Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (18): 3439-3449.doi: 10.3864/j.issn.0578-1752.2017.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Association Analysis of Leaf Chlorophyll Content with SSR Markers and Exploration of Superior Alleles in Upland Cotton

LIU QiBao, LI LiBei, ZHANG Chi, SU JunJi, WEI HengLing, WANG HanTao, YU ShuXun   

  1. Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2017-03-20 Online:2017-09-16 Published:2017-09-16

Abstract: 【Objective】The objective of this study is to detect the SSR markers associated with leaf chlorophyll content and explore the alleles and their typical materials in upland cotton. The results will be helpful for molecular marker-assisted breeding.【Method】The natural population including 185 upland cotton accessions were planted at two different places in 3 years and the data of leaf chlorophyll content were recorded at 3 stages (0, 10 and 20 days after topping) every year. In analysis the polymorphism information of population structure, Power Marker 3.25 software was used to estimate the polymorphism information content (PIC). The structure of the natural population was analyzed using STRUCTURE 2.3.4 software and the kinship was estimated using TASSEL 3.0 software. Then the data were associated with 137 SSR markers by GLM (general linear model, Q) and MLM (mixed linear model, Q+K). The superior alleles were exploited and the phenotypic effects of total alleles were found.【Result】 Totally 355 polymorphic alleles were found with 137 SSR markers and 2.6 alleles were revealed with each marker in average ranged from 0.01-0.95. The 85% of total alleles were highly polymorphic primers (PIC>0.5). HAU2146 (PIC=0.95) and NAU2083 (PIC=0.93) kept the maximum PIC. According to the results of STRUCTURE software, K value was 2 when ΔK was the max so the cultivars were divided into 2 populations. A total of 22 alleles found by GLM method significantly at the level of P<0.001 which explained 5.28%-10.85% of the phenotypic variance and the mean value was 7.24%. SWU0529a (R2 =10.85%) and NAU998c (R2=10.48%) kept the max value. Meanwhile, 17 alleles were found by MLM method significantly at the level of P<0.01 which explained 3.72%-8.58% of the phenotypic variance and the mean value was 4.72%. SWU0923b (R2=8.06%) and SWU0662d (R2=6.74%) kept the max value. A total of 12 alleles were revealed by GLM method and MLM method in common, and NAU998c was significantly at 3 stages by GLM and MLM methods. Two positive alleles (HAU3318b and SWU0987b) were revealed over the estimated phenotypic effects. The 53 carrier materials of two positive alleles kept higher SPAD value in average than the 46 materials carried none of two positive alleles in 10 and 20 days after topping.【Conclusion】A total of 12 alleles associated significantly with leaf chlorophyll of upland cotton were found, and then two positive superior alleles, 53 carrier materials and one typical materials were revealed.

Key words: upland cotton, chlorophyll, SSR, association analysis, superior allele

[1]    李鹏程, 董合林, 刘爱忠, 王润珍, 刘爱珍, 李如义. 棉花上部叶片叶绿素SPAD值动态变化研究. 中国农学通报, 2012, 28(3): 121-126.
Li P C, Dong H L, Liu A Z, Wang R Z, Liu A Z, Li R Y. A study on dynamic change of chlorophyll SPAD values of upper leaves in main stem of cotton. Chinese Agricultural Science Bulletin, 2012, 28(3): 121-126. (in Chinese)
[2]    Thomas H, Howarth C J. Five ways to stay green. Journal of Experimental Botany, 2000, 51(Suppl. 1): 329-337.
[3]    Thomas H, Ougham H. The stay-green trait. Journal of Experimental Botany, 2014, 65(14): 3889-3900.
[4]    SONG X L, GUO W Z, HAN Z G, ZHANG T Z. Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. Journal of Integrative Plant Biology, 2005, 47(11): 1382-1390.
[5]    Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, Paterson A H. Genomic dissection of genotype×environment interactions conferring adaptation of cotton to arid conditions. Genome Research, 2001, 1(12): 1988-1995.
[6]    宋美珍. 短季棉早熟不早衰生化遗传机制及QTL定位[D]. 北京: 中国农业科学院, 2006.
SONG M Z. Biochemical genetic mechanism and QTLs of early maturing without decrepitude in shorted-reason upland cotton (G. hirsutum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[7]    秦鸿德, 张天真. 棉花叶绿素含量和光合速率的QTL定位. 棉花学报, 2008, 20(5): 394-398.
QIN H D, ZHANG T Z. QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Cotton Science, 2008, 20(5): 394-398. (in Chinese)
[8]    张建, 刘大军, 林刚, 张正圣. 陆地棉叶绿素质量分数QTL定位. 西南大学学报, 2011, 33(4): 1-4.
ZHANG J, LIU D J, LIN G, ZHANG Z S. QTL mapping for chlorophyll content in upland cotton (Gossypium hirsutum L.). Journal of Southwest University (Natural Science Edition), 2011, 33(4): 1-4. (in Chinese)
[9]    郑巨云, 龚照龙, 王俊铎, 李雪源, 艾先涛, 梁亚军, 吐尔逊江, 多力坤, 莫明. 新疆陆地棉遗传连锁图谱构建及叶绿素含量和光合速率的QTL定位. 新疆农业科学, 2014, 51(9): 1577-1582.
ZHENG J Y, GONG Z L, WANG J D, LI X Y, AI X T, LIANG Y J, TU E X J, DUO L K, MO M. Construction of linkage genetic map and QTL mapping for the chlorophyll content and photosynthetic rates in upland cotton. Xinjiang Agricultural Sciences, 2014, 51(9): 1577-1582. (in Chinese)
[10]   戎福喜, 汤丽魁, 唐媛媛, 李志博, 赵瑞海, 雷军, 魏亦农. 海陆渐渗系棉花吐絮期叶绿素含量、荧光参数及相关性状的QTL定位分析. 棉花学报, 2015, 27(5): 417-426.
RONG F X, TANG L K, TANG Y Y, LI Z B, ZHAO R H, LEI J, WEI Y N. QTL mapping for leaf chlorophyll content, fast chlorophyll fluorescence parameters and related traits in cotton introgression lines during the boll opening stage. Cotton Science, 2015, 27(5): 417-426. (in Chinese)
[11]   1001 Genomes Consortium. 1135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell, 2016, 166(2): 481-491.
[12]   CHEN W, GAO Y Q, XIE W B, GONG L, LU K, WANG W S, LI Y, LIU X Q, ZHANG H Y, DONG H X, ZHANG W, ZHANG L J,      YU S B, WANG G W, LIAN X M, LUO J. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature genetics, 2014, 46(7): 714-721.
[13]   KUMP K L, BRADBURY P J, WISSER R J, BUCKLER E S, BELCHER A R, OROPEZA-ROSAS M A, ZWONITZER J C, KRESOVICH S, MCMULLEN M D, WARE D, BALINT-KURTI P J, HOLLAND J B. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nature genetics, 2011, 43(2): 163-168.
[14]   XIAO Y J, TONG H, YANG X H, XU S Z, PAN Q C, QIAO F, RAIHAN M S, LUO Y, LIU H J, ZHANG X H, YANG N, WANG X Q, DENG M, JIN M L, ZHAO L J, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N N, WANG H, CHEN G S, CAI Y, XU G, WANG W D, ZHENG D B, YAN J B. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist,2015, 210: 1095-1106.
[15]   DOERGE R W. Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics, 2002, 3(1): 43-52.
[16]   HOLLAND J B. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 2007, 10(2): 156-161.
[17]   NIE X H, HUANG C, YOU C Y, LI W, ZHAO W X, SHEN C, ZHANG B B, WANG H T, YAN Z H, DAI B S, WANG M J, ZHANG X L, LIN Z X. Genome-wide SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed cultivars in China. BMC Genomics, 2016, 17(1): 352.
[18]   SU J J, FAN S L, LI L B, WEI H L, WANG C X, WANG H T, SONG M Z, ZHANG C, GU L J, ZHAO S Q, MAO G Z, WANG C S, PANG C Y, YU S X. Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Frontiers in Plant Science, 2016, 7(10): 1-11.
[19]   SU J J, LI L B, PANG C Y, WEI H L, WANG C X, SONG M Z, WANG H T, ZHAO S Q, ZHANG C, MAO G Z, HUANG L, WANG C S, FAN S L, YU S X. Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Scientific Reports, 2016, 6: 38496.
[20]   SU J J, PANG C Y, WEI H L, LI L B, LIANG B, WANG C X, SONG M Z, WANG H T, ZHAO S Q, JIA X Y, MAO G Z, DUANG L, GNEG D D, WANG C S. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics, 2016, 17(1): 687.
[21]   宋国立, 崔荣霞, 王坤波, 郭立平, 黎绍惠, 王春英, 张香娣. 改良CTAB法快速提取棉花DNA. 棉花学报, 1998, 10(5): 273-275.
SONG G L, CUI R X, Wang K B, Guo L P, Li S H, Wang C Y, Zhang X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Cotton Science, 1998, 10(5): 273-275. (in Chinese)
[22]   赵树琪, 梁冰, 李黎贝, 庞朝友, 宿俊吉, 宋美珍, 魏恒玲, 王寒涛, 范术丽, 喻树迅. 基于SSR标记的陆地棉早熟相关种质遗传多样性分析. 植物遗传资源学报, 2016, 17(4): 599-606.
        ZHAO S Q, LIANG B, LI L B, PANG C Y, SU J J, SONG M Z, WEI H L, WANG H T, FAN S L, YU S X. Genetic diversity analysis of early-maturity related germplasm in upland cotton (Gossypium hirsutum L.) based on SSR marker. Journal of Plant Genetic Resources, 2016, 17(4): 599-606. (in Chinese)
[23]   张军, 武耀廷, 郭旺珍, 张天真. 棉花微卫星标记的PAGE/银染快速检测. 棉花学报, 2000, 12(5): 267-269.
ZhANG J, WU Y T, GUO W Z, Zhang T Z. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Science, 2000, 12(5): 267-269. (in Chinese)
[24]   LIU K, MUSE S V. PowerMaker: An integrated analysis environment for genetic maker analysis. Bioinformatics, 2005, 21(9): 2128-2129.
[25]   PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.
[26]   EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[27] EARL D A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359-361.
[28]   BATES D, MAECHLER M, BOLKER B, WALKER S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 2015, 67(1): 1-48.
[29]   BRADBURY P J, ZhANG Z, KROON D E, CASSTEVENS T M, RAMDOSS Y, BUCKLER E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19): 2633-2635.
[30]   BRESEGHELLO F, MARK S. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.
[31]   文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: II. 优异等位变异的发掘. 作物学报, 2008, 34(8): 1339-1349.
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agronomica Sinica, 2008, 34(8): 1339-1349. (in Chinese)
[32]   BOTSTEIN D, WHITE R L, SKOLNICK M, DAVIS R W. Construction of a genetic linkage map in man using restriction fragment length polymorphism. American Journal of Human Genetics, 1980, 32(3): 314-331.
[33]   王鹏, 张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础. 作物学报, 2012, 38(6): 947-953.
Wang P, Zhang T Z. Genetic dissection of photosynthetic pigment content in cotton interspecific chromosome segment introgression lines. Acta Agronomica Sinica, 2012, 38(6): 947-953. (in Chinese)
[34]   ROTMISTROVSKY K, JANG W, SCHULER G D. A web server for performing electronic PCR. Nucleic acids research, 2004, 32(suppl. 2): W108-W112.
[35]   ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B,SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z H, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature biotechnology, 2015, 33(5): 531-537.
[36]   Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics, 2009, 10(8): 565-577.
[37]   ZHANG Z W, ERSOZ E, LAI C Q, TODHUNTER R J, TIEARI H K, GORE M A, BRADBURY P J, YU J M, ARNETT D K, ORDOVAS J M, BUCKLER E S. Mixed linear model approach adapted for genome-wide association studies. Nature genetics, 2010, 42(4): 355-360.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[3] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[6] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[7] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[8] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[9] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[10] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[11] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[12] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[13] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[14] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[15] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!