Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4424-4433.doi: 10.3864/j.issn.0578-1752.2018.23.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Key Growth Stage of Cd Accumulation in Brown Rice Through a Hydroponic Experiment with Cd Stress

WANG QianQian(),JIA RunYu,LI HongCheng,ZHOU Hang(),YANG WenTao,GU JiaoFeng,PENG PeiQin,LIAO BoHan()   

  1. College of Environment Science and Engineering, Central South University of Forestry and Technology/Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004
  • Received:2018-06-13 Accepted:2018-08-14 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】 The objectives of this study were to explore the effects of Cd stress on Cd accumulation in brown rice at different growth stages (tillering stage, jointing stage, booting stage, filling stage, dough stage, and maturing stage) of rice plants, to clear and definite the key growth stages of rice plants for Cd accumulating in brown rice, so as to provide directions of rice safety production by taking suitable measures timely for reducing Cd contents in brown rice. 【Method】 Taking Xiangwanxian 13 (a late rice variety) as the studied plant, a hydroponic experiment with rice plants was conducted with seven treatments of exogenous Cd application, including CG (whole growth stages with Cd stress, 102 d), TS (tilling stage with Cd stress, 15 d), JS (jointing stage with Cd stress, 15 d), BS (booting stage with Cd stress, 21 d), FS (filling stage with Cd stress, 18 d), DS (dough stage with Cd stress, 15 d), and MS (maturing stage with Cd stress, 18 d). All seven treatments were repeated 3 times and another treatment of the whole growth stages without Cd stress as control (CK). Exogenous Cd in each treatment was the same as 20 μg·L -1. The hydroponic experiment started in July 23, 2017, at the rice experiment base of Central South University of Forestry and Technology in Changsha, Hunan province. Agronomic characters (plant height, tiller number, and biomass of rice tissues) and Cd contents in various rice tissues were determined after harvest in November 19, 2017. Cd amounts and the relative contribution rates of Cd accumulation at different growth stages to Cd accumulation in brown rice at maturing stage were calculated. 【Result】 The results showed that exogenous Cd application at different growth stage of rice plants did not affect plant height, tiller number, and biomass of rice tissues. At the filling stage with Cd stress, Cd contents in brown rice was the highest and reached to 1.05 mg·kg -1, which was significantly higher than Cd contents in brown rice with Cd stress at the maturing stage (0.57 mg·kg -1), booting stage (0.52 mg·kg -1), dough stage (0.38 mg·kg -1), jointing stage (0.31 mg·kg -1), and tilling stage (0.17 mg·kg -1). The range of Cd amounts in brown rice with Cd stress at different growth stages were 0.18-1.56 μg/plant, and the sequence of Cd amounts were: whole growth stages with Cd stress>filling stage with Cd stress>maturing stage with Cd stress>booting stage with Cd stress>jointing stage with Cd stress>tilling stage with Cd stress. The booting stage, filling stage and maturing stage of rice plants were the key growth stages for Cd accumulating in brown rice, and the relative contribution rates of Cd accumulating in brown rice at these three growth stages were 19.7%, 39.3%, and 22.6%, respectively. The contributions of Cd stress to Cd accumulating in brown rice were 2.4%, 4.2%, and 11.9% at the tillering, jointing, and dough stage, respectively, which were relatively lower compared with the other three stages. Cd contents in rice roots, stem, ear, and husk at booting stage and filling stage were all higher except the whole growth stages with Cd stress. There was no significant difference in Cd content in rice leaves (P>0.05) at different growth stages with Cd stress. At the tillering stage and filling stage with Cd stress, Cd amounts in rice roots were 86.09 μg/plant and 79.23 μg/plant, respectively, which was significantly higher than those at the other stages of rice plants (31.55-40.37 μg/plant). Compared to the other stages, Cd amounts in rice plants at the booting stage and filling stage with Cd stress were high, reaching 107.13 μg/plant and 98.35 μg/plant, respectively, which was significantly higher than those at the other four stages of rice plants (42.24-52.47 μg/plant). 【Conclusion】 The booting stage, filling stage, and maturing stage of rice plants were the key growth stages for controlling Cd accumulation in brown rice. With Cd stress at the booting stage and filling stage, the Cd accumulation in the root and brown rice at the maturing stage were higher than those other stages. Therefore, the Cd accumulation in brown rice could be reduced by applying soil amendments at the booting stage and filling stage of rice plants to obstruct root absorbing Cd or reducing Cd transportation from rice root to brown rice.

Key words: rice (Oryza sativa L.), hydroponic experiment, Cd stress, growth stage, Cd accumulation

Table 1

Experimental design"

处理
Treatment
胁迫时间
Stress time (d)
试验处理
Experimental treatment
胁迫时期
Stress stage
CK 0 不添加外源Cd,仅在自来水中添加营养液
Adding nutrient solution to tap water without exogenous Cd

No
TS 15 水稻幼苗移栽后在营养液中添加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至分蘖期结束
Adding exogenous Cd to nutrient solution until to the end of tillering stage after transplanting, and keeping Cd concentration in nutrient solution at 20 μg·L-1
分蘖期
Tillering stage
JS 15 水稻分蘖期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至拔节期结束
Adding exogenous Cd to nutrient solution from the end of tillering stage to the end of jointing stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1
拔节期
Jointing stage
BS 21 水稻拔节期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至孕穗期结束
Adding exogenous Cd to nutrient solution from the end of jointing stage to the end of booting stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1
孕穗期
Booting stage
FS 18 水稻孕穗期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至灌浆期结束
Adding exogenous Cd to nutrient solution from the end of booting stage to the end of filling stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1
灌浆期
Filling stage
DS 15 水稻灌浆期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至腊熟期结束
Adding exogenous Cd to nutrient solution from the end of filling stage to the end of dough stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1
腊熟期
Dough stage
MS 18 水稻腊熟期结束开始加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至成熟期结束
Adding exogenous Cd to nutrient solution from the end of dough stage to the end of maturing stage, and keeping Cd concentration in nutrient solution at 20 μg·L-1
成熟期
Maturing stage
CG 102 水稻幼苗移栽后在营养液中添加外源Cd使营养液中的Cd浓度保持在20 μg·L-1,加Cd至成熟期结束
Adding exogenous Cd to nutrient solution until to the end of maturing stage after transplanting, and keeping Cd concentration in nutrient solution at 20 μg·L-1
全生育时期
Whole growth stages

Table 2

Effects of Cd stress at different rice growth stages on growth of rice plants"

处理
Treatment
株高
Plant height (cm)
分蘖数
Tiller
number
水稻各部位生物量 Cd contents in rice tissues (g/plant)
糙米
Brown rice
谷壳
Husk

Ear

Leaf

Stem

Root
总生物量
Total biomass
CK 105.7±4.7a 17±1ab 1.5±0.5a 7.6±2.2ab 1.9±1.0a 14.6±1.2a 23.2±2.6ab 8.0±0.4a 56.8±3.8a
CG 106.7±4.7a 15±1b 1.6±0.1a 8.4±2.1ab 2.4±0.2a 17.2±2.4a 15.9±2.5b 7.0±0.5a 52.4±2.8a
TS 105.0±4.1a 15±1b 1.1±0.1a 5.5±0.8ab 2.4±0.2a 17.6±4.4a 18.6±4.1ab 7.0±1.3a 52.2±6.7a
JS 101.7±2.4a 22±1a 0.9±0.5a 4.1±1.8b 2.9±0.9a 14.8±5.0a 19.8±4.7ab 8.3±2.0a 50.8±14.0a
BS 103.3±9.4a 17±1ab 1.4±0.4a 6.2±4.2ab 2.3±0.4a 15.6±1.2a 20.4±4.8ab 6.7±0.7a 52.7±10.9a
FS 106.7±2.4a 17±1ab 1.3±0.6a 4.0±1.4b 2.5±0.1a 14.7±1.3a 19.7±2.6ab 6.5±1.3a 48.7±3.0a
DS 105.0±4.1a 19±2ab 1.3±0.2a 9.9±2.0ab 3.0±0.3a 14.5±3.5a 18.8±4.9ab 7.6±1.7a 55.1±6.5a
MS 105.0±4.1a 18±2ab 1.5±0.0a 11.3±5.6a 2.8±0.5a 16.0±1.5a 26.1±2.7a 7.8±0.3a 65.4±8.1a

Fig. 1

Effects of Cd stress at different rice growth stages on Cd contents in brown rice at maturing stage Different letters indicate significant differences under different treatments at P<0.05"

Table 3

Effects of Cd stress at different rice growth stages on Cd contents in root, stem, leaf, ear and husk at maturing stage (mg·kg-1)"

处理 Treatment 谷壳 Husk 穗 Ear 叶 Leaf 茎 Stem 根 Root
CK 0.10±0.03c 0.05±0.01b 0.02±0.01b 0.07±0.03b 1.60±0.09c
CG 1.04±0.34a 0.74±0.29a 0.99±0.07a 3.00±1.78a 22.32±4.99a
TS 0.31±0.05bc 0.27±0.08b 0.12±0.02b 0.23±0.04b 5.72±1.53c
JS 0.45±0.09bc 0.22±0.10b 0.08±0.02b 0.45±0.15b 5.02±0.78c
BS 0.71±0.18ab 0.52±0.18ab 0.11±0.05b 0.72±0.27b 12.89±0.97b
FS 0.96±0.23a 0.37±0.18ab 0.07±0.02b 0.60±0.27b 12.51±1.64b
DS 0.27±0.07c 0.36±0.14ab 0.08±0.02b 0.25±0.07b 4.53±0.94c
MS 0.27±0.06c 0.13±0.10b 0.08±0.03b 0.21±0.17b 4.09±2.05c

Table 4

Effects of Cd stress at different rice growth stages on Cd accumulation amounts in root, stem, leaf, ear, husk and brown rice at maturing stage (μg/plant)"

处理
Treatment
糙米
Brown rice
谷壳
Husk

Ear

Leaf

Stem

Root
植株
Rice plant
CK 0.11±0.02d 0.66±0.11b 0.10±0.05c 0.24±0.01b 1.64±0.60b 12.71±1.44c 15.45±2.12c
CG 1.56±0.24a 8.85±3.48a 1.76±0.33a 17.16±3.81a 43.02±20.56a 155.87±34.41a 228.21±55.88a
TS 0.18±0.03cd 1.72±0.29b 0.63±0.12bc 2.25±0.81b 4.20±0.71b 38.10±4.23c 47.08±3.38c
JS 0.24±0.03cd 1.92±1.20b 0.66±0.33bc 1.02±0.36b 8.25±1.83b 40.37±5.27c 52.47±6.81c
BS 0.75±0.28c 4.06±2.16b 1.14±0.23ab 1.69±0.65b 13.42±2.20b 86.09±2.36b 107.13±3.11b
FS 1.39±0.69ab 3.74±1.08b 0.90±0.43bc 0.98±0.30b 12.11±6.58b 79.23±5.21b 98.35±6.22b
DS 0.49±0.19cd 2.57±0.48b 1.06±0.36ab 1.17±0.53b 4.61±1.76b 32.77±1.23c 42.68±2.10c
MS 0.84±0.04bc 3.33±2.26b 0.32±0.17bc 1.22±0.40b 4.97±3.65b 31.55±15.30c 42.24±18.08c

Fig. 2

Relative contribution of Cd accumulation in rice at different growth stages to Cd accumulation in brown rice at maturing stage (%)"

[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014,36(5):10-11.
doi: 10.11654/jaes.2017-1220
Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of the national soil pollution survey.China's Environmental Protection Industry, 2014, 36(5):10-11. (in Chinese)
doi: 10.11654/jaes.2017-1220
[2] 杨文弢, 周航, 邓贵友, 朱维, 吴玉俊, 邹紫今, 王艳, 廖柏寒 . 组配改良剂对污染稻田中铅、镉和砷生物有效性的影响. 环境科学学报, 2016,36(1):257-263.
doi: 10.13671/j.hjkxxb.2015.0133
YANG W T, ZHOU H, DENG G Y, ZHU W, WU Y J, ZOU Z J, WANG Y, LIAO B H . Effects of combined amendment on bioavailability of Pb, Cd, and As in polluted paddy soil. Acta Scientiae Circumstantiae, 2016,36(1):257-263. (in Chinese)
doi: 10.13671/j.hjkxxb.2015.0133
[3] CHANEY R L, REEVES P G, PHILIP P G, SIMMONS R W, WELCH R M, ANGLE J S . An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004,17(5):549-553.
doi: 10.1023/B:BIOM.0000045737.85738.cf pmid: 15688862
[4] 张小敏, 张秀英, 钟太洋, 江洪 . 中国农田土壤重金属富集状况及其空间分布研究. 环境科学, 2014,35(2):692-703.
ZHANG X M, ZHANG X Y, ZHONG T Y, JIANG H . Spatial distribution and accumulation of heavy metal in arable land soil of China. Environmental Science, 2014,35(2):692-703. (in Chinese)
[5] 史静, 李正文, 龚伟群, 潘根兴 . 2种常规水稻Cd、Zn吸收与器官分配的生育期变化: 品种、土壤和Cd处理的影响. 生态毒理学报, 2007,2(1):32-40.
doi: 10.3969/j.issn.1673-5897.2007.01.005
SHI J, LI Z W, GONG W Q, PAN G X . Uptake and partitioning of Cd and Zn by two non-hybrid rice cultivars in different growth stages: Effect of cultivars, soil type and Cd spike. Asian Journal of Ecotoxicology, 2007,2(1):32-40. (in Chinese)
doi: 10.3969/j.issn.1673-5897.2007.01.005
[6] YONG F Y, DOUG H C, DO S K, YUN W L . Absorption, translocation, and remobilization of cadmium supplied at different growth stages of rice. Journal of Crop Science & Biotechnology, 2010,13(2):113-119.
doi: 10.1007/s12892-010-0045-4
[7] 叶长城, 陈喆, 彭鸥, 周细红, 铁柏清, 刘孝利, 雷鸣, 魏祥东, 孙健 . 不同生育期Cd胁迫对水稻生长及镉累积的影响. 环境科学学报, 2017,37(8):3201-3206.
doi: 10.13671/j.hjkxxb.2017.0077
YE C C, CHEN Z, PENG O, ZHOU X H, TIE B Q, LIU X L, LEI M, WEI X D, SUN J . Effects of cadmium stress on growth and cadmium accumulation in rice at different growth stages. Acta Scientiae Circumstantiae, 2017,37(8):3201-3206. (in Chinese)
doi: 10.13671/j.hjkxxb.2017.0077
[8] GREGER M, LOFSTEDT M . Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 2004,44(2):111-113.
doi: 10.2135/cropsci2004.5010
[9] KASHIWAGI T, SHINDOH K, HIROTSU N, ISHIMARU K . Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biology, 2009,9(1):8.
doi: 10.1186/1471-2229-9-8
[10] 张振兴, 纪雄辉, 谢运河, 官迪, 彭华, 朱坚, 田发祥 . 水稻不同生育期施用生石灰对稻米镉含量的影响. 农业环境科学学报, 2016,35(10):1867-1872.
doi: 10.11654/jaes.2016-0432
ZHANG Z X, JI X H, XIE Y H, GUAN D, PENG H, ZHU J, TIAN F X . Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain. Journal of Agro-Environmental Science, 2016,35(10):1867-1872. (in Chinese)
doi: 10.11654/jaes.2016-0432
[11] 靳磊, 胡召华, 纪雄辉, 魏维, 谢运河 . 不同时期喷施Zn肥抑制水稻Cd吸收转运的效果. 湖南农业科学, 2017,8(1):37-40.
doi: 10.16498/j.cnki.hnnykx.2017.008.010
JIN L, HU S H, JI X H, WEI W, XIE Y H . Effects of Zinc foliar application at different growth stages on cadmium absorption and transport in rice. Hunan Agricultural Sciences, 2017,8(1):37-40. (in Chinese)
doi: 10.16498/j.cnki.hnnykx.2017.008.010
[12] ZHOU H, ZHU W, YANG W T, GU J F, GAO Z X, CHEN L W, DU W Q, ZHANG P, PENG P Q, LIAO B H . Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicology & Environmental Safety, 2018,152:91-97
doi: 10.1016/j.ecoenv.2018.01.031 pmid: 29407786
[13] 彭鸥, 铁柏清, 叶长城, 张淼, 刘孝利, 魏祥东, 孙健 . 稻米镉关键积累时期研究. 农业资源与环境学报, 2017,34(3):272-279.
doi: 10.13254/j.jare.2017.0035
PENG O, TIE B Q, YE C C, ZHANG M, LIU X L, WEI X D, SUN J . The key period of cadmium accumulation in rice. Journal of Agricultural Resources and Environment, 2017,34(3):272-279. (in Chinese)
doi: 10.13254/j.jare.2017.0035
[14] 薛应龙 . 植物生理学实验手册. 上海: 上海科学技术出版社, 1985.
XUE Y L. Experimental Manual of Plant Physiology. Shanghai: Shanghai Scientific & Technical Publishers, 1985. ( in Chinese)
[15] RODDA M S, LI G, REID R J . The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant & Soil, 2011,347(1/2):105-114.
doi: 10.1007/s11104-011-0829-4
[16] 胡莹, 黄益宗, 段桂兰, 刘云霞 . 镉对不同生态型水稻的毒性及其在水稻体内迁移转运. 生态毒理学报, 2012,7(6):664-670.
HU Y, HUANG Y Z, DUAN G L, LIU Y X . Cadmium toxicity and its translocation in two ecotype rice cultivars. Asian Journal of Ecotoxicology, 2012,7(6):664-670. (in Chinese)
[17] 胡莹, 黄益宗, 黄艳超, 刘云霞 . 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响. 农业环境科学学报, 2013,32(3):432-437.
doi: 10.11654/jaes.2013.03.004
HU Y, HUANG Y Z, HUANG Y C, LIU Y X . Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages. Journal of Agro-Environmental Science, 2013,32(3):432-437. (in Chinese)
doi: 10.11654/jaes.2013.03.004
[18] LIU H J, ZHANG J L, CHRISTIE P, ZHANG F S . Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant & Soil, 2007,300(1/2):105-115.
[19] 史锟, 张福锁, 刘学军, 张旭东 . 不同时期施铁对水稻根表铁胶膜中铁镉含量及根系含镉量的影响. 农业环境科学学报, 2004,23(1):6-12.
doi: 10.3321/j.issn:1672-2043.2004.01.002
SHI K, ZHANG F S, LIU X J, ZHANG X D . Effects of different periods applied Fe 2+ and concentrations on Fe and Cd contents in iron plaque on rice root . Journal of Agro-Environmental Science, 2004,23(1):6-12. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2004.01.002
[20] 辜娇峰 . 组配改良剂对稻田镉砷复合污染的调控效果及机制研究[D]. 长沙: 中南林业科技大学, 2017.
GU J F . Mechanisms and effects of combined amendment regulating paddy soil complexly contaminated with cadmium and arsenic[D]. Changsha: Central South University of Forestry and Technology, 2017. (in Chinese)
[21] 陈宝玉, 王洪君, 曹铁华, 梁烜赫, 杨建, 任军 . 不同磷肥浓度下土壤-水稻系统重金属的时空累积特征. 农业环境科学学报, 2010,29(12):2274-2280.
CHEN B Y, WANG H J, CAO T H, LIANG X H, YANG J, REN J . Spatio-temporal characteristics of heavy metal accumulation in soil-rice cropping system under different phosphate fertilizer concentrations. Journal of Agro-Environmental Science, 2010,29(12):2274-2280. (in Chinese)
[22] 李冰, 王昌全, 李枝, 李仕贵 . Cd胁迫下杂交水稻对Cd的吸收及其动态变化. 生态环境学报, 2014,23(2):312-316.
doi: 10.3969/j.issn.1674-5906.2014.02.021
LI B, WANG C Q, LI Z, LI S G . Absorption of Cd by hybrid rice under the Cd stress and its dynamic change. Ecology and Environmental Sciences, 2014,23(2):312-316. (in Chinese)
doi: 10.3969/j.issn.1674-5906.2014.02.021
[23] 莫争, 王春霞, 陈琴, 王海, 薛传金, 王子健 . 重金属Cu, Pb, Zn, Cr, Cd在水稻植株中的富集和分布. 环境化学, 2002,21(2):110-116.
doi: 10.3321/j.issn:0254-6108.2002.02.002
MO Z, WANG C X, CHEN Q, WANG H, XUE C J, WANG Z J . Distribution and enrichment of heavy metals of Cu, Pb, Zn, Cr and Cd in paddy plant. Environmental Chemistry, 2002,21(2):110-116. (in Chinese)
doi: 10.3321/j.issn:0254-6108.2002.02.002
[24] 张路, 张锡洲, 李廷轩, 余海英, 戢林 . Cd胁迫对水稻亲本材料Cd吸收分配的影响. 农业环境科学学报, 2014,33(12):2288-2295.
doi: 10.11654/jaes.2014.12.002
ZHANG L, ZHANG X Z, LI T X, YU H Y, JI L . Effects of cadmium stress on uptake and distribution of cadmium in different rice varieties. Journal of Agro-Environmental Science, 2014,33(12):2288-2295. (in Chinese)
doi: 10.11654/jaes.2014.12.002
[25] 荆红梅, 郑海雷, 赵中秋, 张春光 . 植物对镉胁迫响应的研究进展. 生态学报, 2001,21(12):2125-2130.
doi: 10.3321/j.issn:1000-0933.2001.12.022
JIN H M, ZHENG H L, ZHAO Z Q, ZHANG C G . Progresses of plants response to cadmium. Acta Ecologica Sinica, 2001,21(12):2125-2130. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2001.12.022
[26] 张军, 束文圣 . 植物对重金属镉的耐受机制. 植物生理与分子生物学学报, 2006,32(1):1-8.
doi: 10.3321/j.issn:1671-3877.2006.01.001
ZHANG J, SHU W S . Mechanisms of heavy metal cadmium tolerance in plants. Journal of Plant Physiology and Molecular Biology, 2006,32(1):1-8. (in Chinese)
doi: 10.3321/j.issn:1671-3877.2006.01.001
[27] 陈爱葵, 王茂意, 刘晓海, 曾小龙 . 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013,32(4):514-522.
CHEN A Q, WANG M Y, LIU X H, ZENG X L . Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecological Science, 2013,32(4):514-522. (in Chinese)
[28] 叶瑶瑶, 王飞娟, 石晓柳, 王高阳, 俞姣, 朱诚 . Cd在水稻籽粒中的积累及运输机制. 园艺与种苗, 2012,11(1):58-61.
doi: 10.3969/j.issn.2095-0896.2012.11.019
YE Y Y, WANG F J, SHI X L, WANG G Y, YU J, ZHU C . Mechanisms of Cd accumulation and transportation in rice grain. Horticulture & Seed, 2012,11(1):58-61. (in Chinese)
doi: 10.3969/j.issn.2095-0896.2012.11.019
[29] 潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝 . 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016,30(3):273-282.
doi: 10.16819/j.1001-7216.2016.5128
PAN J F, WANG B, CUI K H, HUANG J L, NIE L X . Effects of nitrogen application on accumulation and translocation of non- structural carbohydrates in internodes and sheaths of rice. Chinese Journal of Rice Science, 2016,30(3):273-282. (in Chinese)
doi: 10.16819/j.1001-7216.2016.5128
[30] 冯雪敏 . 水稻富集镉砷的关键部位、生育时期及相关元素的研究[D]. 北京: 中国农业科学院, 2017.
FENG X M . The key parts, important growth stages and related elements in Cd/As accumulation of rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese)
[31] 唐皓, 李廷轩, 张锡洲, 余海英, 陈光登 . 水稻镉高积累材料不同生育期镉积累变化特征研究. 农业环境科学学报, 2015,34(3):471-477.
TANG H, LI T X, ZHANG X Z, YU H Y, CHEN G D . Cadmium accumulation in high cadmium-accumulating rice cultivars at different growth stages. Journal of Agro-Environmental Science, 2015,34(3):471-477. (in Chinese)
[32] 李鹏, 葛滢, 吴龙华, 沈丽波, 谭维娜, 骆永明 . 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探. 中国水稻科学, 2011,25(3):291-296.
doi: 10.3969/j.issn.1001-7216.2011.03.010
LI P, GE Y, WU L H, SHEN L B, TAN W N, LUO Y M . Uptake and translocation of cadmium and its physiological effects in two rice cultivars differed in grain cadmium concentration. Chinese Journal of Rice Science, 2011,25(3):291-296. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2011.03.010
[33] 梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天 . 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010,24(4):398-402.
doi: 10.3969/j.issn.1001-7216.2010.04.011
LIANG C G, CHEN L P, WANG Y, LIU J, XU G L, LI T . Effects of high temperature on key enzyme activities of nitrogen metabolism and protein content during rice grain filling. Chinese Journal of Rice Science, 2010,24(4):398-402. (in Chinese)
doi: 10.3969/j.issn.1001-7216.2010.04.011
[34] URAGUCHI S, KAMIYA T, SAKAMOTO T, KASAI K, SATO Y, NAGAMURA Y, YOSHIDA A, KYOZUKA J, ISHIKAWA S, FUJIWARA T . Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Science of the USA, 2011,108(52):20959-20964.
doi: 10.1073/pnas.1116531109 pmid: 22160725
[35] 杨居荣, 何孟常, 查燕, 刘虹, 张平 . 稻、麦籽实中Cd的结合形态. 中国环境科学, 2000,20(5):404-408.
doi: 10.3321/j.issn:1000-6923.2000.05.006
YANG J R, HE M C, CHA Y, LIU H, ZHANG P . Binding forms of Cd in the rice and wheat seeds. China Environmental Science, 2000,20(5):404-408. (in Chinese)
doi: 10.3321/j.issn:1000-6923.2000.05.006
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[3] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[4] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[5] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[6] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[7] ZHANG ChunLong, Channarong PHONGSAI, ZHANG JiangLi, YUYang, SU YaoHua, YANG Mi, GAO Liang, PU ShiHuang, LI Juan, JIN ShouLin, TAN XueLin, WEN JianCheng. Evaluation of Rice Germplasms for Grain Resistant Starch Content and Its Environmental Stability [J]. Scientia Agricultura Sinica, 2019, 52(17): 2921-2928.
[8] MING Yi,ZHANG XiZhou,YU HaiYing. The Evaluation of Cd Accumulation in Grains of Different Wheat Materials [J]. Scientia Agricultura Sinica, 2018, 51(22): 4219-4229.
[9] Ke WANG, ChunLi XU, YuTing ZHANG, ZhiBin ZHENG, DingYong WANG, XiaoJun SHI. Cd Accumulation and Safety Assessment of Soil-Crop System Induced by Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2018, 51(18): 3542-3550.
[10] CHEN Bo, ZHOU NianBing, GUO BaoWei, SHU Peng, ZHANG HongCheng, HUO ZhongYang, CHENG FeiHu, HUA Jin, HUANG DaShan, CHEN ZhongPing, CHEN Heng, LIU YunFa, LIAO ShiLiang. Differences of Double-Cropping Late Rice in Yield, Growth Stage and Utilization of Temperature and Illumination in Different Latitudes of Jiangxi Province [J]. Scientia Agricultura Sinica, 2017, 50(8): 1403-1415.
[11] WANG Jun-juan, WANG De-long, YIN Zu-jun, WANG Shuai, FAN Wei-li, LU Xu-ke, MU Min, GUO Li-xue, YE Wu-wei, YU Shu-xun. Identification of the Chilling Resistance from Germination Stage to Seedling Stage in Upland Cotton [J]. Scientia Agricultura Sinica, 2016, 49(17): 3332-3346.
[12] WANG Yi, ZHANG Xia, YANG Wen-yu, SUN Xin, SU Ben-ying, CUI Liang. Effect of Shading on Soybean Leaf Photosynthesis and Chlorophyll Fluorescence Characteristics at Different Growth Stages [J]. Scientia Agricultura Sinica, 2016, 49(11): 2072-2081.
[13] DONG Xiang-li, GAO Yue-e, LI Bao-hua, YONG Dao-jing, WANG Cai-xia, LI Gui-fang, LI Bao-du. Epidemic Dynamics of Apple Marssonina Leaf Blotch over Whole Growth Season in the Central Area of Shandong Peninsula [J]. Scientia Agricultura Sinica, 2015, 48(3): 479-487.
[14] YAO Ning, SONG Li-bing, LIU Jian, FENG Hao, WU Shu-fang, HE Jian-qiang. Effects of Water Stress at Different Growth Stages on the Development and Yields of Winter Wheat in Arid Region [J]. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389.
[15] HUA Jin, ZHOU Nian-bing, ZHANG Jun, ZHANG Hong-cheng, HUO Zhong-yang, ZHOU Pei-jian, CHENG Fei-hu, LI Guo-ye, HUANG Da-shan, CHEN Zhong-ping, CHEN Guo-liang, DAI Qi-gen, XU Ke, WEI Hai-yan, GAO Hui, G. Selection of Late Rice Cultivars of Japonica Rice Switched from Indica Rice in Double Cropping Rice Area [J]. Scientia Agricultura Sinica, 2014, 47(23): 4582-4594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!