Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 568-578.doi: 10.3864/j.issn.0578-1752.2019.03.017

• RESEARCH NOTES • Previous Articles    

Genetic Diversity of the Prunus salicina L. from Different Sources and Their Related Species

WEI Xiao,ZHANG QiuPing(),LIU Ning,ZHANG YuPing,XU Ming,LIU Shuo,ZHANG YuJun,MA XiaoXue,LIU WeiSheng()   

  1. Liaoning Institute of Pomology, Yingkou 115009, Liaoning
  • Received:2018-09-28 Accepted:2018-12-10 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 There are abundant Japanese plums (Prunus salicina L.) germplasm resources in China, which are distributed widely in geography. The better understanding of the diversity, the genetic structure and the relationship between sympatric related species, can be helpful to clarify the process of domestication of the cultivated groups of plum and the role of the related species, also further contribute to the in-depth exploration of local resources and enhance the fruit quality in breeding. 【Method】 The 22 pairs of SSR markers covering the entire genome were used to scan 48 samples, including 38 accessions of P. salicina from different sources and 10 accessions of the variation types or related species, by high-throughput fluorescence capillary electrophoresis platform. The polymorphism of 22 SSR loci and genetic diversity of 48 samples were evaluated via the software GenAlEx 6.41, and the dendrogram of these accessions was constructed by using the NTSYS-pc Version 2.1 program. The STRUCTURE 2.2 software based on Bayesian clustering method was used to analyze the genetic mixture of samples and to perform an assignment test on the studied individuals. 【Result】 The detected alleles of 22 SSR primers ranged from 3 to 21, with an average of 13.54 alleles for each locus. A total of 298 alleles were detected in these accessions, 51.8% of which were rare alleles. The values of average effective allele (Ne), average Shannon's diversity index (I), observation heterozygosity (Ho) and expectation heterozygosity (He) indicated that the diversity was the highest in the southern population, followed by the northeast population, which also indicated that the diversity of the Prunus simonii was lower than that of northern China. The analysis of molecular variance (AMOVA) showed that 69% of the diversity in P. salicina was within the population, and only 31% was among populations. On the basis of the data comparisons of the genetic differentiation coefficient and Nei's genetic distance, the results showed that there were extremely significant genetic differentiation and appropriate genes mixture among different geographical populations. The results of cluster analysis implied that the breeding cultivars abroad were closely related to the local accessions in southern China, and the northern cultivars population was similar with P. simonii, the northeast cultivars population had close relationship with Prunus ussuriensis. The genetic structure analysis indicated that the accessions in P. salicina were divided into four types: northern cultivars population, northeast cultivars population, southern cultivars of small fruit and crisp meat population, and southern cultivars of large fruit population (including foreign breeding cultivars). 【Conclusion】 The diversity of the southern varieties were the most abundant in the P. salicina, followed by that of Northeast China varieties, foreign varieties and Northern varieties. In order to enhance the adaptability, the northeast population might be introgressed with P. ussuriensis. P. simonii might be a special type which was highly domesticated from Chinese plum in Northern China, and it had high heterozygosis owing to asexual reproduction by grafting. The large fruit accessions in Jiangsu and Zhejiang regions played an important role in modern breeding varieties abroad.

Key words: Prunus salicina L., genetic diversity, population structure, gene flow

Table 1

Information of materials in this study"

居群
Population
编号
Code
种质名称
Accessions
来源
Origin
类群
Group
编号
Code
种质名称
Name
来源
Origin
华北品种(HB)
Northern
varieties
1 香蕉李
Xiangjiaoli
北京
Beijing
25 连平三华李
Lianpingsanhuali
广东
Guangdong
2 帅李
Shuaili
山东
Shandong
26 从化三华李
Conghuasanhuali
广东
Guangdong
3 昌黎晚红
Changliwanhong
河北
Hebei
27 长圹三华李
Changkuangsanhuali
广东
Guangdong
4 玉皇李
Yuhuangli
甘肃
Gansu
28 上海芙蓉李
Shanghaifurongli
上海
Shanghai
5 平顶香
Pingdingxiang
山东
Shandong
29 永泰芙蓉李
Yongtaifurongli
福建
Fujian
东北品种
(DB)
Northeast
varieties
6 康什
Kangshi
吉林
Jilin
30 福建芙蓉李
Fujianfurongli
福建
Fujian
7 奎丰
Kuifeng
东北品种实生
Seedling of northeast varieties
31 福州青奈
Fuzhouqingnai
福建
Fujian
8 矮甜李Aitianli 黑龙江Heilongjiang 32 银醉李Yinzuili 江苏Jiangsu
9 黄干核Huangganhe 吉林Jilin 33 天目蜜李Tianmumili 浙江Zhejiang
10 延吉李Yanjili 吉林Jilin 国外品种(EX)
Foreign
varieties
34 安哥诺Angeleno 美国USA
11 矮化李Aihuali 吉林Jilin 35 百班克Baibanke 美国USA
12 矬李Cuoli 黑龙江Heilongjiang 36 布尔班克Burbank 美国USA
13 小离核Xiaolihe 吉林Jilin 37 黑宝石Black Diamond 美国USA
14 小黄李Xiaohuangli 黑龙江Heilongjiang 38 幸运Fortune 美国USA
15 大叶伏李Dayefuli 辽宁Liaoning 杏李(XL) 39 扁艳Bianyan 山东Shandong
16 大叶砧木
Dayezhenmu
小黄李实生
Seedling of Xiaohuangli
P. simonii 40 熊岳香扁
Xiongyuexiangbian
辽宁
Liaoning
南方品种
(NF)
Southern
varieties
17 青冬李
Qingdongli
四川
Sichuan
41 昌黎香蕉李
Changlixiangjiaoli
河北
Hebei
18 红冬李Hongdongli 四川Sichuan 42 黄牛心李Huangniuxinli 不详 Unknown
19 巴塘李Batangli 四川Sichuan 43 昌黎香扁Changlixiangbian 河北Hebei
20 庐山李Lushanli 江西 Jiangxi 乌苏里李(WU)
P. ussuriensis
44 海底亚克夫 Haidiyakefu 黑龙江Heilongjiang
21 竹丝李Zhusili 广东Guangdong 45 乌苏里李 Wusulili 黑龙江Heilongjiang
22 西瓜李
Xiguali
江西
Jiangxi
樱桃李
P. cerasifera
46 新疆樱桃李
Xinjiangyingtaoli
新疆
Xinjiang
23 铜盘奈
Tongpannai
广东
Guangdong
美洲李
P. amercana
47 锦西牛心李
Jinxiniuxinli
美国
USA
24 利源三华李
Liyuansanhuali
广东
Guangdong
普通杏
P. armeniaca
48 金妈妈
Jinmama
甘肃
Gansu

Table 2

Diversity index of SSRs"

位点 Locus 连锁群LG 位置Sites Ao Ne I Ho He F Nm
SSRPACITA5[17] G1 13.6 7 3.207 1.429 0.667 0.688 0.031 0.388
EPDCU5100[18] G1 14.5 6 3.734 1.406 0.729 0.732 0.004 0.363
PGS1.24[19] G1 58.4 19 9.125 2.473 0.667 0.890 0.251 0.374
BPPCT028[19] G1 60.7 10 6.055 1.990 0.688 0.835 0.177 0.387
pchgms1[20] G1 9 4.571 1.730 0.792 0.781 -0.013 0.461
PceGA025[21] G1 77.4 21 12.031 2.696 0.500 0.917 0.455 0.412
CPSCT039[17] G2 35.1 15 8.678 2.371 0.958 0.885 -0.083 0.449
CPDCT028[22] G2 48.6 21 9.521 2.583 0.813 0.895 0.092 0.376
CPDCT016[23] G3 28.4 21 11.157 2.656 0.833 0.910 0.085 0.299
CPDCT045[18] G3 46.4 14 7.211 2.231 0.833 0.861 0.033 0.519
CPSCT034[22] G4 1.8 13 4.347 1.854 0.708 0.770 0.080 0.455
CPPCT030[23] G4 16.8 16 7.189 2.273 0.688 0.861 0.201 0.326
CPSCT011[22] G5 5.2 19 9.253 2.559 0.667 0.892 0.253 0.529
PGS1.21[19] G5 26.7 8 3.050 1.330 0.500 0.672 0.256 0.212
CPSCT004[23] G5 30.7 5 3.504 1.399 0.833 0.715 -0.166 1.502
CPDCT027[18] G5 3 1.889 0.703 0.333 0.471 0.292 0.233
BPPCT025[21] G6 56.4 18 5.654 2.176 0.583 0.823 0.291 0.324
BPPCT029[24] G6 80.2 16 10.355 2.500 0.708 0.903 0.216 0.426
CPPCT006[22] G7 9.5 17 8.727 2.413 0.875 0.885 0.012 0.523
pchcms4[21] G7 29.6 7 2.503 1.170 0.500 0.600 0.167 0.313
CPSCT018[22] G8 0 19 8.471 2.414 0.750 0.882 0.150 0.382
CPDCT008[24] G8 14 3.266 1.695 0.458 0.694 0.339 0.158
整体Whole 298 143.5 2.002 0.686 0.798 0.142 0.428

Table 3

Diversity index of different populations in P. salicina"

居群 Population Ao Ne I Ho He F
HB 77 2.743 0.977 0.645 0.527 -0.203
DB 141 4.035 1.509 0.686 0.712 0.024
NF 191 5.141 1.709 0.682 0.736 0.074
EX 83 2.874 1.129 0.718 0.624 -0.165
XL 39 1.773 0.536 0.773 0.386 -1.000

Table 4

Pairwise Nei’s Genetic Distance (above diagonal) and coefficient of genetic differentiation Fst (below diagonal) among different populations"

HB DB NF EX XL WU
HB - 0.590 0.706 0.564 0.190 1.492
DB 0.126 - 0.627 0.627 0.767 0.412
NF 0.146 0.089 - 0.366 0.916 1.313
EX 0.140 0.105 0.068 - 0.779 1.529
XL 0.086 0.189 0.207 0.214 - 1.622
WU 0.288 0.116 0.216 0.256 0.365 -

Fig. 1

A dendrogram of 48 accessions obtained by UPGMA cluster analysis based on SSR markers"

Fig. 2

Reasonable groups number of tested accessions inferred by mapping method"

Fig. 3

The genetic structure of the plum accessions"

[1] REALES A, SARGENT D J, TOBUT K R, RIVERA D . Phylogenetics of Eurasian plums,Prunus L. section Prunus(Rosaceae),according to coding and non-coding chloroplast DNA sequences. Tree Genetic Genomes, 2010,6:37-45.
doi: 10.1007/s11295-009-0226-9
[2] 张加延, 周恩 . 中国果树志·李卷 .北京: 中国林业出版社, 1998.
ZHANG J Y, ZHOU E. China Fruit-Plant Monographs,Plum Flora. Beijing: China Forestry Press, 1998. ( in Chinese)
[3] 阮颖, 周朴华, 刘春林 . 九种李属植物的RAPD亲缘关系分析. 园艺学报, 2002,29(3):218-223.
RUAN Y, ZHOU P H, LIU C L . Phylogenetic relationship among nine Prunus species based on random amplified polymorphic DNA. Acta Horticulturae Sinica, 2002,29(3):218-223. (in Chinese)
[4] LIU W S, LIU D C, FENG C J, ZHANG A M, LI S H . Genetic diversity and phylogenetic relationships in plum germplasm resources revealed by RAPD markers. Journal of Horticultural Science & Biotechnology, 2006,81(2):242-250.
doi: 10.1080/14620316.2006.11512057
[5] LIU W S, LIU D C, ZHANG A M, FENG C J, YANG J M, YOON J, LI S H . Genetic diversity and phylogenetic relationships among plum germplasm resources in China assessed with inter-simple sequence repeat markers. Journal of the American Society for Horticultural Science, 2007,132(5):619-628.
doi: 10.1007/s10658-007-9180-2
[6] BRETSCHNEIDER E . History of European Botanical Discoveries in China, Vol 2. Sampson Low, London, 1898:827-833.
[7] FAUST M, SURANYI D . Origin and dissemination of plums. Horticultural Reviews, 1999,23:179-231.
doi: 10.1002/9780470650585.ch10
[8] 郭忠仁 . 我国南方中国李种质资源收集和利用研究[D]. 南京: 南京农业大学, 2006.
GUO Z R . Collection and utilization of Prunus salicina germplasm resource in South China[D]. Nanjing: Nanjing Agricultural University, 2006. ( in Chinese)
[9] 乔玉山 . 中国李RAPD、ISSR和SSR反应体系的建立及其品种资源遗传多样性分析[D]. 南京: 南京农业大学, 2003.
QIAO Y S . Establishment of RAPD, ISSR and SSR reactions system and analysis of genetic diversity of Japanese plum cultivars[D]. Nanjing: Nanjing Agricultural University, 2003. ( in Chinese)
[10] 刘威生 . 李种质资源遗传多样性及主要种间亲缘关系的研究[D]. 北京: 中国农业大学, 2005.
LIU W S . Studies on the genetic diversity among plum germplasm resources and the phylogenetic relationships of main plum species[D]. Beijing: China Agricultural University, 2005. ( in Chinese)
[11] 左力辉, 韩志校, 梁海永, 杨敏生 . 不同产地中国李资源遗传多样性SSR分析. 园艺学报, 2015,42(1):111-118.
ZUO L H, HAN Z X, LIANG H Y, YANG M S . Analysis of genetic diversity of Prunus salicina from different producing areas by SSR markers. Acta Horticulturae Sinica, 2015,42(1):111-118. (in Chinese)
[12] 陈圣林, 王会娜, 孙颖, 陈显, 李建安 . 三峡库区14个李品种遗传多样性的ISSR分析. 中南林业科技大学学报, 2012,32(9):130-134.
CHEN S L, WANG H N, SUN Y, CHEN X, LI J A . ISSR analysis on genetic diversity of fourteen Prunus varieties in three gorges reservoir area. Journal of Central South University of Forestry & Technology, 2012,32(9):130-134. (in Chinese)
[13] TOPP B L, RUSSELL D M, NEUMULLER M, DALBO M, LIU W S .Plum//BADENES M L,BYRNE D H . Fruit Breeding. Media: Springer Science Business, 2012: 571-621.
[14] 章秋平, 刘威生, 郁香荷, 刘宁, 张玉萍, 孙猛, 徐铭 . 基于优化LDSS法的中国李(Prunus salicina)初级核心种质构建. 果树学报, 2011,28(4):617-623.
ZHANG Q P, LIU W S, YU X H, LIU N, ZHANG Y P, SUN M, XU M . Establishment and evaluation of primary core collection of Chinese plum (Prunus salicina L.) germplasm. Journal of Fruit Science, 2011,28(4):617-623. (in Chinese)
[15] DOYLE J J, DOYLE J L . Isolation of plant DNA from fresh tissue. Focus, 1990,12:13-15.
[16] SCHUELKE M . An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 2000,18:233-234.
[17] SOSINSKI B, GANNAVARAPU M, HAGER L D, BECK L E, KING G J, RYDER C D, RAJAPAKSE S, BAIRD W V, BALLARD R E, ABBOTT A G . Characterization of microsatellite markers in peach [Prunus persica(L.) Batsch]. Theoretical and Applied Genetics, 2000,101(3):421-428.
doi: 10.1007/s001220051499
[18] DIRLEWANGER E, GRAZIANO E, JOOBEUR T, GARRIGA- CALDERÉ F, COSSON P, HOWAD W , ARÚS P. Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(26):9891-9896.
[19] SORIANO J M, DOMINGO M L, ZURIAGA E, ROMERO C, BADENES M L, ZHEBENTYAYEVA T, ABBOTT A G . Identification of simple sequence repeat markers tightly linked to plum pox virus resistance in apricot. Molecular Breeding, 2012,30(2):1017-1026.
doi: 10.1007/s11032-011-9685-4
[20] LOPES M S, SEFC K M, LAIMER M , DA CÂMARA M A . Identification of microsatellite loci in apricot. Molecular Ecology Notes, 2002,2(1):24-26.
doi: 10.1046/j.1471-8286.2002.00132.x
[21] DIRLEWANGER E, COSSON P, TAVAUD M, ARANZANA M J, POIZAT C, ZANETTO A . Development of microsatellite markers in peach [Prunus persica(L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry, 2002,105(1):127-138.
[22] MNEJJA M, GARCIA-MAS J, HOWAD W, BADENES M L ,ARÚS P . Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Molecular Ecology Notes, 2004,4(2):163-166.
doi: 10.1111/j.1471-8286.2004.00603.x
[23] MNEJJA M, GARCIA-MAS J, HOWAD W ,ARÚS P . Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Molecular Ecology Notes, 2005,5(3):531-535.
doi: 10.1111/j.1471-8286.2005.00977.x
[24] ARANZANA M J, GARCIA-MAS J, CARBÓ J , ARÚS P . Development and variability analysis of microsatellite markers in peach. Plant Breeding, 2002,121:87-92.
doi: 10.1046/j.1439-0523.2002.00656.x
[25] 王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航 . 中国328个玉米品种(组合)SSR标记遗传多样性分析. 中国农业科学, 2014,47(5):856-864.
WANG F G, TIAN H L, ZHAO J R, WANG L, YI H M, SONG W, GAO Y Q, YANG G H . Genetic diversity analysis of 328 maize varieties (hybridized combinations) using SSR markers. Scientia Agricultura Sinica, 2014,47(5):856-864. (in Chinese)
[26] PEAKALL R, SMOUSE P E . GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006,6(1):288-295.
doi: 10.1111/j.1471-8286.2005.01155.x
[27] PRITCHARD J K, STEPHENS M, DONNELLY P J . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959.
[28] EVANNO G, REGNAUT S, GOUDET J . Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005,14:2611-2620.
[29] EARL D A, VONHOLDT B M . Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resource, 2012,4:359-361.
[30] 徐刚标 . 植物群体遗传学. 北京: 科学出版社, 2009.
XU G B . Plant Population Genetics. Beijing: Science Press, 2009. ( in Chinese)
[31] 孙萍, 林贤锐, 沈建生 . 基于SSR标记的李种质资源遗传多样性研究. 江西农业学报, 2017,29(2):33-39.
SUN P, LIN X R, SHEN J S . Study on genetic diversity of plum germplasm resources based on SSR markers. Acta Agriculturae Jiangxi, 2017,29(2):33-39. (in Chinese)
[32] CARRASCO B ,DÍAZ C,MOYA M,GEBAUER M,GARCÍA- GONZÁLEZ R . Genetic characterization of Japanese plum cultivars ( Prunus salicina) using SSR and ISSR molecular markers. Ciencia e Investigación Agraria, 2012,39(3):533-543.
[33] 陈红, 杨迤然 . 贵州李资源遗传多样性及亲缘关系的ISSR分析. 果树学报, 2014,31(2):175-180.
CHEN H, YANG Y R . Genetic diversity and relationship of plum resources in Guizhou analyzed by ISSR markers. Journal of Fruit Science, 2014,31(2):175-180. (in Chinese)
[34] 郁香荷, 章秋平, 刘威生, 孙猛, 刘宁, 张玉萍, 徐铭 . 中国李种质资源形态和农艺性状的遗传多样性分析. 植物遗传资源学报, 2011,12(3):402-407.
YU X H, ZHANG Q P, LIU W S, SUN M, LIU N, ZHANG Y P, XU M . Genetic diversity analysis of morphological and agronomic characters of Chinese plum (Prunus salicina Lindl.) germplasm. Journal of Plant Genetic Resources, 2011,12(3):402-407. (in Chinese)
[35] ZHANG Q P, WEI X, LIU W S, LIU N, ZHANG Y P, XU M, LIU S, ZHANG Y J, MA X X, DONG W X . The genetic relationship and structure of some natural interspecific hybrids in Prunus subgenus Prunophora, based on nuclear and chloroplast simple sequence repeats. Genetic Resource Crop Evolution, 2018,65:625-636.
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[15] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!