Chromatograms of p,p’-DDT metabolized by LmGSTS2 A: Active LmGSTS2+GSH+ p,p’-DDT; B: GSH+ p,p’-DDT; C: Active LmGSTS2+ p,p’-DDT; D: Inactive LmGSTS2+GSH+ p,p’-DDT"

Fig. 5

Silencing efficiency and L. migratoria sensitivity to malathion after LmGSTs2 expression suppression A:dsLmGSTs2沉默效率 Silencing efficiency of dsLmGSTs2。**: P<0.01 (t-test);B:飞蝗对马拉硫磷敏感度分析 Sensitivity of L. migratoria to malathion。*: P<0.05 (t-test)"

[1] 张龙 . 国内外蝗害治理技术现状与展望. 应用昆虫学报, 2011,48(4):804-810.
ZHANG L . Advances and prospects of strategies and tactics of locust and grasshopper management. Chinese Journal of Applied Entomology, 2011,48(4):804-810. (in Chinese)
[2] NAQQASH M N, GÖKÇE A, BAKHSH A, SALIM M . Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research, 2016,115(4):1363-1373.
doi: 10.1007/s00436-015-4898-9
[3] YANG M L, ZHANG J Z, ZHU K Y, XUAN T, LIU X J, GUO Y P, MA E B . Mechanisms of organophosphate resistance in a field population of oriental migratory locust,Locusta migratoria manilensis(Meyen). Archives of Insect Biochemistry and Physiology, 2009,71(1):3-15.
[4] 马雯, 薛晓利, 秦雪梅, 张建琴 . 中药材农药残留及脱除方法研究进展. 中草药, 2018,49(3):745-753.
MA W, XUE X L, QIN X M, ZHANG J Q . Research progress on pesticide residues in Chinese medicinal materials and pesticide removal methods. Chinese Traditional and Herbal Drugs, 2018,49(3):745-753. (in Chinese)
[5] CHEN X D, GILL T A, NGUYEN C D, KILLINY N, PELZ- STELINSKI K S, STELINSKI L L . Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid. Insect Science, 2018, doi: 10.1111/1744-7917.12582.
[6] 杨海灵, 聂力嘉, 朱圣庚, 周先碗 . 谷胱甘肽硫转移酶结构与功能研究进展. 成都大学学报(自然科学版), 2006,25(1):19-24.
YANG H L, NIE L J, ZHU S G, ZHOU X W . Structure and catalytic mechanism of the glutathione transferases. Journal of Chengdu University (Natural Science), 2006,25(1):19-24. (in Chinese)
[7] ZHANG X Y, WANG J X, ZHANG M, QIN G H, LI D Q, ZHU K Y, MA E B, ZHANG J Z . Molecular cloning, characterization and positively selected sites of the glutathione-S-transferase family from Locusta migratoria. PLoS ONE, 2014,9(12):e114776.
[8] 余泉友 . 家蚕谷胱甘肽-S-转移酶基因的功能研究[D]. 重庆: 西南大学, 2008.
YU Q Y . Study on the glutathione S-transferase superfamily in the silkworm, Bombyx mori[D]. Chongqing: Southwest University, 2008. ( in Chinese)
[9] 宣涛 . 东亚飞蝗谷胱甘肽S-转移酶基因克隆、基因表达及蛋白纯化[D]. 太原: 山西大学, 2009.
XUAN T . Gene clone, gene expression and protein purification of glutathione S-transferase in Locusta migratoria manilensis (Meyen)[D]. Taiyuan: Shanxi University, 2009. ( in Chinese)
[10] 黄菁, 乔传令 . 昆虫解毒酶解毒机理及其在农药污染治理中的应用. 农业环境保护, 2002,21(3):285-287.
HUANG J, QIAO C L . Mechanism and application of insect detoxification enzyme in bioremediation of pesticide contamination. Agro-Environmental Protection, 2002,21(3):285-287. (in Chinese)
[11] ENAYATI A A, RANSON H, HEMINGWAY J . Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 2005,14(1):3-8.
doi: 10.1111/imb.2005.14.issue-1
[12] 房守敏 . 昆虫谷胱甘肽-S-转移酶的基因组学研究及其介导的抗药性. 蚕学通讯, 2010,30(4):28-35.
FANG S M . Genomic studies of glutathione S-transferase in insects and insecticide resistance mediated by it. Newsletter of Sericultural Science, 2010,30(4):28-35. (in Chinese)
[13] 张学尧, 王建新, 郭艳琼, 张建珍, 马恩波 . 飞蝗谷胱甘肽S-转移酶基因克隆、序列分析及表达特征. 昆虫学报, 2012,55(5):520-526.
ZHANG X Y, WANG J X, GUO Y Q, ZHANG J Z, MA E B . Cloning, sequence analysis and expression profiling of glutathione S-transferase omega 1 gene from Locusta migratoria(Orthoptera: Acridoidea). Acta Entomologica Sinica, 2012,55(5):520-526. (in Chinese)
[14] XU Z B, ZOU X P, ZHANG N, FENG Q L, ZHENG S C . Detoxification of insecticides, allechemicals and heavy metals by glutathione S-transferase SlGSTE1 in the gut of Spodoptera litura. Insect Science, 2015,22(4):503-511.
[15] MATZKIN L M . The molecular basis of host adaptation in cactophilic Drosophila: molecular evolution of a glutathione S-transferase gene(GstD1) in Drosophila mojavensis. Genetics, 2008,178(2):1073-1083.
[16] HAN J B, LI G Q, WAN P J, ZHU T T, MENG Q W . Identification of glutathione S-transferase genes inLeptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pesticide Biochemistry and Physiology, 2016,133:26-34.
[17] RIVERON J M, YUNTA C, IBRAHIM S S, DJOUAKA R, IRVING H, MENZE B D, ISMAIL H M, HEMINGWAY J, RANSON H, ALBERT A, WONDJI C S . A single mutation in theGSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biology, 2014,15(2):R27.
[18] LUMJUAN N, RAJATILEKA S, CHANGSOM D, WICHEER J, LEELAPAT P, PRAPANTHADARA L A, SOMBOON P, LYCETT G, RANSON H . The role of theAedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 2011,41(3):203-209.
[19] QIN G H, JIA M, LIU T, XUAN T, ZHU K Y, GUO Y P, MA E B, ZHANG J Z . Identification and characterization of ten glutathione S-transferase genes from oriental migratory locust, Locusta migratoria manilensis(Meyen). Pest Management Science, 2011,67(6):697-704.
[20] QIN G H, JIA M, LIU T, ZHANG X Y, GUO Y P, ZHU K Y, MA E B, ZHANG J Z . Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS ONE, 2013,8(3):e58410.
[21] QIN G H, JIA M, LIU T, ZHANG X Y, GUO Y P, ZHU K Y, MA E B, ZHANG J Z . Heterologous expression and characterization of a sigma glutathione S-transferase involved in carbaryl detoxification from oriental migratory locust, Locusta migratoria manilensis (Meyen). Journal of Insect Physiology, 2012,58(2):220-227.
[22] 王建新 . 飞蝗谷胱甘肽硫转移酶基因克隆及表达特征[D]. 太原: 山西大学, 2013.
WANG J X . Gene clone and characterization analysis of glutathione S-transferase from Locusta migratoria[D]. Taiyuan: Shanxi University, 2013. ( in Chinese)
[23] HABIG W H, PABST M J, JAKOBY W B . Glutathione S-transferases.The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 1974,249(22):7130-7139.
[24] WAN H, ZHAN S, XIA X, XU P, YOU H, JIN B R, LI J . Identification and functional characterization of an epsilon glutathione S-transferase from the beet armyworm(Spodoptera exigua). Pesticide Biochemistry and Physiology, 2016,132:81-88.
[25] LIAO C Y, XIA W K, FENG Y C, LI G, LIU H, DOU W, WANG J J . Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri( McGregor). Pesticide Biochemistry and Physiology, 2016,132:72-80.
[26] 李帅, 苏丽, 李伯辽, 李怡萍, 李广伟, 仵均祥 . 梨小食心虫谷胱甘肽S-转移酶GmolGST6的基因克隆、原核表达和酶学特征. 昆虫学报, 2018,61(4):398-409.
LI S, SU L, LI B L, LI Y P, LI G W, WU J X . cDNA cloning, prokaryotic expression and enzymatic characteristics of the glutathione S-transferase GmolGST6 in Grapholita molesta(Lepidoptera: Tortricidae). Acta Entomologica Sinica, 2018,61(4):398-409. (in Chinese)
[27] HIROWATARI A, CHEN Z, MITA K, YAMAMOTO K . Enzymatic characterization of two epsilon-class glutathione S-transferases of Spodoptera litura. Archives of Insect Biochemistry and Physiology, 2018,97(3):e21443.
[28] 王岙, 高茜, 王晓丽, 徐自力, 李鱼 . 高效液相色谱法同时测定水体中马拉硫磷和阿特拉津. 吉林大学学报(理学版), 2008,46(1):157-161.
WANG A, GAO Q, WANG X L, XU Z L, LI Y . Simultaneous determination of malathion and atrazine in water by high performance liquid chromatography. Journal of Jilin University (Science Edition), 2008,46(1):157-161. (in Chinese)
[29] SAAFAN A E, AZMY A F, AMIN M A, AHMED S H, ESSAM T M . Isolation and characterization of two malathion-degradingPseudomonas sp. in Egypt. African Journal of Biotechnology, 2016,15(31):1661-1672.
[30] TONG Z, WU Y C, LIU Q Q, SHI Y H, ZHOU L J, LIU Z Y, YU L S, CAO H Q . Multi-residue analysis of pesticide residues in crude pollens by UPLC-MS/MS. Molecules, 2016,21(12):1652.
doi: 10.3390/molecules21121652
[31] GIL GARCÍA M D, MARTÍNEZ GALERA M, UCLÉS S, LOZANO A, FERNÁNDEZ-ALBA A R . Ultrasound-assisted extraction based on QuEChERS of pesticide residues in honeybees and determination by LC-MS/MS and GC-MS/MS. Analytical and Bioanalytical Chemistry, 2018,410(21):5195-5210.
doi: 10.1007/s00216-018-1167-7
[32] YAMAMOTO K, YAMADA N . Identification of a diazinon- metabolizing glutathione S-transferase in the silkworm, Bombyx mori. Scientific Reports, 2016,6:30073.
[33] PAVLIDI N, KHALIGHI M, MYRIDAKIS A, DERMAUW W, WYBOUW N, TSAKIRELI D, STEPHANOU E G, LABROU N E, VONTAS J, VAN LEEUWEN T . A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. Insect Biochemistry and Molecular Biology, 2017,80:101-115.
[34] NAKKA S, GODAR A S, THOMPSON C R, PETERSON D E, JUGULAM M . Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth(Amaranthus palmeri). Pest Management Science, 2017,73(11):2236-2243.
[35] WANG Y, QIU L, RANSON H, LUMJUAN N, HEMINGWAY J, SETZER W N, MEEHAN EJ, CHEN L . Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT- detoxifying activity. Journal of Structural Biology, 2008,164(2):228-235.
[36] ARAVINDAN V, MUTHUKUMARAVEL S, GUNASEKARAN K . Interaction affinity of Delta and Epsilon class glutathione-s- transferases (GSTs) to bind with DDT for detoxification and conferring resistance inAnopheles gambiae, a malaria vector. Journal of Vector Borne Diseases, 2014,51(1):8-15.
[37] YAMAMOTO K, NAGAOKA S, BANNO Y, ASO Y . Biochemical properties of an omega-class glutathione S-transferase of the silkmoth,Bombyx mori. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009,149(4):461-467.
[38] LUMJUAN N, MCCARROLL L, PRAPANTHADARA L A, HEMINGWAY J, RANSON H . Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector,Aedes aegypti. Insect Biochemistry and Molecular Biology, 2005,35(8):861-871.
doi: 10.1016/j.ibmb.2005.03.008
[39] GONZALEZ D, FRAICHARD S, GRASSEIN P, DELARUE P, SENET P, NICOLAÏ A, CHAVANNE E, MUCHER E, ARTUR Y, FERVEUR J F, HEYDEL J M, BRIAND L, NEIERS F . Characterization of aDrosophila glutathione transferase involved in isothiocyanate detoxification. Insect Biochemistry and Molecular Biology, 2018,95:33-43.
[40] LOW W Y, FEIL S C, NG H L, GORMAN M A, MORTON C J, PYKE J, MCCONVILLE M J, BIERI M, MOK Y F, ROBIN C, GOOLEY P R, PARKER M W, BATTERHAM P . Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1. Journal of Molecular Biology, 2010,399(3):358-366.
[1] WANG ShuaiYu,ZHANG ZiTeng,XIE AiTing,DONG Jie,YANG JianGuo,ZHANG AiHuan. Mutation Analysis of Insecticide Target Genes in Populations of Spodoptera frugiperda in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3948-3959.
[2] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[3] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[4] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[5] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[6] MAO LianGang,GUO MingCheng,YUAN ShanKui,ZHANG Lan,JIANG HongYun,LIU XinGang. Analysis on the Status of Insecticides Registered on Small Insects of Fruits and Vegetables in China Based on Recommended Dosage [J]. Scientia Agricultura Sinica, 2022, 55(11): 2161-2173.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] GE XinZhu,SHI YuXing,WANG ShaSha,LIU ZhiHui,CAI WenJie,ZHOU Min,WANG ShiGui,TANG Bin. Sequence Analysis of Harmonia axyridis Pyruvate Kinase Gene and Its Regulation of Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2021, 54(23): 5021-5031.
[9] HE YunChuan,WANG XinPu,HONG Bo,ZHANG TingTing,ZHOU XueFei,JIA YanXia. Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults [J]. Scientia Agricultura Sinica, 2021, 54(2): 324-333.
[10] MENG XiangKun,WU ZhaoLu,YANG XueMei,GUAN DaoJie,WANG JianJun. Cloning and Analysis of P-glycoprotein Gene and Its Transcriptional Response to Insecticide in Chilo suppressalis [J]. Scientia Agricultura Sinica, 2021, 54(19): 4121-4131.
[11] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[12] LIU XiaoJian,GUO Jun,ZHANG XueYao,MA EnBo,ZHANG JianZhen. Molecular Characteristics and Function Analysis of Nuclear Receptor Gene LmE75 in Locusta migratoria [J]. Scientia Agricultura Sinica, 2020, 53(11): 2219-2231.
[13] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[14] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[15] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!