Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (13): 2593-2602.doi: 10.3864/j.issn.0578-1752.2016.13.015

• HORTICULTURE • Previous Articles     Next Articles

Isolation of Chlorophyll Metabolism Key Genes and Molecular Mechanism of Green Fade in Guzmania Bracts Discoloration Process

LIU Jian-xin, DING Hua-qiao, TIAN Dan-qing, WANG Wei-yong, LIU Hui-chun   

  1. Xiaoshan Cotton and Bast Fiber Crops Research Institute of Zhejiang Province, Hangzhou 311202
  • Received:2015-11-16 Online:2016-07-01 Published:2016-07-01

Abstract: 【Objective】 Guzmania is a trendy flower. Its flower formation and bracts discoloration process are often accompanied by green fade. To analyze the reason which bract’s green fade, it is necessary to isolate key genes and explore molecular mechanism of chlorophyll biosynthesis and degradation metabolism in the process of bracts discoloration. 【Method】 By cDNA library construction and EST sequencing batch, two key enzyme genes in chlorophyll biosynthesis pathway, including glutamyl-tRNA synthetase (GTS) and Uroporphyrinogen-Ⅲ synthase (UROS), were obtained. By homology cloning technology, a key enzyme gene in chlorophyll degradation pathway, pheophytin pheophorbide hydrolase gene (PPH), was obtained. Through measuring chlorophyll content using light transmittance measurement method, flavonoid content using HPLC method and analyzing gene expression pattern of key genes in chlorophyll metabolism using real-time quantitative PCR method, the molecular mechanism which green fade in discoloration bracts was studied. 【Result】 GTS obtained has 1 140 bp (GenBank: KP144289) in cDNA sequence, which compiles a 171 amino acid protein sequence, and has GlnRS-cataytic core and Nt-trans superfamily conservative regions; UROS obtained has 613 bp (GenBank: KP144288) in cDNA sequence, which compiles a 188 amino acid protein sequence, and has HemD and HemD Superfamily conservative regions; PPH obtained has 266 bp (GenBank: KP723523) in cDNA sequence, which compiles a 88 amino acid protein sequence, and has Abhydrolase-6 conservative region. Through measuring chlorophyll, flavonoid content and studying the expression level of key genes in chlorophyll metabolism, it could know that bract discoloration process accompanied by significant reduction of chlorophyll content and significant increase of flavonoid content. Furthermore, the expression level of chlorophyll biosynthesis key enzyme’s encoding genes, GTS and UROS, were also decreased obviously. As for the chlorophyll degradation key enzyme’s encoding gene, PPH, its expression level increased significantly at the beginning of bracts discoloration, then reduced to close to the lowest level, which in accord with green leaves, after finishing of discoloration. As for the control material, green leaf had the highest chlorophyll content and the lowest flavonoid content. Furthermore, the expression amount of chlorophyll biosynthesis related genes were the highest, while that of degrade related genes was the lowest. This was consistent with colorful plants in chlorophyll and flavonoid pigment change trend. 【Conclusion】 We obtained biosynthesis key enzymes genes, GTS, UROS, and degradation key enzyme gene, PPH, in chlorophyll metabolism pathway from Guzmania. The reason that bracts’ green fade was due to reduction of chlorophyll content, and accompanied by increase of flavonoid content. The reduction of chlorophyll content was due to chlorophyll’s biosynthesis reduced and degradation increased significantly. PPH played a key role in chlorophyll degradation process. The results will provide a basis for researching pigment change of view bract plants.

Key words:  Guzmania Ruiz&Pav, chlorophyll, glutamyl-tRNA synthetase, uroporphyrinogen-III synthase, pheophytin pheophorbide hydrolase/pheophytinase

[1]    沈晓岚, 王炜勇, 毛碧增, 俞少华, 田丹青, 俞信英. 基因枪介导擎天凤梨遗传转化体系的建立. 分子植物育种, 2013, 11(1): 77-84.
Shen X L, Wang W Y, Mao B Z, Yu S H, Tian D Q, Yu X Y. Establishment of particle bombardment-mediated genetic transformation system of guzmania bromeliad. Molecular Plant Breeding, 2013, 11(1): 77-84. (in Chinese)
[2]    Tanaka Y, Sasaki N, Ohmiya A. Plant pigments for coloration: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54: 733-749.
[3]    Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences, 2009,10: 5350-5369.
[4]    赵云鹏, 陈发棣, 郭维明. 观赏植物花色基因工程研究进展. 植物学通报, 2003, 20(1): 51-58.
Zhao Y P, Chen F D, Guo W M. Advances in genetic engineering of flower color of ornamental plants. Chinese Bulletin of Botany, 2003, 20(1): 51-58. (in Chinese)
[5]    赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理. 植物学通报, 2005, 22(1): 70-81.
Zhao C L, Guo W M, Chen J Y. Formation and regulation of flower color in higher plants. Chinese Bulletin of Botany, 2005, 22(1): 70-81. (in Chinese)
[6]    Kate M, Joanne L M, Rachel M L, Howard G, Peter H. Chloroplast acclimation in leaves of Guzmania monostachia in response to high light. Plant Physiology, 1999, 121(1): 89-96.
[7]    祝钦泷. 彩叶草(Solenostemon scutellarioides)叶色形成相关的花色素苷生物合成途径的分子调控研究[D]. 重庆: 西南大学, 2007.
Zhu Q L. Studies on the molecular regulation of the anthocyanin biosynthesis related to leaf color of Solenostemon scutellartoides [D]. Chongqing: Southwest University, 2007. (in Chinese)
[8]    季鹏章, 梁名志, 宋维希, 蒋会兵, 马琳, 王丽, 矣兵. 茶树珍稀品种“紫娟”的叶片色素含量与叶色变化的关系研究. 西南农业学报, 2010, 23(6): 1860-1862.
Ji P Z, Liang M Z, Song W X, Jiang H B, Ma L,Wang L,Yi B. Relationship between changes of pigments content and leaf color changing in ‘Zijuan’ (Camellia sinensis var. assamica). Southwest China Journal of Agricultural Sciences, 2010, 23(6): 1860-1862. (in Chinese)
[9]    胡敬志, 田旗, 鲁心安. 枫香叶片色素含量变化及其与叶色变化的关系. 西北农林科技大学学报(自然科学版), 2007, 35(10): 219-223.
Hu J Z, Tian Q, Lu X A. Relationship between changes of the pigments content and leaf color changing in Liquidambar formosana. Journal of Northwest A & F University (Natural Science Edition), 2007, 35(10): 219-223. (in Chinese)
[10]   Nakayama M, Roh M S, Uchida K, Yamaguchi Y, Takano K, Koshioka M. Malvidin 3-rutinoside as the pigment responsible for bract color in Curcuma alismatifolia. Bioscience, Biotechnology, and Biochemistry, 2000, 64(5): 1093-1095.
[11]   王长泉, 魏小兵. 一品红苞片花色素的分离及初步鉴定. 植物学通报, 2006, 23(4): 356-362.
Wang C Q, Wei X B. The extraction and primary identification of anthocyanidin in euphorbia pulcherrima. Chinese Bulletin of Botany, 2006, 23(4): 356-362. (in Chinese)
[12]   Nancy A. A new chlorophyll degradation pathway. The Plant Cell, 2009, 21: 700.
[13]   Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hörtensteiner S. Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescencein Arabidopsis. The Plant Cell, 2009, 21: 767-785.
[14]   Asumi F, Yasuo S, Hirofumi T, Naoki Y. Effects of postharvest ethanol vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in broccoli florets. Postharvest Biology and Technology, 2010, 55: 97-102.
[15]   王伟. 黄瓜衰老过程中叶绿素降解相关酶基因cDNA片段的克隆与表达初步研究[D]. 武汉: 华中农业大学, 2011.
Wang W. The preliminary study on cloning and expression of cdna fragments of related enzymes gene of chlorophyll degradation of cucumber during senescence[D]. Wuhan: Huazhong Agricultural University, 2011. (in chinese)
[16]   曹凤. 小麦尿卟啉原III合酶基因克隆、序列分析及其在大肠杆菌中的表达[D]. 杨凌: 西北农林科技大学, 2007.
Cao F. Cloning, sequence analysis and expression of wheat uroporphybilinogen III synthase in E.Coli[D]. Yangling: Northwest A&F University, 2007. (in Chinese)
[17]   刘建新, 沈福泉, 田丹青, 张智, 葛亚英, 沈晓岚, 俞信英, 王炜勇. 擎天凤梨花器官全长cDNA文库的构建及EST分析. 分子植物育种, 2009, 7(6): 1137-1143.
Liu J X, Shen F Q, Tian D Q, Zhang Z, Ge Y Y, Shen X L, Yu X Y, Wang W Y. Construction of full-length cDNA library from floral organ and EST analysis in guzmania. Molecular Plant Breeding, 2009, 7(6): 1137-1143. (in Chinese)
[18]   Liu J X, Ge Y Y, Tian D Q, Zhang Z, Ding H Q, Shen F Q, Wang W Y. Cloning and sequence analysis of actin gene from Guzmania. Plant Gene and Trait, 2012, 3(1): 1-5.
[19]   Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S, Chitsaz F, Geer L Y, Geer R C, He J, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z, Yamashita R A, Zhang D, Zheng C, Bryant S H. CDD: NCBI's conserved domain database. Nucleic Acids Research, 2015, 43: 222-226.
[20]   Marchler-Bauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Lu F, Marchler G H, Mullokandov M, Omelchenko M V, Robertson C L, Song J S, Thanki N, Yamashita R A, Zhang D, Zhang N, Zheng C, Bryant S H. CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 2011, 39: 225-229.
[21]   Marchler-Bauer A, Anderson J B, Chitsaz F, Derbyshire M K, DeWeese-Scott C, Fong J H, Geer L Y, Geer R C, Gonzales N R, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Liebert C A, Liu C, Lu F, Lu S, Marchler G H, Mullokandov M, Song J S, Tasneem A, Thanki N, Yamashita R A, Zhang D, Zhang N, Bryant S H. CDD: Specific functional annotation with the Conserved Domain Database. Nucleic Acids Research, 2009, 37(D): 205-210.     
[22]   Marchler-Bauer A, Bryant S H. CD-Search: protein domain annotations on the fly. Nucleic Acids Research, 2004, 32(W): 327-331.
[23]   田风霞, 惠振, 王国坤, 范振宇, 王玮. 植物体内的叶绿素降解与滞绿突变体. 植物生理学通讯, 2010, 46(5): 505-511.
Tian F X, Hui Z, Wang G K, Fan Z Y, Wang W. Chlorophyll degradation and stay-green mutant in plant. Plant Physiology Communications, 2010, 46(5): 505-511. (in Chinese)
[24]   唐蕾, 毛忠贵. 植物叶绿素降解途径及其分子调控. 植物生理学 报, 2011, 47(10): 936-942.
Tang L, Mao Z G. Degradation pathway of plant chlorophyll and its molecular regulation. Plant Physiology Journal, 2011, 47(10): 936-942. (in Chinese)
[25]   Eckardt N A. A new chlorophyll degradation pathway. The Plant Cell, 2009, 21: 700.
[26]   王绘艳. 小麦叶绿素和脱镁叶绿素酶基因的作用及表达分析[D]. 太谷: 山西农业大学, 2015.
Wang H Y. The Function and gene expression analysis of chlorophyllase and pheophytinase in wheat[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese)
[27]   Agustin M B, Pedro M C, Gustavo A M. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescene of broccoli. Journal of Plant Physiology, 2010, 7: 1-7.
[28]   Asam F, Bob I, Peter M. Purification and properties of uroporphyrinogen iii synthase (co-synthase) from an overproducing recombinant strain of Escherichia coli K-12. Biochemical Journal, 1989, 264: 397-402.
[29]   Barry C S, McQuinn R P, Chung M Y, Besudent A, Giovannoni J J. Amino acid substitutios in homologs of the STAY- GREEN protein are responsible for the greefles hand chlorophyll retainer mutations of tomato and pepper. Physiology Plant, 2008, 147(l): 179-187.
[30]   Suzuki T, Kunieda T, Murai F, Morioka S, Shioi Y. Mgdechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllidea. Plant Physiology Biochemistry, 2005,43: 459-464.
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[4] JIA XiaoHui,ZHANG XinNan,LIU BaiLin,MA FengLi,DU YanMin,WANG WenHui. Effects of Low Oxygen/High Carbon Dioxide Controlled Atmosphere Combined with 1-Methylcyclopropene on Quality of Yuluxiang Pear During Cold Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4717-4727.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] YinHua MA,KaiQin MO,Lu LIU,PingFang LI,ChenZhong JIN,Fang YANG. Effect of Overexpression of OsRRK1 Gene on Rice Leaf Development [J]. Scientia Agricultura Sinica, 2021, 54(5): 877-886.
[7] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[8] GU BoWen,YANG JinFeng,LU XiaoLing,WU YiHui,LI Na,LIU Ning,AN Ning,HAN XiaoRi. Effects of Continuous Application of Biochar on Chlorophyll Fluorescence Characteristics of Peanut at Different Growth Stages [J]. Scientia Agricultura Sinica, 2021, 54(21): 4552-4561.
[9] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[10] ZHANG Bin,LI Meng,LIU Jing,WANG JunJie,HOU SiYu,LI HongYing,HAN YuanHuai. Expression Analysis of the Chlorophyll Biosynthesis Structural Genes in Green and White Foxtail Millet [Setaria italica (L.) Beauv] [J]. Scientia Agricultura Sinica, 2020, 53(12): 2331-2339.
[11] GENG QingWei,XING Hao,ZHAI Heng,JIANG EnShun,DU YuanPeng. Effects of Different Light Intensity and Temperature on PSII Photochemical Activity in ‘Cabernet Sauvignon’ Grape Leaves Under Ozone Stress [J]. Scientia Agricultura Sinica, 2019, 52(7): 1183-1191.
[12] GONG XiangWei,DANG Ke,LI Jing,LUO Yan,ZHAO Guan,YANG Pu,GAO XiaoLi,GAO JinFeng,WANG PengKe,FENG BaiLi. Effects of Different Intercropping Patterns on Photosynthesis Production Characteristics and Water Use Efficiency of Proso Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153.
[13] SU LanXi,BAI TingYu,YU Huan,WU Gang,TAN LeHe. Effects of Salt Stress on Seedlings Growth, Photosynthesis and Chlorophyll Fluorescence of Two Species of Artocarpus [J]. Scientia Agricultura Sinica, 2019, 52(12): 2140-2150.
[14] SHI DaKun, YAO TianLong, LIU NanNan, DENG Min, DUAN HaiYang, WANG LuLin, WAN Jiong, GAO JiongHao, XIE HuiLing, TANG JiHua, ZHANG XueHai. Genome-Wide Association Study of Chlorophyll Content in Maize [J]. Scientia Agricultura Sinica, 2019, 52(11): 1839-1857.
[15] LI WenTao, YANG JiangBo, ZHANG Ji, WANG KeJian, DENG Lie, Lü Qiang, HE ShaoLan, XIE RangJin, ZHENG YongQiang, MA YanYan, YI ShiLai. The Evaluation of Chlorophyll Content Detection in the Leaves of Newhall Navel Orange Based on Different Sensors [J]. Scientia Agricultura Sinica, 2018, 51(6): 1057-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!