Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4505-4517.doi: 10.3864/j.issn.0578-1752.2019.24.006

• PLANT PROTECTION • Previous Articles     Next Articles

Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages

WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA()   

  1. Plant Protection Institute of Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, Baoding 071000, Hebei
  • Received:2019-06-03 Accepted:2019-06-28 Online:2019-12-16 Published:2020-01-15
  • Contact: Ping MA E-mail:pingma88@126.com

Abstract:

【Objective】The objective of this study is to research the effects of broccoli residues (BR) on cotton verticillium wilt and soil bacterial community structure at different growth stages, and to provide new ways and ideas for green ecological control of cotton verticillium wilt and reduction of chemical pesticides.【Method】In the field plot experiment, the soil planted with cotton was treated with broccoli residues and no broccoli residues (CK). The incidence dynamics of cotton verticillium wilt in different treatments were monitored at different growth stages. The number of DNA copies of Verticillium dahliae was determined by real-time quantitative PCR, and the structure of soil bacterial communities was measured by high-throughput sequencing (Illumina MiSeq). The effects of broccoli residues returning to soil on the quantity of pathogen and the community of soil bacteria were analyzed. Principal component analysis (PCA) was used to explore the characteristics and rules of structural changes of soil bacterial community at the level of phylum and genus in different growth stages.【Result】The incidence and disease index of cotton verticillium wilt showed a downward trend after the return of broccoli residues to soil, respectively. Moreover, the peak period of verticillium wilt was delayed, and 70.77% control efficacy was achieved at the peak period. The development curve of disease index and time course of disease in the whole growth period was established, and the average control efficacy was 57.21%. Compared to the blank control, the number of DNA copies of V. dahliae was decreased by 10.96%, 11.11%, 25.95% and 11.25% at the 4 stages of cotton growing and non-growing season, respectively, after the return of broccoli residues to soil. Illumina MiSeq analysis showed that broccoli residues treatment significantly increased soil bacterial diversity. The richness index Chao1 was increased significantly at all growth stages, and the ACE index was significantly increased at the pre-sowing stage, flowering and boll stage and boll-opening stage. Compared to the blank control, the relative abundance of Actinobacteria was increased significantly at different growth stages after the return of broccoli residues to soil. Meanwhile, the results showed that there were differences in the composition of dominant microorganisms at different growth stages after the return of broccoli residues to soil. For example, Firmicutes increased to the dominant microflora at the pre-sowing stage and seedling stage, and Cyanobacteria became the dominant microflora at the bud stage and flowering and boll stage. Principal component analysis showed that broccoli residues to soil changed the structure of bacterial community at seedling stage, bud stage, flowering and boll stage and boll-opening stage. Further analysis showed that the relative abundance of Streptomyces and Bacillus was significantly increased after the return of broccoli residues to soil.【Conclusion】Broccoli residues returning to soil can effectively inhibit the occurrence of cotton verticillium wilt, reduce the number of DNA copies of V. dahliae in soil, change the structure of soil bacterial community, and increase the relative abundance of beneficial microorganisms, which is an effective green measure to control cotton verticillium wilt.

Key words: broccoli residues, Verticillium dahliae, cotton verticillium wilt, bacterial community structure, Illumina MiSeq, growth stage

Fig. 1

Dynamic changes of cotton verticillium wilt"

Fig. 2

AUDPC of disease index and time of cotton verticillium wilt"

Fig. 3

Quantification of V. dahliae in soil of cotton by real- time PCR"

Table 1

Effects of broccoli residues returning to soil on sequencing quantity and community diversity of bacteria at different growth stages of cotton"

时期
Stage
处理
Treatment
测序
Reads
丰富度Richness 均匀度Evenness
Chao1指数
Chao1 index
ACE指数
ACE index
辛普森指数
Simpson index
香浓指数
Shannon index
播种前期
Pre-sowing stage
对照CK 38251.50±293.50a 2814.33±14.34a 2813.33±69.14a 0.9986±0.0002a 10.67±0.13a
西兰花残体BR 39434.67±2787.82a 3339.07±262.21b 3419.18±147.49b 0.9970±0.0007a 10.18±0.10a
苗期
Seedling stage
对照CK 38800.00±206.00a 2703.00±12.25a 2669.00±41.67a 0.9984±0.0001a 10.56±0.08a
西兰花残体BR 42364.67±3689.72a 2795.04±64.96b 2691.80±68.21a 0.9984±0.0000a 10.56±0.06a
蕾期
Bud stage
对照CK 42593.50±495.50a 3039.57±46.12a 3143.00±80.87a 0.9985±0.0002a 10.67±0.21a
西兰花残体BR 41670.00±2906.67a 3624.21±223.84b 3173.46±99.20a 0.9983±0.0000a 10.16±0.44a
花铃期
Flowering and boll stage
对照CK 36694.00±35.00a 2861.00±36.34a 2861.00±31.38a 0.9987±0.0000a 10.71±0.25a
西兰花残体BR 41284.67±3638.72a 3763.18±167.23b 3946.36±97.67b 0.9982±0.0002a 10.49±0.11a
吐絮期
Boll-opening stage
对照CK 36369.50±75.50a 2543.33±57.97a 2558.00±60.21a 0.9965±0.0006a 10.33±0.33a
西兰花残体BR 34275.33±2063.41a 2665.31±259.75b 2813.93±279.95b 0.9974±0.0001a 10.12±0.34a

Fig. 4

Principal component analysis of soil bacterial community structure at different growth stages of cotton"

Fig. 5

Effect of broccoli residues on bacterial taxonomic composition at different growth stages of cotton"

Table 2

Relative abundance of bacteria at different growth stages of cotton (%) (At genus level, at least one group in 10 groups relative abundance>1%)"


Genus
时期Stage
播种前期
Pre-sowing stage
苗期
Seedling stage
蕾期
Bud stage
花铃期
Flowering and boll stage
吐絮期
Boll-opening stage
CKT0 BRT0 CKT1 BRT1 CKT2 BRT2 CKT3 BRT3 CKT4 BRT4
Haliangium 1.93b 0.96a 2.16b 1.58a 0.75b 0.54a 1.21b 1.07a 1.48b 0.87a
鞘脂单胞菌属Sphingomonas 2.18b 1.57a 2.73a 2.66a 2.13a 2.32b 2.51b 2.33a 1.24b 1.16a
Iamia 1.28a 1.16a 0.40a 0.65b 0.51a 0.90b 0.82a 1.01b 0.63a 1.66b
芽单胞菌属Gemmatimonas 0.98b 0.34a 1.08b 0.88a 1.49b 0.81a 2.27b 1.01a 0.57a 1.12b
硝化螺菌属Nitrospira 0.81a 1.03b 1.34a 1.32a 0.70b 0.51a 1.07a 0.93a 1.03b 0.61a
红色杆菌属Rubrobacter 0.72b 0.55a 1.11b 0.82a 1.20b 0.68a 0.93b 0.75a 0.85a 0.84a
Pontibacter 0.77b 0.22a 1.36b 0.61a 0.96b 0.56a 0.96b 0.47a 0.20a 0.13a
游动放线菌属Actinoplanes 0.40b 0.28a 0.48a 0.55b 0.67a 1.74b 1.81b 0.50a 0.76a 0.76b
Bryobacter 0.55b 0.45a 0.98b 0.73a 0.76b 0.50a 1.20b 0.61a 0.53a 0.58a
气微菌属Aeromicrobium 0.83b 0.48a 1.68b 1.16a 0.67a 0.82b 0.60b 0.47a 0.17a 0.58b
玫瑰弯菌属Roseiflexus 0.29a 0.43b 0.53a 0.65b 0.63b 0.30a 1.13b 0.67a 0.61a 0.87b
Solirubrobacter 0.46b 0.35a 0.60a 0.62a 0.50a 0.54a 1.01b 0.70a 0.54a 0.53a
类诺卡氏属Nocardioides 0.53a 0.69b 0.42a 0.40a 0.56a 0.68b 0.84a 1.03b 0.34a 0.63b
溶杆菌属Lysobacter 0.65a 0.67a 0.98b 0.55a 0.19a 0.50b 0.23a 0.57b 0.20a 0.75b
链霉菌属Streptomyces 0.29a 0.83b 0.23a 0.35b 0.48a 1.16b 0.39a 0.55b 0.27a 0.55b
芽孢杆菌属Bacillus 0.33a 1.29b 0.23a 0.62b 0.40a 0.53b 0.29a 0.61b 0.20a 0.19a
Nonomuraea 0.26a 2.58b 0.01a 0.07b 0.14a 0.30b 0.06a 0.07a 0.07a 0.74b
其他Others 86.75a 86.10a 83.66a 85.77b 87.25b 86.61a 82.67a 86.65b 90.64b 87.43a
[1] 王娜, 陶伟, 陈双林, 闫淑珍 . 植物内生细菌在棉花体内的定殖动态及对棉花黄萎病的生物防治效果. 植物保护学报, 2016,43(2):207-214.
WANG N, TAO W, CHEN S L, YAN S Z . Colonization trends of endophytic bacteria in cotton and their biological control effect on cotton Verticillium wilt. Journal of Plant Protection, 2016,43(2):207-214. (in Chinese)
[2] FRADIN E F, THOMMA B P . Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology, 2006,7(2):71-86.
[3] ERDOGAN O, BENLIOGLU K . Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biological Control, 2010,53(1):39-45.
[4] KURT S, DERVIS S, SAHINLER S . Sensitivity of Verticillium dahliae to prochloraz and prochloraz-manganese complex and control of Verticillium wilt of cotton in the field. Crop Protection, 2003,22(1):51-55.
[5] ZHENG Y, XUE Q Y, XU L L, XU Q, LU S, GU C, GUO J H . A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biological Control, 2011,56(3):209-216.
[6] 周兆华, 张天真, 潘家驹, 陈兆夏, 蒋伟民 . 大丽轮枝菌在棉花品种上的致病力分化研究. 中国农业科学, 2000,33(2):51-57.
ZHOU Z H, ZHANG T Z, PAN J J, CHEN Z X, JIANG W M . Pathogenicity differentiation of Verticillium dahliae on cotton varieties. Scientia Agricultura Sinica, 2000,33(2):51-57. (in Chinese)
[7] 朱荷琴, 简桂良, 宋晓轩 . 棉田黄萎病菌致病型群落结构研究. 棉花学报, 2004,16(3):147-151.
ZHU H Q, JIAN G L, SONG X X . Community structure of pathogenic type of Verticillium dahliae Kleb. in cotton field. Cotton Science, 2004,16(3):147-151. (in Chinese)
[8] 简桂良, 卢美光, 朱荷琴 . 棉田黄萎病菌致病型结构初步研究. 植物保护学报, 2005,32(1):109-110.
JIAN G L, LU M G, ZHU H Q . A preliminary study on the pathogenic structure of Verticillium dahliae in cotton field. Journal of Plant Protection, 2005,32(1):109-110. (in Chinese)
[9] 巩彪, 张丽丽, 隋申利, 王秀峰, 魏珉, 史庆华, 杨凤娟, 李岩 . 大蒜秸秆对番茄根结线虫病及根际微生态的影响. 中国农业科学, 2016,49(5):933-941.
GONG B, ZHANG L L, SUI S L, WANG X F, WEI M, SHI Q H, YANG F J, LI Y . Effects of garlic straw application on controlling tomato root-knot nematode disease and rhizospheric microecology. Scientia Agricultura Sinica, 2016,49(5):933-941. (in Chinese)
[10] 连宾, 王进军, 陆玲 . 植物与微生物的化感作用. 南京师大学报 (自然科学版), 2007,30(1):88-94.
LIAN B, WANG J J, LU L . Research progress of allelopathy on microorganism to plant. Journal of Nanjing Normal University (Natural Science Edition), 2007,30(1):88-94. (in Chinese)
[11] SHETTY K G, SUBBARAO K V, HUISMAN O C, HUBBARD J C . Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology, 2000,90(3):305-310.
[12] SUBBARAO K V, HUBBARD J C, KOIKE S T . Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Disease, 1999,83(2):124-129.
[13] INDERBITZIN P, WARD J, BARBELLA A, SOLARES N, IZYUMIN D, BURMAN P, CHELLEMI D O, SUBBARAO K V . Soil microbiomes associated with Verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology, 2018,108(1):31-43.
[14] IKEDA K, BANNO S, FURUSAWA A, SHIBATA S, NAKAHO K, FUJIMURA M . Crop rotation with broccoli suppresses verticillium wilt of eggplant. Journal of General Plant Pathology, 2015,81(1):77-82.
[15] DAVIS J R, HUISMAN O C, EVERSON D O, NOLTE P, SORENSON L H, SCHNEIDER A T . The suppression of Verticillium wilt of potato using corn as a green manure crop. American Journal of Potato Research, 2010,87(2):195-208.
[16] LARKIN R P, HONEYCUTT C W, OLANYA M O . Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history. Plant Disease, 2011,95(5):568-576.
[17] NJOROGE S M C, KABIR Z, MARTIN F N, KOIKE S T, SUBBARAO K V . Comparison of crop rotation for Verticillium wilt management and effect on Pythium species in conventional and organic strawberry production. Plant Disease, 2009,93(5):519-527.
[18] 赵卫松, 李社增, 鹿秀云, 郭庆港, 王亚娇, 王培培, 张晓云, 董丽红, 苏振贺, 马平 . 西兰花植株残体还田对棉花黄萎病的防治效果及其安全性评价. 中国生物防治学报, 2019,35(3):449-455.
ZHAO W S, LI S Z, LU X Y, GUO Q G, WANG Y J, WANG P P, ZHANG X Y, DONG L H, SU Z H, MA P . Safety evaluation of broccoli residues returning on cotton growth and its control effect on Verticillium wilt. Chinese Journal of Biological Control, 2019,35(3):449-455. (in Chinese)
[19] 李社增, 马平, 刘杏忠, HUANG H C, 陈新华 . 利用拮抗细菌防治棉花黄萎病. 华中农业大学学报, 2001,20(5):422-425.
LI S Z, MA P, LIU X Z, HUANG H C, CHEN X H . Biological control of cotton Verticillium wilt by antagonistic bacteria. Journal of Huazhong Agricultural University, 2001,20(5):422-425. (in Chinese)
[20] LU R, LI Y P, LI W X, XIE Z S, FAN C L, LIU P X, DENG S X . Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an,China. Science of the Total Environment, 2018,637/638:244-252.
[21] 肖蕊, 余真真, ELSHARAWY A A, 魏锋, 杨家荣 . 土壤中棉花黄萎病菌SYBR Green Ⅰ荧光RT-PCR定量检测技术研究. 菌物学报, 2011,30(4):598-603.
XIAO R, YU Z Z, ELSHARAWY A A, WEI F, YANG J R . SYBR Green I real time RT-PCR assay for quantitatively detecting the occurrence of Verticillium dahliae of cotton in naturally infested soil. Mycosystema, 2011,30(4):598-603. (in Chinese)
[22] 李淑敏, 郑成彧, 张润芝, 杨自超, 曲红云, 刘彤彤, 袁睿, 姚小桐, 王雪蓉, 许宁, 张春怡 . 生物熏蒸对大棚连作茄子产量和黄萎病发病率影响. 东北农业大学学报, 2017,48(5):35-41.
LI S M, ZHENG C Y, ZHANG R Z, YANG Z C, QU H Y, LIU T T, YUAN R, YAO X T, WANG X R, XU N, ZHANG C Y . Effect of biofumigation on yield and Verticillium wilt incidence of continuous eggplant in greenhouse. Journal of Northeast Agricultural University, 2017,48(5):35-41. (in Chinese)
[23] 乔俊卿, 刘邮洲, 余翔, 梁雪杰, 陈志谊, 刘永锋, 张英 . 集成生物防治和秸秆还田技术对设施番茄增产及土传病害防控效果研究. 中国生物防治学报, 2013,29(4):547-554.
QIAO J Q, LIU Y Z, YU X, LIANG X J, CHEN Z Y, LIU Y F, ZHANG Y . Evaluation of yield increasing and control efficiency of tomato soil-borne diseases under the integrated application of straw returning and biocontrol agent. Chinese Journal of Biological Control, 2013,29(4):547-554. (in Chinese)
[24] 张政文, 孙秀娟, 胡乃娟, 黄卉, 朱利群, 卞新民 . 麦秸掩埋还田对赤霉菌(Fusarium graminearum Sehw.)存活率和水稻带菌的影响. 植物病理学报, 2014,44(4):443-448.
ZHANG Z W, SUN X J, HU N J, HUANG H, ZHU L Q, BIAN X M . Effect of straw ditch-buried return depth on Fusarium graminearum survival rate and carrier rate of rice. Acta Phytopathologica Sinica, 2014,44(4):443-448. (in Chinese)
[25] CHAWLA S, WOODWARD J E, WHEELER T A, . Influence of Verticillium dahliae infested peanut residue on wilt development in subsequent cotton. International Journal of Agronomy, 2012,2012: Article ID 212075.
[26] 李洪林, 刘凤艳, 龚振平, 靳学慧, 黄世文 . 稻秆还田对水稻主要病害发生的影响. 作物研究, 2012,26(1):7-10.
LI H L, LIU F Y, GONG Z P, JIN X H, HUANG S W . Effect of straw return back to paddy field on occurrence of rice major diseases. Crop Research, 2012,26(1):7-10. (in Chinese)
[27] ENWALL K, NYBERG K, BERTILSSON S, CEDERLUND H, STENSTRÖM J, HALLIN S . Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biology and Biochemistry, 2007,39(1):106-115.
[28] SCHUTTER M E, SANDENO J M, DICK R P . Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biology and Fertility of Soils, 2001,34(6):397-410.
[29] GÓMEZ-SAGASTI M T, ALKORTA I, BECERRIL J M, EPELDE L, ANZA M, GARBISU C . Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water, Air, and Soil Pollution, 2012,223(6):3249-3262.
[30] 吴林坤, 林向民, 林文雄 . 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014,38(3):298-310.
WU L K, LIN X M, LIN W X . Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014,38(3):298-310. (in Chinese)
[31] SRIVASTAVA R, KHALID A, SINGH U S, SHARMA A K . Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control, 2010,53(1):24-31.
[32] 袁英英, 李敏清, 胡伟, 张静, 赵兰凤, 李华兴 . 生物有机肥对番茄青枯病的防效及对土壤微生物的影响. 农业环境科学学报, 2011,30(7):1344-1350.
YUAN Y Y, LI M Q, HU W, ZHANG J, ZHAO L F, LI H X . Effect of biological organic fertilizer on tomato bacterial wilt and soil microorganism. Journal of Agro-Environment Science, 2011,30(7):1344-1350. (in Chinese)
[33] 蒋岁寒, 刘艳霞, 孟琳, 朱春波, 李想, 沈标, 石俊雄, 杨兴明 . 生物有机肥对烟草青枯病的田间防效及根际土壤微生物的影响. 南京农业大学学报, 2016,39(5):784-790.
JIANG S H, LIU Y X, MENG L, ZHU C B, LI X, SHEN B, SHI J X, YANG X M . Effects of biological organic fertilizer on field control efficiency of tobacco Ralstonia solanacearum wilt and soil microbial in rhizosphere soil. Journal of Nanjing Agricultural University, 2016,39(5):784-790. (in Chinese)
[34] 刘建国, 卞新民, 李彦斌, 张伟, 李崧 . 长期连作和秸秆还田对棉田土壤微生物活性的影响. 应用生态学报, 2008,19(5):1027-1032.
LIU J G, BIAN X M, LI Y B, ZHANG W, LI S . Effects of long-term continuous cropping of cotton and returning cotton stalk into field on soil biological activities. Chinese Journal of Applied Ecology, 2008,19(5):1027-1032. (in Chinese)
[35] ALAM M, DHARNI S, ABDUL-KHALIQ, SRIVASTAVA S K, SAMAD A, GUPTA M K . A promising strain of Streptomyces sp. with agricultural traits for growth promotion and disease management. Indian Journal of Experimental Biology, 2012,50(8):559-568.
[36] GOUDJAL Y, ZAMOUM M, SABAOU N, MATHIEU F, ZITOUNI A . Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Science and Technology, 2016,26(12):1691-1705.
[37] 李社增, 鹿秀云, 马平, 高胜国, 刘杏忠, 刘干 . 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定. 植物病理学报, 2005,35(5):451-455.
LI S Z, LU X Y, MA P, GAO S G, LIU X Z, LIU G . Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton Verticillium wilt in field trials. Acta Phytopathologica Sinica, 2005,35(5):451-455. (in Chinese)
[38] 王光华, 金剑, 徐美娜, 刘晓冰 . 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 2006,25(5):550-556.
WANG G H, JIN J, XU M N, LIU X B . Effects of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 2006,25(5):550-556. (in Chinese)
[39] 宋蒙亚, 李忠佩, 吴萌, 刘明, 江春玉 . 不同种植年限设施菜地土壤微生物量和群落结构的差异. 中国农业科学, 2015,48(18):3635-3644.
SONG M Y, LI Z P, WU M, LIU M, JIANG C Y . Changes in soil microbial biomass and community structure with cultivation chronosequence of greenhouse vegetables. Scientia Agricultura Sinica, 2015,48(18):3635-3644. (in Chinese)
[40] 武爱莲, 丁玉川, 焦晓燕, 王劲松, 董二伟, 郭珺, 王浩 . 玉米秸秆生物炭对褐土微生物功能多样性及细菌群落的影响. 中国生态农业学报, 2016,24(6):736-743.
WU A L, DING Y C, JIAO X Y, WANG J S, DONG E W, GUO J, WANG H . Effects of corn-stalk biochar on soil microbial functional diversity and bacterial community in cinnamon soils. Chinese Journal of Eco-Agriculture, 2016,24(6):736-743. (in Chinese)
[41] 侯建伟, 邢存芳, 卢志宏, 陈芬, 余高 . 不同秸秆生物炭对贵州黄壤细菌群落的影响. 中国农业科学, 2018,51(23):4485-4495.
HOU J W, XING C F, LU Z H, CHEN F, YU G . Effects of the different crop straw biochars on soil bacterial community of yellow soil in Guizhou. Scientia Agricultura Sinica, 2018,51(23):4485-4495. (in Chinese)
[42] SENESI N, PLAZA C, BRUNETTI G, POLO A . A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology and Biochemistry, 2007,39(6):1244-1262.
[1] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[2] ZHANG XiaoXue,SUN TianGe,ZHANG YingChun,CHEN LiHua,ZHANG XinYu,LI YanJun,SUN Jie. Identification of Xylosidase Genes from Verticillium dahliae and Functional Analysis Based on HIGS Technology [J]. Scientia Agricultura Sinica, 2021, 54(15): 3219-3231.
[3] WANG Jun,LI Guang,YAN LiJuan,LIU Qiang,NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands [J]. Scientia Agricultura Sinica, 2020, 53(5): 904-916.
[4] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[5] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[6] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
[7] WANG QianQian,JIA RunYu,LI HongCheng,ZHOU Hang,YANG WenTao,GU JiaoFeng,PENG PeiQin,LIAO BoHan. Key Growth Stage of Cd Accumulation in Brown Rice Through a Hydroponic Experiment with Cd Stress [J]. Scientia Agricultura Sinica, 2018, 51(23): 4424-4433.
[8] WANG QingFeng, JIANG Xin, MA MingChao, GUAN DaWei, ZHAO BaiSuo, WEI Dan, CAO FengMing, LI Li, LI Jun. Influence of Long-Term Nitrogen and Phosphorus Fertilization on Arbuscular Mycorrhizal Fungi Community in Mollisols of Northeast China [J]. Scientia Agricultura Sinica, 2018, 51(17): 3315-3324.
[9] CHEN Bo, ZHOU NianBing, GUO BaoWei, SHU Peng, ZHANG HongCheng, HUO ZhongYang, CHENG FeiHu, HUA Jin, HUANG DaShan, CHEN ZhongPing, CHEN Heng, LIU YunFa, LIAO ShiLiang. Differences of Double-Cropping Late Rice in Yield, Growth Stage and Utilization of Temperature and Illumination in Different Latitudes of Jiangxi Province [J]. Scientia Agricultura Sinica, 2017, 50(8): 1403-1415.
[10] GAO ShengChao, GUAN DaWei, MA MingChao, ZHANG Wei, LI Jun, SHEN DeLong. Effects of Fertilization on Bacterial Community Under the Condition of Continuous Soybean Monoculture in Black Soil in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1271-1281.
[11] WANG Jun-juan, WANG De-long, YIN Zu-jun, WANG Shuai, FAN Wei-li, LU Xu-ke, MU Min, GUO Li-xue, YE Wu-wei, YU Shu-xun. Identification of the Chilling Resistance from Germination Stage to Seedling Stage in Upland Cotton [J]. Scientia Agricultura Sinica, 2016, 49(17): 3332-3346.
[12] WANG Yi, ZHANG Xia, YANG Wen-yu, SUN Xin, SU Ben-ying, CUI Liang. Effect of Shading on Soybean Leaf Photosynthesis and Chlorophyll Fluorescence Characteristics at Different Growth Stages [J]. Scientia Agricultura Sinica, 2016, 49(11): 2072-2081.
[13] DONG Xiang-li, GAO Yue-e, LI Bao-hua, YONG Dao-jing, WANG Cai-xia, LI Gui-fang, LI Bao-du. Epidemic Dynamics of Apple Marssonina Leaf Blotch over Whole Growth Season in the Central Area of Shandong Peninsula [J]. Scientia Agricultura Sinica, 2015, 48(3): 479-487.
[14] YU Hui-yong, SONG Xiao-li, WANG Shu-sheng, CAO Li-jun, GUO Li, WANG Xiao-li, PENG Gong-yin. Effects of Low Molecular Weight Organic Acids on Soil Enzymes Activities and Bacterial Community Structure [J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947.
[15] YAO Ning, SONG Li-bing, LIU Jian, FENG Hao, WU Shu-fang, HE Jian-qiang. Effects of Water Stress at Different Growth Stages on the Development and Yields of Winter Wheat in Arid Region [J]. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!