Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (2): 228-238.doi: 10.3864/j.issn.0578-1752.2019.02.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes

BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun()   

  1. Academy of Agriculture and Forestry of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences)/ Qinghai Provincial Key Laboratory of Hulless Barley Genetics and Breeding/Qinghai Hulless Barley Sub-Center of National Triticeae Improvement Center, Xining 810016
  • Received:2018-07-16 Accepted:2018-09-18 Online:2019-01-16 Published:2019-01-21
  • Contact: KunLun WU E-mail:wklqaaf@163.com

Abstract:

【Objective】 Lodging has become one of the main factors affecting the production and yield of hulless barley. Screening the traits closely related to the lodging resistance and constructing the lodging resistance evaluation system is an important theoretical basis for the breeding of hulless barley varieties. 【Method】 23 agronomic traits in roots, stems, and ears related to the lodging of 35 hulless barley germplasms were analyzed by statistical method. The variance analysis was carried out to identify the differences among different traits, and correlation analysis was used to screen out the traits which closely related to the lodging resistance. The indexes were finally constructed by principal component analysis and linear stepwise regression analysis to construct a hulless barley resistance evaluation system. 【Result】 The results showed that different genotypes of barley cultivars had larger differences among the same traits, and the differences of genotypes among the phenotypic traits were extremely significant, among this, the genetic variation of lodging rate was the most abundant. The agronomic traits of the same genotypes were greatly affected between different ecoregion, and the genetic variation of the genotypes in Haibei alpine farming-pastoral ecotone was abundant. There were significant interaction effects between genotypes of various traits and environmental factors (P<0.05). Correlation analysis showed that the stem strength was most closely related to the lodging resistance of the hulless barley, which was used lodging resistance index to construct the lodging resistance evaluation system. When the plant had more tiller numbers, longer third and fourth stem segments, which caused the lodging, and made the number of grains reduced, and the ear weight became lighter. When the root dry weight was heavier, the stem was heavier, the wall thickness was thicker, and the stem strength was larger, which made the plants have the stronger ability to retain and lodging resistance. 【Conclusion】 Based on tiller numbers, ear weight, stem length, stem weight and stem strength, a comprehensive evaluation system for the resistance indexes of barley was constructed. The results showed that the system was reliable and could be used for the evaluation of lodging resistance of hulless barley germplasms.

Key words: hulless barley, lodging, principal component analysis, stem strength, evaluation system

Table 1

Testing hulless barley germplasms"

编号
Serial number
名称
Name
来源
Origin
编号
Serial number
名称
Name
来源
Origin
1 黄青1号
Huangqing 1
甘肃甘南
Gannan, Gansu
19 藏1257
Zang1257
西藏
Tibet
2 硕般多
Shuobanduo
西藏昌都
Changdu, Tibet
20 喜马拉14号
Ximala 14
西藏日喀则
Rikaze, Tibet
3 宕昌青稞(蓝)
Dangchang hulless barley
甘肃陇南
Longnan, Gansu
21 藏902960
Zang 902960
西藏拉萨
Lasa, Tibet
4 东都红胶泥-1
Dongdu red clay-1
青海乐都
Ledu, Qinghai
22 IG107018 不详
Unknown
5 甘孜88140-5-6
Ganzi 88140-5-6
四川甘孜
Ganzi, Sichuan
23 昆仑14号
Kunlun 14
青海西宁
Xining, Qinghai
6 阿7019
A 7019
四川阿坝
Aba, Sichuan
24 昆仑15号
Kunlun 15
青海西宁
Xining, Qinghai
7 阿127
A127
四川阿坝
Aba, Sichuan
25 紫勾芒青稞
Purple hook hullessbarley
不详
Unknown
8 苏农0006
Sunong 006
江苏南山
Nanshan, Jiangsu
26 藏1373
Zang 1373
西藏
Tibet
9 北青9号
Beiqing 9
青海海北
Haibei, Qinghai
27 白金紫
Baijinzi
不详
Unknown
10 甘青5号
Ganqing 5
甘肃甘南
Gannan, Gansu
28 藏1673
Zang 1673
西藏
Tibet
11 洛隆宗
Luolongzong
西藏昌都
Changdu, Tibet
29 藏902861
Zang 902861
西藏
Tibet
12 乌表
Wubiao
江苏
Jiangsu
30 藏2503
Zang 2503
西藏
Tibet
13 光头大麦
Guangtou barley
不详
Unknown
31 汤堆小春青稞
Tangduixiaochun hulless barley
云南汤堆
Tangdui, Yunnan
14 紫青稞
Purple hulless barley
西藏贡嘎
Gongga, Tibet
32 汤满青稞
Tangman hulless barley
云南香格里拉
Xianggelila, Yunnan
15 北青1号
Beiqing 1
青海海北
Haibei, Qinghai
33 ZYM01909 西藏工布江达
Gongbujiangda, Tibet
16 青永1421
Qingyong 1421
西藏扎达
Zhada, Tibet
34 ZYM01915 西藏工布江达
Gongbujiangda, Tibet
17 青永4080
Qing yong 4080
西藏
Tibet
35 ZYM01922 西藏工布江达
Gongbujiangda, Tibet
18 紫壳扎尼玛
Purple shell zhanima
西藏拉萨
Lasa, Tibet

Table 2

Agronomic traits of each stem section in hulless barley genotypes"

指标(西宁点)
Index
(Xining point)
第二节 S 第三节 T 第四节 F
茎长
PL
(cm)
壁厚
WT (mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS (N)
茎长
PL
(cm)
壁厚
WT
(mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS
(N)
茎长
PL
(cm)
壁厚
WT
(mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS
(N)
最小值 Minimum 8.19 0.63 3.51 0.16 4.86 10.78 0.62 3.87 0.18 3.71 11.08 3.49 0.17 0.56 3.99
最大值 Maximum 14.47 1.41 6.01 0.64 22.07 20.15 1.07 5.81 0.66 16.95 26.52 6.38 0.62 1.11 15.46
均值 Mean 11.09 0.95 4.65 0.29 11.86 15.04 0.82 4.83 0.32 9.86 17.74 4.58 0.31 0.74 8.18
标准差
Standard deviation
1.65 0.17 0.65 0.10 4.54 2.22 0.11 0.54 0.09 3.17 3.73 0.60 0.10 0.10 2.62
方差 Variance 2.71 0.03 0.43 0.01 20.57 4.94 0.01 0.29 0.01 10.06 13.94 0.36 0.01 0.01 6.88
偏度 Skewness 0.05 0.66 0.21 1.26 0.47 0.44 0.38 0.22 1.37 0.40 0.65 0.57 1.26 1.17 0.65
峰度 Kurtosis -0.98 0.21 -0.81 2.05 -0.44 -0.41 -0.48 -0.78 3.34 -0.62 -0.13 0.74 1.23 2.11 0.05
变异系数 CV (%) 14.85 18.38 14.08 34.61 38.24 14.79 13.36 11.11 28.92 32.15 21.05 13.11 32.63 13.98 32.07
指标(海北点)
Index
(Haibei point)
第二节 S 第三节 T 第四节 F
茎长
PL
(cm)
壁厚
WT (mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS (N)
茎长
PL
(cm)
壁厚
WT
(mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS
(N)
茎长
PL
(cm)
壁厚
WT
(mm)
茎粗
ST
(mm)
茎重
SW
(g)
秆强
SS
(N)
最小值 Minimum 5.80 0.15 1.05 0.06 2.09 7.10 0.15 1.08 0.11 2.09 6.10 1.07 0.15 0.02 1.23
最大值 Maximum 23.50 1.94 4.99 0.85 11.73 31.50 1.94 4.98 1.00 11.73 32.50 5.81 1.93 0.89 13.11
均值 Mean 12.03 0.73 2.75 0.32 5.35 16.18 0.73 2.82 0.37 5.35 19.32 2.75 0.74 0.36 4.11
标准差
Standard deviation
3.13 0.45 1.20 0.15 1.75 3.57 0.45 1.23 0.18 1.75 5.62 1.26 0.48 0.16 1.86
方差 Variance 9.80 0.20 1.44 0.02 3.07 12.75 0.20 1.51 0.03 3.07 31.54 1.60 0.23 0.03 3.46
偏度 Skewness 0.40 0.71 0.24 1.13 0.62 0.84 0.71 0.16 0.88 0.62 0.15 0.34 0.61 0.71 1.69
峰度 Kurtosis 0.36 -0.34 -1.45 1.51 0.47 2.49 -0.34 -1.49 0.46 0.47 -0.19 -1.23 -0.58 0.15 5.40
变异系数 CV (%) 26.02 62.12 43.53 47.70 32.77 22.08 62.12 43.59 47.28 32.77 29.07 45.97 64.88 45.51 45.27

Table 3

The panicle, root traits and lodging rate of the tested hulless barley genotypes"

指标(西宁点)
Index(Xining point)
株高
PH (cm)
有效分蘖数
TN
重心
GG (cm)
根干重
RDW (g)
根数
RN
穗重
PW (g)
穗粒数
KPS
倒伏率
LR (%)
最小值 Minimum 72.90 3.04 29.30 0.60 23.10 0.82 12.70 0.00
最大值 Maximum 115.90 12.79 48.30 2.11 64.50 4.48 76.90 1.00
均值 Mean 96.14 6.83 40.36 0.98 39.71 3.18 53.46 0.42
标准差 Standard deviation 8.98 2.17 4.19 0.32 9.27 0.71 13.21 0.33
方差 Variance 80.62 4.69 17.53 0.10 85.92 0.50 174.44 0.11
偏度 Skewness -0.24 0.74 -0.16 1.87 0.58 -0.90 -1.18 0.12
峰度 Kurtosis -0.29 0.52 -0.36 3.89 0.06 1.87 1.73 -1.40
变异系数 CV (%) 9.34 31.70 10.37 32.44 23.34 22.31 24.70 79.69
指标(海北点)
Index(Haibei point)
株高
PH (cm)
有效分蘖数
TN
重心
GG (cm)
根干重
RDW (g)
根数
RN
穗重
PW (g)
穗粒数
KPS
倒伏率
LR (%)
最小值 Minimum 60.00 1.00 23.00 0.15 8.00 0.88 13.00 0.00
最大值 Maximum 192.00 12.00 57.00 1.40 50.00 6.59 89.00 0.98
均值 Mean 94.90 3.45 37.88 0.56 29.55 2.55 44.83 0.47
标准差 Standard deviation 16.03 1.96 5.51 0.24 9.40 1.11 17.39 0.38
方差 Variance 256.95 3.86 30.34 0.06 88.31 1.24 302.45 0.14
偏度 Skewness 1.13 1.56 0.06 1.03 0.26 1.20 0.40 -0.01
峰度 Kurtosis 8.72 3.51 0.35 1.20 -0.74 1.61 -0.41 -1.70
变异系数 CV (%) 16.89 56.95 14.54 43.65 31.80 43.57 38.79 81.29

Table 4

Analysis of the interaction between genotype and environment of phenotypic traits"

变异来源
Variance sources
df 第二节茎长
SSL
第二节壁厚
SWT
第二节茎粗
SST
第二节茎重
SSW
第二节秆强
SSS
第三节茎长
TSL
第三节壁厚
TWT
第三节茎粗
TST
F P F P F P F P F P F P F P F P
基因型
Genotype (G)
34 1.44 0.005 1.08 0.00** 2.09 0 1.93 0.00** 1.96 0.00** 2.52 0.00** 1.00 0.00** 1.43 0.00**
环境
Environment (E)
1 6.60 0.002 83.79 0.00** 1296.69 0 0.74 0.043 58.44 0.00** 5.84 0.00** 92.42 0.00** 1457.58 0.00**
基因型×环境
G×E
34 1.71 0.016 24.57 0.00** 16.44 0 5.93 0.00** 16.66 0.00** 3.14 0.00** 48.22 0.00** 36.90 0.00**
变异来源
Variance sources
df 第三节茎重
TSW
第三节秆强
TSS
第四节茎长
FSL
第四节壁厚
FWT
第四节茎粗
FWT
第四节茎重
FSW
第四节秆强
FSS
倒伏率
LR
F P F P F P F P F P F P F P F P
基因型
Genotype (G)
34 1.41 0.00** 2.20 0.00** 1.85 0.00** 1.42 0.00** 0.86 0.00** 2.08 0.00** 1.82 0.00** 2.63 0.00**
环境
Environment (E)
1 3.44 0.00** 87.03 0.00** 3.78 0.00** 76.58 0.00** 25.82 0.00** 295.53 0.00** 96.19 0.00** 0.50 0.00**
基因型×环境
G×E
34 5.01 0.00** 51.21 0.00** 6.19 0.00** 27.23 0.00** 11.95 0.00** 4.27 0.00** 9.80 0.00** 1411.03 0.00**
变异来源
Variance sources
df 根数
RN
根干重
RDW
株高
PH
分蘖数
TN
重心
CG
穗重
PW
穗粒数
KPS
F P F P F P F P F P F P F P
基因型
Genotype (G)
34 0.72 0.00** 0.69 0.00** 1.09 0.00** 2.07 0.00** 1.46 0.00** 2.68 0.00** 2.25 0.00**
环境
Environment (E)
1 22.41 0.00** 36.46 0.00** 0.24 0.254 85.01 0.00** 6.67 0.00** 15.19 0.00** 9.06 0.00**
基因型×环境
G×E
34 10.57 0.00** 14.99 0.00** 5.65 0.00** 5.00 0.00** 7.89 0.00** 23.92 0.00** 47.81 0.00**

Table 5

Correlation analysis between traits"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
X1 1
X2 -0.020 1
X3 -0.207** 0.591** 1
X4 0.043 0.062 0.023 1
X5 0.183** 0.431** 0.358** 0.061 1
X6 -0.039 0.063 0.113 0.561** 0.123 1
X7 0.046 -0.111 -0.157* 0.089 -0.088 0.058 1
X8 -0.019 -0.212** -0.381** 0.167** -0.531** -0.146* 0.181** 1
X9 -0.123 0.488** 0.628** 0.062 0.542** 0.232** -0.151* -0.551** 1
X10 -0.228** -0.095 -0.035 0.220** -0.258** 0.162* 0.381** 0.293** 0.004 1
X11 -0.537** 0.467** 0.591** -0.052 0.237** 0.099 -0.238** -0.404** 0.649** 0.083 1
X12 0.212** -0.088 -0.259** 0.173** -0.016 0.065 0.427** 0.074 -0.195** 0.155* -0.219** 1
X13 -0.010 -0.248** -0.413** 0.180** -0.551** -0.151* 0.166** 0.968** -0.592** 0.253** -0.440** 0.084 1
X14 -0.112 0.496** 0.621** 0.076 0.562** 0.230** -0.150* -0.579** 0.985** -0.023 0.634** -0.203** -0.612** 1
X15 -0.261** -0.145* -0.112 0.346** -0.330** 0.125 0.226** 0.356** -0.087 0.771** 0.029 0.159* 0.366** -0.114 1
X16 -0.612** 0.348** 0.569** 0.015 0.252** 0.192** -0.132* -0.401** 0.719** 0.180** 0.848** -0.235** -0.435** 0.707** 0.099 1
X17 0.247** -0.039 -0.236** 0.217** -0.024 0.101 0.218** 0.134* -0.160* 0.236** -0.146* 0.535** 0.116 -0.166** 0.281** -0.228** 1
X18 -0.176** 0.402** 0.468** 0.235** 0.245** 0.221** -0.077 0.006 0.776** 0.221** 0.470** -0.180** -0.033 0.766** 0.182** 0.583** -0.138* 1
X19 -0.041 -0.090 -0.252** 0.224** -0.401** -0.156* 0.109 0.825** -0.344** 0.249** -0.308** 0.019 0.835** -0.361** 0.357** -0.296** 0.046 0.166** 1
X20 -0.230** 0.355** 0.552** 0.153* 0.380** 0.243** -0.081 -0.412** 0.851** 0.246** 0.607** -0.131* -0.434** 0.836** 0.247** 0.705** -0.044 0.738** -0.254** 1
X21 -0.434** 0.304** 0.599** -0.022 0.288** 0.163* -0.141* -0.434** 0.713** 0.166** 0.749** -0.269** -0.444** 0.710** 0.075 0.830** -0.261** 0.592** -0.288** 0.733** 1
X22 -0.316** 0.026 0.221** 0.013 0.005 0.174** 0.016 -0.069 0.377** 0.238** 0.345** -0.053 -0.134* 0.371** 0.176** 0.405** 0.049 0.386** -0.078 0.402** 0.359** 1
X23 -0.262** 0.056 0.288** -0.019 -0.076 0.168** 0.001 -0.029 0.323** 0.170** 0.321** -0.071 -0.100 0.319** 0.083 0.375** 0.016 0.366** -0.093 0.341** 0.323** 0.835** 1

Table 6

Total variance of interpretation"

EV: Eigen value; VP: Variance contribution percentage; CP: Cumulative percentage

初始特征值 Initial eigenvalue 提取平方和载入 Extract square sum loading
特征值 EVl 方差贡献率 VCP (%) 累积贡献率 CP (%) 特征值 EVl 方差贡献率 VCP (%) 累积贡献率 CP (%)
5.00 38.46 38.46 5.00 38.46 38.46
2.40 18.43 56.89 2.40 18.43 56.89
1.36 10.44 67.33 1.36 10.44 67.33
1.27 9.80 77.13 1.27 9.80 77.13
0.71 5.43 82.56
0.49 3.74 86.30
0.47 3.64 89.94
0.43 3.33 93.26
0.25 1.89 95.16
0.23 1.74 96.90
0.15 1.16 98.06
0.14 1.06 99.12
0.11 0.88 100.00

Table 7

Component matrix"

成份 Component
1 2 3 4
根干重 RDW 0.714 -0.289 0.109 0.024
分蘖数 TN 0.327 -0.448 0.564 0.310
第二节茎重 SST 0.219 0.799 0.060 -0.363
第二节秆强 SSS 0.821 -0.103 0.091 -0.045
第三节茎长 TSL -0.300 0.449 0.497 0.415
第三节茎重 TSW 0.136 0.821 0.082 -0.413
第三节秆强 TSS 0.893 -0.045 0.058 -0.102
第四节茎长 FSL -0.226 0.569 0.449 0.417
第四节壁厚 FWT 0.762 0.089 0.089 -0.052
第四节茎重 FSW 0.851 0.103 0.269 -0.029
第四节秆强 FSS 0.880 -0.093 0.089 -0.144
穗重 PW 0.573 0.372 -0.440 0.483
穗粒数 KPS 0.544 0.308 -0.524 0.510

Table 8

Correlative coefficient between F-value and lodging related traits"

性状 Traits FF-value
分蘖数 TN 0.915**
第二节茎重 SST -0.143*
第二节秆强 SSS 0.295**
第三节茎重 TST -0.180**
第三节秆强 TSS 0.267**
第四节茎长 FSL 0.298**
第四节茎重 FST 0.416**
第四节秆强 FSS 0.276**
倒伏率 LR 0.166**
[1] 白羿雄, 姚晓华, 姚有华, 吴昆仑 . 适度水分亏缺管理提高青稞营养品质和环境效益. 植物营养与肥料学报, 2018,24(2):499-506.
BAI Y X, YAO X H, YAO Y H, WU K L . Mild water deficit management to achieve high nutrition quality of hulless barley and environmental benefit. Journal of Plant Nutrition and Fertilizers, 2018,24(2):499-506. (in Chinese)
[2] YAO X H, WU K L, YAO Y H, LI J, REN Y C, CHI D Z . The response mechanism of the HVA1 gene in hulless barley under drought stress. Italian Journal of Agronomy, 2017,12(4):357-363.
[3] 王勇, 向波, 冼季夏, 江立庚, 张元昶 . 水稻抗倒伏伏研究现状及存在的问题. 广西农业科学, 2007,38(2):141-144.
WANG Y, XIANG B, XIAN J X, JIANG L G, ZHANG Y C . Research status and existing problems of rice resistance to lodging. Guangxi Agricultural Sciences, 2007,38(2):141-144. (in Chinese)
[4] TIAN B H, LUAN S R, ZHANG L X, LIU Y L, ZHANG L, LI H J . Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Research, 2018,217:104-112.
doi: 10.1016/j.fcr.2017.12.013
[5] NIU L, FENG S, RU Z, LI G, ZHANG Z, WANG Z . Rapid determination of single-stalk and population lodging resistance strengths and an assessment of the stem lodging wind speeds for winter wheat. Field Crops Research, 2012,139:1-8.
doi: 10.1016/j.fcr.2012.10.014
[6] MURAKAMI T, YUI M, AMAHA K . Canopy height measurement by photogrammetric analysis of aerial images: Application to buckwheat ( Fagopyrum esculentum Moench) lodging evaluation.Computers and Electronics in Agriculture, 2012,89:70-75.
[7] 李杰, 张洪程, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕 . 不同种植方式对超级稻植株抗倒伏伏能力的影响. 中国农业科学, 2011,44(11):2234-2243.
doi: 10.3864/j.issn.0578-1752.2011.11.004
LI J, ZHANG H C, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y . Effects of different planting methods on the culm lodging resistance of super rice. Scientia Agricultura Sinica, 2011,44(11):2234-2243. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.11.004
[8] DAI X, WANG Y, DONG X, QIAN T, YIN L, DONG S, CHU J, HE M . Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 2017,5(6):541-552.
doi: 10.1016/j.cj.2017.05.003
[9] 向达兵, 郭凯, 雷婷, 于晓波, 罗庆明, 杨文钰 . 磷钾营养对套作大豆茎秆形态和抗倒性的影响. 中国油料作物学报, 2010,32(3):395-402.
XIANG D B, GUO K, LEI T, YU X B, LUO Q M, YANG W Y . Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean. Chinese Journal of Oil Crop Sciences, 2010,32(3):395-402. (in Chinese)
[10] 薛金涛, 张保明, 董志强, 赵明, 黄长玲 . 化学调控对玉米抗倒性及产量的影响. 玉米科学, 2009,17(2):91-94.
XUE J T, ZHANG B M, DONG Z Q, ZHAO M, HUANG C L . Effects of chemical regulation on lodging and yield of maize. Journal of Maize Sciences, 2009,17(2):91-94. (in Chinese)
[11] PENG D, CHEN X, YIN Y, LU K, YANG W, TANG Y, WANG Z . Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 2014,157:1-7.
[12] BIAN D, JIA G, CAI L, MA Z, ENEJI A, CUI Y . Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Research, 2016,185:89-96.
doi: 10.1016/j.fcr.2015.10.008
[13] 陈新军, 戚存扣, 浦惠明, 张洁夫, 高建芹, 傅寿仲 . 甘蓝型油菜抗倒伏性评价及抗倒伏性与株型结构的关系. 中国油料作物学报, 2007,29(1):54-57.
CHEN X J, QI C K, PU H M, ZHANG J F, GAO J Q, FU S Z . Evaluation of lodging resistance in rapeseed ( Brassica napus L.) and relationsh ip between plant architecture and lodging resistance. Chinese Journal of Oil Crop Sciences, 2007,29(1):54-57. (in Chinese)
[14] ZHANG J, LI G, SONG Y, LIU Z, YANG C, TANG Y, ZHENG H, WANG S, DING Y . Lodging resistance characteristics of high- yielding rice populations. Field Crops Research, 2014,161:64-74.
doi: 10.1016/j.fcr.2014.01.012
[15] ZHU G, LI G, WANG D, YUAN S, WANG F . Changes in the lodging-related traits along with rice genetic improvement in China. PLoS ONE, 2016,11(7):e0160104.
doi: 10.1371/journal.pone.0160104
[16] HIRANO K, OKUNO A, HOBO T, ORDONIO R, SHINOZAKI Y, ASANO K, KITANO H, MATSUOKA M . Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS ONE, 2014,9(7):e96009.
doi: 10.1371/journal.pone.0096009
[17] ROBERSON D J, JULIAS M, LEE S Y, COOK D D . Maize stalk lodging: Morphological determinants of stalk strength. Crop Science, 2017,57(2):926-934.
doi: 10.2135/cropsci2016.07.0569
[18] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁 . 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
CHEN X G, SHI C Y, YIN Y P, WANG Z L, SHI Y H, PENG D L, NI Y L, CAI T . Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 2011,37(9):1616-1622. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01616
[19] 路之娟, 张永清, 张楚, 刘丽琴, 杨春婷 . 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017,50(17):3311-3322.
LU Z J, ZHANG Y Q, ZHANG C, LIU L Q, YANG C T . Comprehensive evaluation and indicators of the drought resistance of different genotypes of Fagopyrum tataricum at seedling stage. Scientia Agricultura Sinica, 2017,50(17):3311-3322. (in Chinese)
[20] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东 . 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013,46(10):1984-1993.
doi: 10.3864/j.issn.0578-1752.2013.10.003
ZHENG J F, MI S Y, JING J J, BAI Z Y, LI C D . Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Scientia Agricultura Sinica, 2013,46(10):1984-1993. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.10.003
[21] 刘海卿, 孙万仓, 刘自刚, 武军艳, 钱武, 王志江, 郭仁迪, 马骊, 侯献飞, 刘林波 . 北方寒旱区白菜型冬油菜抗寒性与抗旱性评价及其关系. 中国农业科学, 2015,48(18):3743-3756.
LIU H Q, SUN W C, LIU Z G, WU J Y, QIAN W, WANG Z J, GUO R D, MA L, HOU X F, LIU L B . Evaluation of drought resistance and cold resistance and research of their relationship at seedling stage of winter rapeseed ( Brassica campestris L.) in cold and arid regions in North China. Scientia Agricultura Sinica, 2015,48(18):3743-3756. (in Chinese)
[22] 黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒 . 大豆抗倒伏伏性的评价指标及其QTL分析. 作物学报, 2008,34(4):605-611.
doi: 10.3724/SP.J.1006.2008.00605
HUANG Z W, ZHAO T J, YU D Y, CHEN S Y, GAI J Y . Lodging resistance indices and related QTLs in soybean. Acta Agronomica Sinica, 2008,34(4):605-611. (in Chinese)
doi: 10.3724/SP.J.1006.2008.00605
[23] 赵威军, 张福耀, 常玉卉, 张阳, 邵荣峰, 李金梅 . 甜高粱品系的抗倒伏伏性评价及相关分析. 植物遗传资源学报, 2013,14(1):58-64.
ZHAO W J, ZHANG F Y, CHANG Y H, ZHANG Y, SHAO R F, LI J M . Evaluation and correlation analysis of lodging resistance on sweet sorghum lines. Journal of Plant Genetic Resources, 2013,14(1):58-64. (in Chinese)
[24] 王莹, 杜建林 . 大麦根倒伏抗性评价方法及其倒伏系数的通径分析. 作物学报, 2001,27(6):941-945.
WANG Y, DU J L . Evaluation method of root lodging resistance and its path analysis in barley. Acta Agronomica Sinica, 2001,27(6):941-945. (in Chinese)
[25] OOKAWA T, YASUDA K, KATO H, SAKAI M, SETO M, SUNAGA K, MOTOBAYASHI T, TOJO S, TADASHI H . Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Production Science, 2010,13(1):58-66.
doi: 10.1626/pps.13.58
[26] ZHANG W J, LI G H, YANG Y M, LI Q, ZHANG J, LIU J Y, WANG S H, TANG S, DING Y F . Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. Journal of Integrative Agriculture, 2014,13(1):63-72.
doi: 10.1016/S2095-3119(13)60388-3
[27] ZHANG J, LI G, SONG Y, LIU Z, YANG C D, TANG S, ZHENG C Y, WANG S H, DING Y F . Lodging resistance characteristics of high-yielding rice populations. Field Crops Research, 2014,161:64-74.
doi: 10.1016/j.fcr.2014.01.012
[28] TIAN B, WANG J, ZHANG L, LI Y, WANG S, LI H . Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica, 2010,172(3):295-302.
doi: 10.1007/s10681-009-9999-z
[29] INOUE M, GAO Z, CAI H . QTL analysis of lodging resistance and related traits in Italian ryegrass ( Lolium multiflorum Lam.).Theoretical and Applied Genetics, 2004,109(8):1576-1585.
[30] 许凤英, 毛群帮, 邢丹英, 秦亚平, 王晓玲 . 油菜抗倒伏性的评价方法研究. 河南农业科学, 2009,38(11):41-43.
doi: 10.3969/j.issn.1004-3268.2009.11.011
XU F Y, MAO Q B, XING D Y, QIN Y P, WANG X L . Study on evaluation method of lodging resistance in rapeseed. Journal of Henan Agricultural Science, 2009,38(11):41-43. (in Chinese)
doi: 10.3969/j.issn.1004-3268.2009.11.011
[31] 宋月, 向达兵, 黄后兵, 范昱, 韦爽, 张赛 . 苦荞品种抗倒性鉴定及评价方法的研究. 作物杂志,2017(6):65-71.
SONG Y, XIANG D B, HUANG H B, FAN Y, WEI S, ZHANG S . Lodging resistance identification and evaluation of different tartary buckwheat cultivars.Crops,2017(6):65-71. (in Chinese)
[32] 王莹, 杜建林 . 大麦根倒伏抗性评价方法及其倒伏系数的通径分析. 作物学报, 2001,27(6):941-945.
WANG Y, DU J L . Evaluation method of root lodging resistance and its path analysis in barley. Acta Agronomica Sinica, 2001,27(6):941-945. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] YUAN Yuan,WANG Bo,ZHOU GuangSheng,LIU Fang,HUANG JunSheng,KUAI Jie. Effects of Different Sowing Dates and Planting Densities on the Yield and Stem Lodging Resistance of Rapeseed [J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626.
[7] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[8] LIU DongYao,YAN ZhenHua,CHEN YiBo,YANG Qin,JIA XuCun,LI HongPing,DONG PengFei,WANG Qun. Effects of Elevated Temperature on Maize Stem Growth, Lodging Resistance Characters and Yield [J]. Scientia Agricultura Sinica, 2021, 54(17): 3609-3622.
[9] WANG XiaQing,SONG Wei,ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan. Genetic Research Advances on Maize Stalk Lodging Resistance [J]. Scientia Agricultura Sinica, 2021, 54(11): 2261-2272.
[10] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[11] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[12] DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin. Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414.
[13] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[14] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[15] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!