Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (19): 3766-3777.doi: 10.3864/j.issn.0578-1752.2018.19.013

• HORTICULTURE • Previous Articles     Next Articles

The Genetic Diversity and Population Structure Analysis on   Malus baccata (L.) Borkh from 7 Sources

GAO Yuan, WANG Kun, WANG DaJiang, ZHAO JiRong, ZHANG CaiXia, CONG PeiHua, LIU LiJun, LI LianWen, PIAO JiCheng   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2018-04-25 Online:2018-10-01 Published:2018-10-01

Abstract:  【Objective】Genetic diversity and population structure of Malus baccata from 7 newly collected sources were analyzed using fluorescent SSR molecular markers. The identification of genetic diversity and structure within and among populations can provide references for germplasm collection and preservation of Malus and the study of the phylogenetic evolution of species. 【Method】19 pairs of polymorphic SSR primers were screened to detect the polymorphism of Malus baccata from 7 sources. GenAlEx 6.501 was used to calculate the index of genetic diversity and analyze the molecular variation (AMOVA) among populations. The genetic differentiation among populations were analyzed by GenepopV4 and Fstat293. Based on the Nei genetic distance DA, the Neighbour-Joining (NJ) evolutionary tree of 269 accessions was constructed using POPULATION 1.2. The Bayesian cluster was carried out using STRUCTURE 2.3.4 to analyze the genetic structure of populations.【Result】392 polymorphic alleles were detected by 19 pairs of SSR primers, with an average allele number of 20.6 and effective allele number of 9.070. The average values of heterozygosity and expected heterozygosity were 0.628 and 0.855 respectively, and the Shannon index was 2.392. Dividing populations according to their sources, the highest number of observed alleles in Heilongjiangpopulation was 15.684. The genetic diversity in Russian population was the lowest, and the highest genetic diversity was in Hebei population. The coefficient of genetic differentiation Fst between every two populations was from 0.019 to 0.111. The gene of Hebei population communicate frequently with other populations, andGansu population was the most stable among 7 populations. The genetic differentiation and gene exchange among populations were not completely related to the geographical location far or near. The cluster analysis based on Nei genetic distance could divided 269 accessions into 7 groups at 0.7444. Most of groups were not related to geographical location, among which group Ⅰ and Ⅱ were far away from other groups, and the cluster of groupⅡ and Ⅲ was mixed, the sources of group Ⅵ was the most complex, groupⅣ and Ⅴ were relatively pure, and finally 99% of all accessions in group Ⅶ were from Heilongjiang. The population structure analysis divided 269 accessions into 3 groups with 3 possible genetic sources. The accessions from different sources were distributed into every group, and there was no clear correlation with the geographical location. Only most part ofHeilongjiang, Shanxi and Gansu population, as well as some of accessions from Russia and Hebei belonged to a relatively simple group. This result was similar to the results of clustering. In 269 accessions, the Q value of 232 accessions were higher than 0.6, and most of them had relatively single genetic background. 【Conclusion】19 pairs of SSR primers were highly polymorphic and could be used for the evaluation of genetic diversity and population structure. The genetic diversity of Malus baccata from 7 regions was high with the highest genetic diversity of thosefrom Hebei, and genetic variation mainly occured within populations and individuals. There was genetic communication among populations with the most frequent communication between Hebei and other groups, but at the same time, it also resisted genetic differentiation among populations caused by gene drift. Genetic differentiation and gene exchange among populations were not completely related to geographical location.

Key words: Malus baccata, fluorescent SSR, genetic diversity, population structure

[1]    俞德俊. 中国果树分类学. 北京: 中国农业出版社, 1979: 91.
YU D J. Taxonomy of China Fruits. Beijing: China Agriculture Press, 1979: 91. (in Chinese)
[2]    杜学梅, 杨廷桢, 高敬东, 王骞, 蔡华成, 李春燕, 弓桂花. 中国野生山定子的自然分布及利用研究现状. 中国农学通报, 2017, 33(5): 24-28.
DU X M, YANG T Z, GAO J D, WANG Q, CAI H C, LI C Y, GONG G H. Wild Malus baccata (L.) Borkh. in China: Natural distribution, utilization and study status. Chinese Agricultural Science Bulletin, 2017, 33(5): 24-28. (in Chinese)
[3]    王雷宏. 山荆子(Malus baccata (L.) Borkh.)变异式样研究[D]. 南京: 南京林业大学, 2008: 19-22.
WANG L H. A study on variation patterns in Malus baccata (L.) Borkh. [D]. Nanjing: Nanjing Forestry University, 2008: 19-22. (in Chinese)
[4]    陆秋农, 贾定贤. 中国果树志·苹果卷. 北京: 中国林业出版社, 1999: 121.
LU Q N, JIA D X. Chinese fruit tree·Apple. Beijing: China Forestry Press, 1999: 121. (in Chinese)
[5]    李育农. 苹果属植物种质资源研究. 北京: 中国农业出版社, 2001: 23-25.
LI Y N. Researches of germplasm resources of Malus Mill.. Beijing: China Agricultural Press, 2001: 23-25. (in Chinese)
[6]    顾模. 东北中部果树资源的调查. 北京: 科学出版社, 1956: 15-18.
GU M. A survey of fruit tree resources in the Middle East of China. Beijing: Science Press, 1956: 15-18. (in Chinese)
[7]    王雷宏, 汤庚国. 山荆子腊叶标本表型性状变异分析. 西北植物学报, 2007, 27(8): 1690-1694.
WANG L H, TANG G G. Phenotypic variations of exsiccate- specimen of Malus baccata (L.) Borkh.. Acta Botanica Boreali Occidentalia Sinica, 2007, 27(8): 1690-1694. (in Chinese)
[8]    王雷宏, 汤庚国, 夏海武, 蔡华. 山荆子叶脉序的研究. 南京林业大学学报(自然科学版), 2008, 32(2): 39-42.
WANG L H, TANG G G, XIA H W, CAI H. Study on leaf venation of Malus baccata (L.) Borkh.. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(2): 39-42. (in Chinese)
[9]    陈曦, 汤庚国, 郑玉红, 王雷宏. 苹果属山荆子遗传多样性的RAPD 分析. 西北植物学报, 2008, 28(10): 1954-1959.
CHEN X, TANG G G, ZHENG Y H, WANG L H. RAPD analysis of genetic diversity of Malus baccata (L .) Borkh.. Acta Botanica Boreali Occidentalia Sinica, 2008, 28(10): 1954-1959. (in Chinese)
[10]   ROBINSON J P, HARRIS S A, JUNIPER B E. Taxonomy of the genus Malus Mill. ( Rosaceae ) with emphasis on the cultivated apple, Malus domestica Borkh.. Plant Systematic and Evolution, 2001, 226(1/2): 35-58.
[11]   王雷宏, 杨俊仙, 郑玉红, 汤庚国. 苹果属山荆子地理分布模拟. 北京林业大学学报, 2011, 33(3): 70-73.
WANG L H, YANG J X, ZHENG Y H, TANG G G. Simulation of the geographical distribution of the fruit of Malus. Journal of Beijing Forestry University, 2011, 33(3): 70-73. (in Chinese)
[12]   杨锋, 刘志, 伊凯, 刘延杰, 王强, 孙建设. 东北山定子 (Malus baccata ( L.) Borkh.) 野生居群表型遗传多样性分析及生态地理分布研究. 植物遗传资源学报, 2015, 16(3): 490-496.
YANG F, LIU Z, YI K, LIU Y J, WANG Q, SUN J S. Studies on geographical regions and analysis on genetic diversity of phenotypic of natural population of ‘Malus baccata ( L.) Borkh’ in Northeast of China.Journal of Plant Genetic Resources, 2015, 16(3): 490-496. (in Chinese)
[13]   王雷宏, 郑玉红, 汤庚国. 8个山荆子居群遗传多样性的ISSR分析. 西北植物学报, 2010, 30(7): 1337-1343.
WANG L H, ZHENG Y H, TANG G G. ISSR analysis of genetic diversity of eight populations in Malus baccata. Acta Botanica Boreali Occidentalia Sinica, 2010, 30(7): 1337-1343. (in Chinese)
[14]   雷宏, 郑玉红, 汤庚国. 基于SSR 标记的8个山荆子居群遗传多样性和遗传关系分析. 植物资源与环境学报, 2012, 21(1): 42-46.
WANG L H, ZHENG Y H, TANG G G. Analyses of genetic diversity and genetic relationship of eight populations of Malus baccata based on SSR marker. Journal of Plant Resources and Environment, 2012, 21(1): 42-46. (in Chinese)
[15]   HOKANSON S C, SZEWC-MCFADDEN A K, LAMBOY W F, MCFERSON J R. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica borkh. core subset collection.Theoretical and Applied Genetics, 1998, 97: 671-683.
[16]   LIEBHARD R, GIANFRANCESCHI L, KOLLER B, RYDER C D, TARCHINI R, VAN DE WEG E, GESSLER C. Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Molecular Breeding, 2002, 10: 217-241.
[17]   YAMAMOTO T, KIMURA T, SHODA M, BAN Y, HAYASHI T, MATSUTA N. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Molecular Ecology Notes, 2002, 2: 14-16.
[18]   GUIFORD P, PRAKASH S, ZHU J M, RIKKERINK E, GARDINER S, BASSETT H, FORSTER R. Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics, 1997, 94: 249-254.
[19]   CELTON J M, TUSTIN D S, CHAGNED, GARDINER S E. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetics & Genomes, 2009, 5: 93-107.
[20]   SILFVERBERG-DILWORTH E, MATASCI C L, VAN DE WEG W E, VAN KAAUWEN M P W, WALSER M, KODDE L P, SOGLIO V, GIANFRANCESCHI L, DUREL C E, COSTA F, YAMAMOTO T, KOLLER B, GESSLER C, PATOCCHI A. Microsatellite markers spanning the apple (Malus×domestica Borkh.) genome. Tree Genetics & Genomes, 2006, 2: 202-224.
[21]   CAO Y, TIAN L, GAO Y, YUAN J, ZHANG S. Evaluation of genetic identity and variation in cultivars of Pyrus pyrifolia (Burm.f.) Nakai from China using microsatellite markers. Journal of Horticultural Science & Biotechnology, 2011, 86 (4): 331-336.
[22]   高源, 王昆, 田路明, 曹玉芬, 刘凤之. 应用TP-M13-SSR技术鉴定苹果品种. 果树学报, 2010, 27(5): 833-837.
GAO Y, WANG K, TIAN L M, CAO Y F, LIU F Z. Identification of apple cultivars by TP-M13-SSR technique. Journal of Fruit Science, 2010, 27(5): 833-837. (in Chinese)
[23]   PEAKALL R, SMOUSE P E. GenAlEx6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 2012, 28: 2537-2539.
[24]   PEAKALL R, SMOUSE P E. GENALEX6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6: 288-295.
[25]   GOUDET J. FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics . The Journal of Heredity, 1995, 86(6): 485-486.
[26]   ROUSSET F. GENEPOP’007: a complete re‐implementation of the genepop software for Windows and Linux. Molecular Ecology Resources, 2008, 8: 103-106.
[27]   NEI M, TAJIMA F, TATENO Y. Accuracy of estimated phylogenetic trees from molecular data.ⅡGene frequency data. Journal of Molecular Evolution, 1983, 19: 153-170.
[28]   LETUNIC I, BORK P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 2016, 8(44): W242-W245.
[29]   FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567-1587.
[30]   EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[31]   JAKOBSSON M, ROSENBERG N A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23: 1801-1806.
[32]   ROSENBERG N A. Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 2004, 4: 137-138.
[33]   吴承来, 张倩倩, 董炳雪, 李圣福, 张春庆. 我国部分玉米自交系遗传关系和遗传结构解析. 作物学报, 2010, 36(11): 1820-1831.
WU C L, ZHANG Q Q, DONG B X. LI S F, ZHANG C Q. Genetic relationship and genetic structure of some maize inbred lines in China. Acta Agronomica Sinica, 2010, 36(11): 1820-1831. (in Chinese)
[34]   孙萍, 宗宇, 刘晶, 胡春云, 滕元文. 基于SSR标记的清凉峰地区三叶海棠遗传多样性研究. 果树学报, 2013, 30(1): 8-15.
SUN P, ZONG Y, LIU J, HU C Y, TENG Y W. Study on genetic diversity of Malus sieboldii in Qingliangfeng Region based on SSR markers. Journal of Fruit Science, 2013, 30(1): 8-15. (in Chinese)
[35]   张怀山, 鄢秀芹, 鲁敏, 王道平, 安华明. 基于EST-SSR标记的贵州野生刺梨居群遗传多样性分析. 中国农业科学, 2017, 50(6): 1098-1108.
ZHANG H S, YAN X Q, LU M, WANG D P, AN H M. Analysis of the genetic diversity of wild Rosa roxburghii populations in Guizhou province based on EST-SSR marker. Scientia Agricultura Sinica, 2017, 50(6): 1098-1108. (in Chinese)
[36]   LIU J, ZHENG X Y, DANIEL P, HU C Y, TENG Y W. Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochemical Systematics and Ecology, 2012, 45: 69-78.
[37]   陈娇, 王小蓉, 汤浩茹, 陈涛, 黄晓姣, 梁勤彪. 基于SSR标记的四川野生中国樱桃遗传多样性和居群遗传结构分析. 园艺学报, 2013, 40(2): 333-340.
CHEN J, WANG X R, TANG H R, CHEN T, HUANG X J, LIANG Q B. Assessment of genetic diversity and populations genetic structure in wild Chinese cherry from Sichuan province using SSR markers. Acta Horticulturae Sinica, 2013, 40(2): 333-340. (in Chinese)
[38]   陈曦. 湖北海棠(Malus hupehensis)不同居群变异式样及遗传多样性的研究[D]. 南京: 南京林业大学, 2009.
CHEN X. A study on variation patterns and genetic diversity of Malus hupehensis populations[D]. Nanjing: Nanjing Forestry University, 2009. (in Chinese)
[39]   石胜友. 变叶海棠起源及其遗传多样性分化研究[D]. 重庆: 西南大学, 2005.
SHI S Y. Studies on the origin and differentiation of genetic diversity in Malus toringoides[D]. Chongqing: Southwest University, 2005. (in Chinese)
[40]   ZHANG C Y, CHEN X S, HE T M, LIU X L, FENG T, YUAN Z H. Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007, 34(10): 947-955.
[41]   GHARGHANI A, ZAMANI Z, TALAIE A, Oraguzie N C, Fatahi R, Hajnajari H, Wiedow C, Gardiner S E. Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genetic Resources and Crop Evolution, 2009, 56(6): 829-842.
[42]   姜晓辉, 方开星, 陈栋, 吴华玲. 基于EST-SSR毛细管电泳荧光标记技术分析广东2个历史名茶群体遗传多样性. 热带作物学报, 2018, 39(1): 46-54.
JIANG X H, FANG K X, CHEN D, WU H L. Genetic diversity and relationship of two historical famous Camellia Sinensis groups in Guangdong by capillary electrophoresis detection with fluorescent EST-SSR marker. Chinese Journal of Tropical Crops, 2018, 39(1): 46-54. (in Chinese)
[43]   汤存伟, 余雄, 刘武军. 新疆13个绵羊群体遗传多样性及遗传分化的研究. 家畜生态学报, 2011, 32(1): 13-19.
TANG C W, YU X, LIU W J. Genetic diversity and genetic differentiation of 13 Sheep Populations in Xinjiang. Journal of Livestock Ecology, 2011, 32(1): 13-19. (in Chinese)
[44]   NEI M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89(3): 583-590.
[45]   WRIGHT S. Evolution and the genetics of populations, variability within and among natural populations. Chicago: The University of Chicago Press, 1978: 4.
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[15] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!