Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (15): 2846-2859.doi: 10.3864/j.issn.0578-1752.2018.15.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Diversity and Genetic Relationship of Broomcorn Millet (Panicum miliaceum L.) Germplasm Based on SSR Markers

XUE YanTao1,2, LU Ping2, QIAO ZhiJun3, LIU MinXuan2, WANG RuiYun1,3   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; 3 Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031
  • Received:2018-05-07 Online:2018-08-01 Published:2018-08-01

Abstract: 【Objective】The objective of this study is to analyze the genetic diversity and relationship of broomcorn millet landraces and wild materials by SSR markers, to provide available data for further evolutionary study of broomcorn millet.【Method】137 SSR primers are used to identify polymorphisms in six representatives which selected randomly from the total of accessions. A total of 103 primers produce clear and reproducible polymorphic fragments among the six accessions and then are used to amplify 146 broomcorn millet accessions. Genetic diversity and relationship between different individuals and populations is evaluated by analyzing genetic parameter, clustering, and genetic structure.【Result】 103 SSR markers detect a total of 308 alleles (Na) with an average of 2.99 for each SSR and the mean values of Shannon-Weaver index (I), Nei and PIC were 0.8478, 0.3642 and 0.5544, respectively. Their resolution range was 0.334-4.002 and more than 60% distribution at intervals of 1-4, indicated the moderate resolving power of these SSR. The observed number of alleles (2.9126), Shannon-Weaver index (0.8302), expected heterozygosity (0.5023), and PIC value (0.5278) of broomcorn millet accessions in China were all higher than those in abroad, indicated more abundant genetic diversity in Chinese samples. The genetic distance of the 12 populations ranged from 0.0783 to 0.5762 with a mean of 0.2938. The genetic identity ranged from 0.5620 to 0.9247 with a mean of 0.75. We found that the genetic similarity had a certain correlation with geographical distribution. The closer geographical distribution, the smaller genetic distance, the higher genetic identity. Cluster analysis divided 12 populations into 4 groups at a genetic distance of 0.15. Among them, resources in South America and Shanxi were each independently divided into one group, which had a far-distance relationship with other resources. In the inter-individual clustering, the division of resources at home and abroad was very significant. At a genetic distance of 0.63, 146 broomcorn millet accessions could be divided into three groups. Group Ⅰand group Ⅱ were foreign accessions, and group Ⅲ was domestic accessions. Further, group Ⅱ was divided into three subpopulations at a genetic distance of 0.39, and group Ⅲ was divided into five subpopulations at a genetic distance of 0.45. There had closer genetic relationship between Asia and European resources, as well as Hebei, Shanxi and Inner Mongolia in China resources than other populations. The result of genetic structure analysis showed that there is obvious genetic differentiation between the domestic populations and foreign populations. Five groups (Group 2, Group 5, Group 6, Group 7 and Group 9) were unique genotypes which owned by Chinese wild resources and distributed more widely, 2 groups (Group 1 and Group 4) were unique genotypes of foreign resources and have a relative narrow distribution. The population structures of Ningxia and South America tend to be independent, and the population structures of Hebei, Heilongjiang and Asia tend to be diversified. The UPGMA clustering results were consistent with the results of genetic structure analysis, and the genetic relationships were related to their geographical distribution.【Conclusion】The genetic diversity of wild accessions is higher than that of landraces, of which Hebei population has the most abundant genetic diversity, so we suppose Hebei province may be the sub-origin center of broomcorn millet.

Key words: Panicum miliaceum L, wild broomcorn millet, foreign germplasm, SSR markers, genetic diversity, population structure

[1]    WANG R Y, WANG H G, LIU X Y, LIAN S, CHEN L, QIAO Z J, MCINERNEY C E, WANG L. Drought-induced transcription of resistant and sensitive common millet varieties. The Journal of Animal & Plant Sciences, 2017, 27(4): 1303-1314.
[2]    王瑞云, 杨阳, 王海岗, 陈凌, 王纶, 陆平, 刘敏轩, 乔治军. 糜子PmNCED1的克隆及其对 PEG 胁迫的响应. 核农学报, 2018, 32(2): 244-256.
WANG R Y, YANG Y, WANG H G, CHEN L, WANG L, LU P, LIU M X, QIAO Z J. Cloning of PmNCED1 and its response to PEG stress. Journal of Nuclear Agriculture, 2018, 32(2): 244-256. (in Chinese)
[3]    王星玉, 王纶. 黍稷种质资源描述规范和黍稷标准. 北京: 中国农业出版社, 2006: 5-15.
WANG X Y, WANG L. Proso Millet Germplasm Resources Description and Panicum Standard. Beijing: China Agriculture Press, 2006: 5-15. (in Chinese)
[4]    王璐琳, 王瑞云, 何杰丽, 薛延桃, 陈凌, 王海岗, 乔治军. 糜子特异性SSR标记的开发. 山西农业科学, 2018, 46(1):1-4,86
WANG L L, WANG R Y, HE J L, XUE Y T, CHEN L, WANG H G, QIAO Z J. Development of broomcorn millet specific SSR marker. Shanxi Agricultural Sciences, 2018, 2018, 46(1):1-4,86. ( in Chinese)
[5]    WANG R Y, HUNT H V, QIAO Z J, Wang L, HAN Y H. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: A review. Economic botany, 2016, 70(3): 332-342.
[6]    WANG R Y, WANG H G, LIU X H, JI X, CHEN L, LU P, LIU M X, TENG B, QIAO Z J. Waxy allelic diversity in common millet (Panicum miliaceum L.) in China. The Crop Journal, 2018, https://doi.org/10.1016/j.cj.2018.02.004.
[7]    王瑞云. 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017.
WANG R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017 (in Chinese)
[8]    胡兴雨, 陆平, 贺建波, 王纶, 王星玉, 张红生, 张宗文, 吴斌. 黍稷农艺性状的主成分分析与聚类分析. 植物遗传资源学报, 2008, 9(4): 492-496.
HU X Y, LU P, HE J B, WANG L, WANG X Y, ZHANG H S, ZHANG Z W, WU B. Principal component analysis and cluster analysis of agronomic traits of broomcorn millet. Journal of Plant Genetic Resources, 2008, 9(4): 492-496. (in Chinese)
[9]    董孔军, 杨天育, 何继红. 甘肃省糜子地方资源农艺性状遗传多样性分析. 河北农业科学, 2012, 16(2): 1-3.
DONG K J, YANG T Y, HE J H. Genetic diversity of agronomic traits in broomcorn millet local resources in Gansu Province. Hebei Agricultural Sciences, 2012, 16(2): 1-3. (in Chinese)
[10]   RAJPUT S G, SANTRA D K. Evaluation of genetic diversity of proso millet germplasm available in the United States using simple-sequence repeat markers. Crop Science, 2016, 56(5): 2401-2409.
[11]   LI L J, YANG K C, PAN G T, RONG T Z. Genetic diversity of maize populations developed by two kinds of recurrent selection methods investigated with SSR markers. Agricultural Sciences in China, 2008, 7(9): 1037-1045.
[12]   MANIFESTO M M, SCHLATTER A R, HOPP H E, Suárez E Y, Dubcovsky J. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop science, 2001, 41(3): 682-690.
[13]   He X Y, Bjørnstad Å. Diversity of North European oat analyzed by SSR, AFLP and DArT markers. Theoretical and applied genetics, 2012, 125(1): 57-70.
[14]   CHo Y I, Chung J W, Lee G A, Ma K H, Dixit A, Gwag J G, Park Y J. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes & Genomics, 2010, 32(3): 267-273.
[15]   王银月, 刘敏轩, 陆平, 乔治军, 杨天育, 李海, 崔喜艳. 构建黍稷分子遗传图谱SSR引物的筛选. 作物杂志, 2014(4): 32-38.
Wang Y Y, Liu M X, Lu P, QIAO Z J, Yang T y, Li H, Cui X y. Construction of molecular genetic map of broomcorn millet for SSR primer screening. Crop Journal, 2014(4): 32-38. (in Chinese)
[16]   Rajput S G, Plyler-Harveson T, Santra D K. Development and characterization of SSR markers in proso millet based on switchgrass genomics. American Journal of Plant Sciences, 2014, 5(1): 175.
[17]   王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军. 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017, 50(20): 3848-3859.
Wang R y, Liu X y, Wang H g, Lu P, Liu M x, Chen L, qiao z j. Analysis of genetic diversity of Chinese broomcorn millet by using high elementary microsatellite markers. Scientia Agricultura Sinica, 2017, 50(20): 3848-3859. (in Chinese)
[18]   朱建楚. 基于PCR标记的糜子遗传多样性分析[D]. 杨凌: 西北农林科技大学, 2005.
Zhu J C. Analysis of genetic diversity of broomcorn millet based on PCR markers[D]. Yangling: Northwest Agriculture and Forestry University, 2005. (in Chinese)
[19]   董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48(16): 3121-3131.
Dong J l, Wang H g, Chen L, Wang J j, Cao X n, Wang L, qiao z j. Analysis of genetic diversity and genetic structure of broomcorn millet of the Chinese. Scientia Agricultura Sinica, 2015, 48(16): 3121-3131. (in Chinese)
[20]   Hu Y G, Zhu J, Liu F, Zhang Z, Chai Y, Weining S. Genetic diversity among Chinese landraces and cultivars of broomcorn millet (Panicum miliaceum) revealed by the polymerase chain reaction. Annals of applied biology, 2008, 153(3): 357-364.
[21]   Hu X, Wang J, Lu P, Zhang H. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics, 2009, 36(8): 491-500.
[22]   连帅, 王瑞云, 马跃敏, 刘笑瑜, 季煦. 不同生态区糜子种质资源的遗传多样性分析. 山西农业大学学报: 自然科学版, 2015, 35(3): 225-231.
Lian S, Wang R Y, Ma Y M, Liu X Y, Ji X. Analysis of genetic diversity of broomcorn millet germplasms in different ecotype zone. Journal of Shanxi Agricultural University: Natural Science Edition,2015, 35(3): 225-231. (in Chinese)
[23]   Liu M x, Xu Y, He J h, Zhang S, Wang Y y, Lu P. Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in china based on microsatellite markers. International journal of molecular sciences, 2016, 17(3): 370.
[24]   王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军. 利用荧光SSR分析中国糜子遗传多样性. 作物学报, 2017, 43(4): 530-548.
Wang R y, Ji x, Lu P, Liu M x, Xu Y, Wang L, Wang H g, qiao z j. Analysis of genetic diversity of Chinese broomcorn millet by fluorescence SSR. Chinese Journal of Crop Sciences, 2017, 43(4): 530-548. (in Chinese)
[25]   连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云. 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016, 49(17): 3264-3275.
LIAN S, LU P, QIAO Z J, ZHANG Q, ZHANG Q, LIU M X, WANG R Y. Genetic diversity in broomcorn millet (Panicum miliaceum L.) from China and abroad by using SSR markers. Scientia Agricultura Sinica, 2016, 49(17): 3264-3275. (in Chinese)
[26]   THOMSON M J, POLATO N R, PRASETIYONO J,TRIJATMIKO K R, SILITONGA T S, MCCOUCH S R. Genetic diversity of isolated populations of Indonesian landraces of rice (Oryza sativa L.) collected in east Kalimantan on the island of Borneo Rice, 2009, 2(1): 80-92.
[27]   Hou S Y, Sun Z X, Li Y S, Wang Y, Ling H B, Xing G F, HAN Y H, Li H Y. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae). Applications in plant sciences, 2017, 5(7):1-11
[28]   王星玉. 黍稷史话. 种子通讯, 1985, 4: 21.
Wang X y. History of broomcorn millet. Seed Newsletter, 1985, 4: 21. (in Chinese)
[29]   魏仰浩. 试论黍的起源. 农业考古, 1986, 2: 248-251.
Wei Y h. On the Origin of broomcorn millet. Agricultural Archeology, 1986, 2: 248-251. (in Chinese)
[30]   董玉琛, 郑殿升. 中国作物及其野生近缘植物: 粮食作物卷. 北京:中国农业出版社, 2006.
Dong Y C, Zheng D s. Crops and Their Wild Relatives in China: Food Crops Rolls. Beijing: China Agriculture Press, 2006. (in Chinese)
[31]   高俊山, 徐新宇, 胡荣海, 魏仰浩. 糜黍酯酶同工酶的研究. 作物品种资源, 1990, 2: 2.
Gao J s, Xu X y, Hu R h, Wei Y h. Studies on esterase isoenzymes of broomcorn millet. Crop Germplasm Resources, 1990, 2: 2. (in Chinese)
[32]   王星玉, 王纶, 温琪汾, 师颖. 山西是黍稷的起源和遗传多样性中心. 植物遗传资源学报, 2009, 10(3): 465-470.
Wang X y, Wang L, Wen Q F, Shi Y. Shanxi is the origin and genetic diversity center of broomcorn millet. Journal of Plant Genetic Resources, 2009, 10(3): 465-470. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] ZhiJun XU,Sheng ZHAO,Lei XU,XiaoWen HU,DongSheng AN,Yang LIU. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea) [J]. Scientia Agricultura Sinica, 2020, 53(4): 695-706.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!