Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (22): 4219-4229.doi: 10.3864/j.issn.0578-1752.2018.22.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Evaluation of Cd Accumulation in Grains of Different Wheat Materials

MING Yi(),ZHANG XiZhou(),YU HaiYing   

  1. College of Resources, Sichuan Agricultural University, Chengdu 611130
  • Received:2018-06-07 Accepted:2018-08-08 Online:2018-11-16 Published:2018-11-16

Abstract:

【Objective】 The screening of the low-Cd accumulation genotypes for wheat not only benefits for the safe production of Cd-contaminated agricultural soils, but also provides breeding materials for the study of hereditary characteristics of wheat. 【Method】 In this study, 139 wheat lines were considered to be the research objectives and two consecutive field trials were carried out under Cd heavy pollution in soil in 2014-2015 and 2015-2016. Cd concentrations in grains of the 139 wheat lines for the two field trials were evaluated to investigate Cd accumulation difference among the 139 wheat lines, so as to obtain wheat lines with the characteristics of low-Cd accumulation in grains. Followly, the characteristics of Cd accumulation and yield of the low-Cd accumulation wheat materials were explored under Cd heavy pollution in soil by a pot experiment. With the index of Cd concentration in grain and grain yield, cluster analysis was also carried out to obtain superior wheat lines with low-Cd accumulation and high yield. The difference of Cd accumulation and translocation in organs between the two wheat lines was analyzed to get further understanding of the mechanisms of low-Cd accumulation in grains of the low-Cd accumulation wheat lines.【Result】For the two field experiments in 2014-2015 and 2015-2016, the range and coefficient of variation (CV) of Cd concentrations in grains of the 139 wheat materials were 0.002-0.271 mg·kg -1 DW -1, 63.097% and 0.095-0.343 mg·kg -1 DW -1, 24.960%, respectively. There was a significant difference for Cd concentrations in grains among the 139 wheat materials. According to the cluster analysis, 16 low-Cd accumulation wheat lines were obtained for the two field experiments, including 12N551 (M033), JIMAI22 (M059), SHUMAI375 (M075), ZHONGLIANG22 (M079), 30389 (M092), B7094 (M094), ML2652 (M114), G219-24 (M116), 77782 (M121), NANNONGOzy23 (M123), SHENGC90097 (M124), Pm99915-1 (M126), NANNONG02y39 (M127), SHENGCXK027-4 (M129), 02Y23 (M131) and LIANGMAI No.2 (M139). For the pot experiment, significant difference for Cd concentrations in grains and grain yield among the 16 low-Cd accumulation wheat lines was observed. Cd concentrations in grains and grain yield among the 16 low-Cd accumulation wheat lines ranged from 0.286-0.910 mg·kg -1, 3.199-7.716 g·plant -1 and 0.881-1.381 mg·kg -1, 3.075-8.252 g·plant -1, respectively. when exposed to 1 mg·kg -1 and 4 mg·kg -1 Cd, The CV of Cd concentrations in grains and grain yield among the 16 low-Cd accumulation wheat lines was 33.706%, 24.044% and 12.276%, 12.276%, respectively. Then, the dominant wheat materials (12N551 (M033), ZHONGLIANG22 (M079), G219-24 (M116) and LIANGMAI No. 2 (M139) ) with low-Cd content and high yield were obtained according to the cluster analysis. Compared with the high-Cd accumulative materials (KANGXIU3816 (M060) and SHE1136 (M073)), Cd concentrations in different organs of the low-Cd accumulation wheat lines (12N551 (M033), ZHONGLIANG22 (M079), G219-24 (M116) and LIANGMAI No. 2 (M139) ) exposed to 4 mg·kg -1 Cd were significantly higher than those exposed to 1 mg·kg -1 Cd. Cd concentrations in grains of the low-Cd accumulation wheat lines (12N551 (M033), ZHONGLIANG22 (M079), G219-24 (M116) and LIANGMAI No. 2 (M139) ) were significantly lower than the high-Cd accumulation wheat lines(KANGXIU3816 (M060), SHE1136 (M073)). The low-Cd accumulation wheat lines presented lower Cd translocation from straws to grains and therefore lower Cd accumulation in grains. 【Conclusion】 According to the two-year field experiments and pot experiment, (12N551 (M033), ZHONGLIANG22 (M079), G219-24 (M116) and LIANGMAI No. 2 (M139)) showed lower Cd accumulation and greater grain yield in grains under different experimental conditions of field and pot experiments in 2014-2017, thus could be considered to be ideal candidates for the cultivation in the moderate Cd-contaminated agricultural soils and also providing materials for the study of genetic characteristics of the low Cd accumulation in grains.

Key words: wheat, Cd, low-Cd accumulation material, difference evaluation, translocation factor

Table 1

The different statistics of Cd content in grains of the wheat materials"

年份Year 变幅Range (mg·kg-1) 均值Mean value 标准差SD 变异系数CV(%)
2014-2015 0.002—0.271 0.067 0.042 63.097
2015-2016 0.095—0.343 0.193 0.048 24.960

Fig. 1

Cluster analysis of Cd content in the grains of 139 wheat materials"

Table 2

Material codes and changes of Cd content in the different Cd accumulation types representative wheat from 2014 to 2016 (mg·kg-1)"

类型
Type
材料数量
Number of materials
材料编号
Material code
变幅Range (mg·kg-1)
2014—2015 2015—2016
低积累型
Low accumulation
16 M033、M079、M114、M123、M127、M139、M059、M092、M116、M124、M129、M075、M094、M121、M126、M131 0.010—0.055 0.095—0.167
中积累型
Medium accumulation
28 M002、M005、M006、M007、M010、M020、M023、M024、M026、M031、M047、M049、M050、M054、M055、M056、M058、M064、M067、M082、M083、M085、M090、M104、M108、M110、M119、M133 0.061—0.091 0.175—0.218
高积累型
High accumulation
2 M060、M073 0.177—0.191 0.265—0.314

Table 3

The different statistics of yield and Cd content in the grains of the Cd low accumulation wheats under different Cd level"

Cd水平
Cd level
参数
Parameter
变幅
Range
均值
Mean value
标准差
SD
变异系数
CV (%)
CK 籽粒Cd含量Cd content in grain(mg·kg-1) - - - -
籽粒产量Grain yield(g·plant-1) 4.750—9.554 6.688 1.211 18.114
Cd1 籽粒Cd含量Cd content in grain(mg·kg-1) 0.286—0.910 0.502 0.169 33.706
籽粒产量Grain yield(g·plant-1) 3.199—7.716 5.554 1.335 24.044
Cd4 籽粒Cd含量Cd content in grain(mg·kg-1) 0.881—1.381 1.117 0.137 12.276
籽粒产量Grain yield(g·plant-1) 3.075—8.252 5.632 1.709 30.351

Fig. 2

Grain yield and Cd content cluster analysis of the low-Cd accumulation wheats a: Cluster analysis of Cd content in the grains of the Cd-low accumulation wheats; b: Cluster analysis of grain yield of the Cd-low accumulation wheats"

Table 4

Different Cd contents of different organs in two kinds of the wheat lines under different Cd levels (mg·kg-1)"

Cd 积累类型
Cd accumulation type
材料
Material
Cd1 Cd4
根Root 茎-叶Stem-leaf 籽粒Grain 根Root 茎-叶Stem-leaf 籽粒Grain
低积累型
Low accumulation
12N551 4.907±0.305abb 1.626±0.526abb 0.421±0.009cb 21.247±2.233aba 4.120±0.116aba 1.028±0.040ba
中梁22
Zhongliang22
3.891±0.031bb 1.338±0.061bcb 0.457±0.019cb 18.658±6.030aba 5.437±1.275aba 0.887±0.067ba
G219-24 6.629±1.608ab 1.872±0.008abb 0.415±0.016cb 16.022±0.267aba 6.335±1.133aa 1.118±0.050ba
良麦2号
Liangmai No.2
4.327±0.817bb 0.950±0.090cb 0.367±0.003cb 20.567±2.463aba 3.499±0.042ba 1.028±0.046ba
高积累型
High accumulation
抗锈3816
Kangxiu 3816
5.386±0.823abb 1.502±0.095bcb 1.051±0.092bb 12.929±2.529ba 3.949±0.311aba 1.816±0.028aa
射1136
She 1136
6.598±0.492ab 2.123±0.268aa 1.790±0.020aa 24.114±4.683aba 4.141±1.917aba 1.857±0.249aa

Table 5

Differences in the transport of Cd between two kinds of the wheat lines under different Cd levels"

Cd 积累类型
Cd accumulation type
材料
Material
Cd1 Cd4
TF籽粒/茎叶TFgrain/stem-leaf TF茎叶/根TFstem-leaf/root TF籽粒/茎叶TFgrain/stem-leaf TF茎叶/根TFstem-leaf/root
低积累型
Low accumulation
12N551 0.184±0.068ca 0.190±0.078ba 0.265±0.038ba 0.195±0.026aa
中梁22 Zhongliang22 0.342±0.030bca 0.343±0.013aa 0.190±0.020bca 0.210±0.147aa
G219-24 0.235±0.012ca 0.291±0.072aba 0.117±0.007cb 0.338±0.005aa
良麦2号Liangmai No.2 0.421±0.009ba 0.222±0.021aba 0.306±0.000bb 0.225±0.020aa
高积累型
High accumulation
抗锈3816 Kangxiu 3816 0.703±0.106aa 0.274±0.075aba 0.461±0.029aa 0.506±0.357aa
射1136 She 1136 0.839±0.133aa 0.324±0.064aba 0.196±0.107bcb 0.167±0.047aa
[1] LIU K, LÜ J L, HE W X, ZHANG H, CAO Y F, DAI Y C . Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicology Environmental Safety, 2015,113:207-213.
doi: 10.1016/j.ecoenv.2014.12.005 pmid: 25499054
[2] 欧阳燕莎, 刘爱玉, 李瑞莲 . 镉对作物的影响及作物对镉毒害响应研究进展. 作物研究, 2016,30(1):105-110.
OUYANG Y S, LIU A Y, LI R L . Research progress on effects of cadmium on crops and the response of crops to cadmium. Crop Research, 2016,30(1):105-110. (in Chinese)
[3] LIU W T, LIANG L C, ZHANG X, ZHOU Q X . Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environmental Science Pollution Research International, 2015,22(11):8432-8441.
doi: 10.1007/s11356-014-4017-y pmid: 25548022
[4] 中华人民共和国国家标准, 《食品安全国家标准食品中污染物限量》(GB2762-2017). 2017: 1-17. .
National standard of the People's Republic of China. Food safety national standard food pollutant limit (GB2762-2017). 2017: 1-17. (in Chinese)
[5] SONG W E, CHEN L, CHEN B S, SONG N, LI N, LIU B . Variation of Cd concentration in various rice cultivars and derivation of Cd toxicity thresholds for paddy soil by species sensitivity distribution. Journal of Integrative Agriculture, 2015,14(9):1845-1854.
doi: 10.1016/S2095-3119(14)60926-6
[6] 史高玲, 马鸿翔, 娄来清, 蔡庆生 . 小麦株高和茎秆不同部位砷镉磷含量与籽粒砷镉磷含量的关系. 农业环境科学学报, 2017,36(1):8-15.
SHI G L, MA H X, LOU L Q, CAI Q S . Relationship between arsenic, cadmium, and phosphorous concentrations in different parts of wheat straw, wheat plant height and grain arsenic, cadmium, and phosphorous concentrations. Journal of Agro-Environment Science, 2017,36(1):8-15. (in Chinese)
[7] 张锡洲, 张洪江, 李廷轩, 余海英 . 水稻镉耐性差异及镉低积累种质资源的筛选. 中国生态农业学报, 2013,21(11):1434-1440.
doi: 10.3724/SP.J.1011.2013.30478
ZHANG X Z, ZHANG H J, LI T X, YU H Y . Differences in Cd-tolerance of rice and screening for Cd low-accumulation rice germplasm resources, Chinese Journal of Eco-Agriculture, 2013,21(11):1434-1440. (in Chinese)
doi: 10.3724/SP.J.1011.2013.30478
[8] 陈京都, 何理, 林忠成, 戴其根, 张军, 郭保卫, 许露生, 张洪程 . 不同生育期类型水稻对镉积累的研究. 生态与农村环境学报, 2013,29(3):390-393.
CHEN J D, HE L, LIN Z C, DAI Q G, ZHANG J, GUO B W, XU L S, ZHANG H C . Cd accumulation in japonica rice relative to growth type. Journal of Ecology and Rural Environment, 2013,29(3):390-393. (in Chinese)
[9] 阳小凤, 马淑梅, 黄山, 宁柏成, 邱博, 李小红 . 农田镉污染对大豆镉吸收特性及其产量的影响. 作物研究, 2017(6):668-672.
YANG X F, MA S M, HUANG S, NING B C, QIU B, LI X H . Study on the cadmium absorptive character and yield variation of soybean in cadmium contaminated farmland. Crop Research, 2017(6):668-672. (in Chinese)
[10] 刘维涛, 周启星, 孙约兵, 于志国 . 大白菜(Brassica pekinensis L.)对镉富集基因型差异的研究. 应用基础与工程科学学报, 2010,18(2):226-235.
LIU W T, ZHOU Q X, SUN Y B, YU Z G . Research on cadmium enrichment genotype differences of Brassica pekinensis L. Journal of Basic Science and Engineering, 2010,18(2):226-235. (in Chinese)
[11] 熊孜, 李菊梅, 赵会薇, 马义兵 . 不同小麦品种对大田中低量镉富集及转运研究. 农业环境科学学报, 2018,37(1):36-44.
XIONG Z, LI J M, ZHAO H W, MA Y B . Accumulation and translocation of cadmium in different wheat cultivars in farmland. Journal of Agro-Environment Science, 2018,37(1):36-44. (in Chinese)
[12] 孙洪欣, 薛培英, 赵全利, 杨铮铮, 杨阳, 冯宇佳, 刘峰, 唐铁朝, 刘文菊 . 镉、铅积累与转运在冬小麦品种间的差异. 麦类作物学报, 2015,35(8):1161-1167.
SUN H X, XUE P Y, ZHAO Q L, YANG Z Z, YANG Y, FENG Y J, LIU F, TANG T C, LIU W J . Differences of Cadmium and lead accumulation and transportation among winter wheat varieties. Journal of Triticeae Crops, 2015,35(8):1161-1167. (in Chinese)
[13] 王永平, 杨万荣, 廖芳芳, 邢丹, 张爱民 . 镉低积累作物筛选及其与超富集植物间套作应用进展. 广东农业科学, 2015,42(24):92-98.
doi: 10.3969/j.issn.1004-874X.2015.24.018
WANG Y P, YANG W R, LIAO F F, XING D, ZHANG A M . Advances on screening of Cd low-accumulation crops and its intercropping with hyperaccumulator. Guangdong Agricultural Science, 2015,42(24):92-98. (in Chinese)
doi: 10.3969/j.issn.1004-874X.2015.24.018
[14] 刘凤枝, 师荣光, 徐亚平, 蔡彦明, 刘铭, 战新华, 王跃华, 刘保锋, 赵玉杰, 郑向群 . 耕地土壤重金属污染评价技术研究——以土壤中铅和镉污染为例. 农业环境科学学报, 2006,25(2):422-426.
doi: 10.3321/j.issn:1672-2043.2006.02.032
LIU F Z, SHI R G, XU Y P, CAI Y M, LIU M, ZHAN X H, WANG Y H, LIU B F, ZHAO Y J, ZHEN X Q . The study of assessment technology for farmland soil heavy metal pollutions. Journal of Agro-Environment Science, 2006,25(2):422-426. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2006.02.032
[15] 中华人民共和国国家标准, 土壤环境质量 农用地土壤污染管控标准(试行)(GB15618-2018 代替GB15618-1995)》. 2018: 1-4. .
National standard of the People's Republic of China. soil environmental quality control standard for agricultural land (trial) (GB15618-2018 replace GB15618-1995). 2018: 1-4. (in Chinese)
[16] 李传飞, 李廷轩, 张锡洲, 余海英, 张路 . 外源镉在几种典型农耕土壤中的稳定化特征. 农业环境科学学报, 2017,36(1):85-92.
doi: 10.11654/jaes.2016-1025
LI C F, LI T X, ZHANG X Z, YU H Y, ZHANG L . Stability of exogenous cadmium in several typical agricultural soils. Journal of Agro-Environment Science, 2017,36(1):85-92. (in Chinese)
doi: 10.11654/jaes.2016-1025
[17] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Chemical Analysis Method of Soil Agriculture. Beijing: China Agricultural Science and Technology Press, 2000. ( in Chinese)
[18] 刘登璐, 黄有胜, 李廷轩, 张锡洲, 余海英, 王勇 . 镉胁迫下烟草镉低积累材料的镉积累分配特征. 中国烟草科学, 2017,38(5):69-76.
doi: 10.13496/j.issn.1007-5119.2017.05.012
LIU D L, HUANG Y S, LI T X, ZHANG X Z, YU H Y, WANG Y . The characteristics of Cd accumulation in low-Cd accumulating tobacco cultivars exposed to Cd. Chinese Tobacco Science, 2017,38(5):69-76. (in Chinese)
doi: 10.13496/j.issn.1007-5119.2017.05.012
[19] 刘登璐, 李廷轩, 余海英, 张路, 王勇 . 不同烟草材料镉积累差异评价. 农业环境科学学报, 2016,35(11):2067-2076.
doi: 10.11654/jaes.2016-0646
LIU D L, LI T X, YU H Y, ZHANG L, WANG Y . Evaluation of differential cadmium accumulation ability in different tobacco species. Journal of Agro-Environment Science, 2016,35(11):2067-2076. (in Chinese)
doi: 10.11654/jaes.2016-0646
[20] YANG X, LU K Q, MCGROUTHER K, CHE L, HU G T, WANG Q Y, LIU X Y, SHEN L L, HUANG H G, YE Z Q, WANG H L . Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils Sediments, 2017,17(3):751-762.
doi: 10.1007/s11368-015-1326-9
[21] 张路, 张锡洲, 李廷轩, 戢林, 郑陶 . 水稻镉安全亲本材料对镉的吸收分配特性. 中国农业科学, 2015,48(1):174-184.
doi: 10.3864/j.issn.0578-1752.2015.01.17
ZHANG L, ZHANG X Z, LI T X, JI L, ZHENG T . Cd uptake and distribution characteristics of Cd pollution-safe rice materials. Scientia Agricultura Sinica, 2015,48(1):174-184. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.01.17
[22] 杨素勤, 程海宽, 张彪, 景鑫鑫, 孙晓雪, 赵鹏 . 不同品种小麦Pb积累差异性研究. 生态与农村环境学报, 2014,30(5):646-651.
doi: 10.3969/j.issn.1673-4831.2014.05.016
YANG S Q, CHENG H K, ZHANG B, JING X X, SUN X X, ZHAO P . Differences in Pb accumulation between wheat varieties. Journal of Ecology and Rural Environment, 2014,30(5):646-651. (in Chinese)
doi: 10.3969/j.issn.1673-4831.2014.05.016
[23] 刘克, 和文祥, 张红, 曹莹菲, 代允超, 吕家珑 . 镉在小麦各部位的富集和转运及籽粒镉含量的预测模型. 农业环境科学学报, 2015,34(8):1441-1448.
doi: 10.11654/jaes.2015.08.002
LIU K, HE W X, ZHANG H, CAO Y F, DAI Y C, LÜ J L . Cadmium accumulation and translocation in wheat and grain Cd prediction. Journal of Agro-Environment Science, 2015,34(8):1441-1448. (in Chinese)
doi: 10.11654/jaes.2015.08.002
[24] 朱智伟, 陈铭学, 牟仁祥, 曹赵云, 张卫星, 林晓燕 . 水稻镉代谢与控制研究进展. 中国农业科学, 2014,47(18):3633-3640.
doi: 10.3864/j.issn.0578-1752.2014.18.011
ZHU Z W, CHEN M X, MU R X, CAO Z Y, ZHANG W X, LIN X Y . Advances in research of cadmium metabolism and control in rice plants. Scientia Agricultura Sinica, 2014,47(18):3633-3640. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.011
[25] ZHU Y, YU H, WANG J, FANG W, YUAN J, YANG Z . Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 2007,55(10):1045-1052.
doi: 10.1021/jf062971p pmid: 17263511
[26] LIN R Z, WANG X R, LUO Y, DU W C, GUO H Y, YIN D Q . Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere, 2007,69(1):89-98.
doi: 10.1016/j.chemosphere.2007.04.041 pmid: 17568654
[27] AKHTER F M. MACFIE S M . Species-specific relationship between transpiration and cadmium translocation in lettuce, barley and radish. Journal of Plant Studies, 2012,1(1):1731-1739.
[28] 杨惟薇, 刘敏, 曹美珠, 张超兰 . 不同玉米品种对重金属铅镉的富集和转运能力. 生态与农村环境学报, 2014,30(6):774-779.
doi: 10.3969/j.issn.1673-4831.2014.06.016
YANG W W, LIU M, CAO M Z, ZHANG C L . Accumulation and transfer of lead (Pb) and cadmium ( Cd) on different species of maize. Journal of Ecology and Rural Environment, 2014,30(6):774-779. (in Chinese)
doi: 10.3969/j.issn.1673-4831.2014.06.016
[29] MACFIE S M, BAHRAMI S, MCGARVEY B D . Differential accumulation of cadmium in near-isogenic lines of durum wheat: No role for phytochelatins. Physiology and Molecular Biology Plants, 2016,187(15):461-472.
doi: 10.1007/s12298-016-0383-x pmid: 27924119
[30] URAGUCHI S, MORI S, KURAMATA M, KAWASAKI A, ARAO T, ISHIKAWA S . Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60(9):2677-2688.
doi: 10.1093/jxb/erp119 pmid: 19401409
[31] URAGUCHI S, FUJIWARA T . Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 2012,5(1):1-8.
doi: 10.1186/1939-8433-5-1 pmid: 24764501
[32] WU Z C, ZHAO X H, SUN X C, TAN Q L, TANG Y F, NIE Z J, HU C X . Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 2015,119(119C):1217-1223.
doi: 10.1016/j.chemosphere.2014.09.099 pmid: 25460764
[33] SONG Y, JIN L, WANG X J . Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 2017,19(2):133-141.
doi: 10.1080/15226514.2016.1207598 pmid: 27409403
[34] ISHIMARU Y, TAKAHASHI R, BASHIR K, SHIMO H, SENOURA T, SUGIMOTO K, ONO K, YANO M, ISHIKAWA S, NAKANISHI H, NISHIZAWA N K . Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific Reports, 2012,2:286-293.
doi: 10.1038/srep00286 pmid: 22368778
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!