Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1839-1857.doi: 10.3864/j.issn.0578-1752.2019.11.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study of Chlorophyll Content in Maize

SHI DaKun1,YAO TianLong1,LIU NanNan2,DENG Min3,DUAN HaiYang1,WANG LuLin1,WAN Jiong1,GAO JiongHao1,XIE HuiLing1,TANG JiHua1,ZHANG XueHai1()   

  1. 1 College of Agronomy, Henan Agricultural University/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
    2 Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002
    3 College of Agronomy, Hunan Agricultural University/Maize Engineering Research Center of Hunan Province, Changsha 410128
  • Received:2019-01-21 Accepted:2019-02-28 Online:2019-06-01 Published:2019-06-11
  • Contact: XueHai ZHANG E-mail:xuehai85@126.com

Abstract:

【Objective】 Chlorophyll content was positively correlated with crop yield, improving crop yield by increasing chlorophyll content has become an important breeding goal in maize. Thus, elucidating the genetic basis of chlorophyll content using genome-wide association study (GWAS) can provide theoretical support for ideotype-based maize breeding with high photosynthetic efficiency. 【Method】 The association mapping panel (AMP) used in this study was consisted of 538 maize inbred lines, chlorophyll content of maize three leaves (above the uppermost ear leaf, uppermost ear leaf and below the uppermost ear leaf ) of the AMP was investigated at 5 days after pollination at five locations, then a GWAS with three models (Q, K, Q+K) were carried out using 558 629 single nucleotide polymorphisms (SNPs). The combination of optimal GWAS model with expression quantitative trait loci (eQTL) analysis, natural variation of chlorophyll content was further explored. 【Result】 All traits measured at the five locations exhibited an approximately normal distribution and positive correlations between paired traits were also observed. Analysis of variance indicated that significant variations were observed across environment, genotype and the genotype × environment interaction. In addition, the heritability of chlorophyll content was 0.66, 0.66, and 0.67 for above the uppermost ear leaf, uppermost ear leaf and below the uppermost ear leaf, respectively. When test with the optimal GWAS model, K model has the greatest success in reducing false positive (type I errors) than other two models. Based on the result of K model, a total of 18 loci involving in 29 significantly SNP-traits associations were detected (P≤3.99×10 -6), and 76 candidate genes were found, including 42 genes that have functional annotation that involved in energy metabolism, biosynthetic regulation and material transportation and metabolic pathways. Of which, 85.5% (65/76) of the candidate genes have eQTLs and 11.8% (9/76) of the candidate genes were significantly associated with the corresponding phenotype (P<0.05), indicating that these nine genes may affect phenotypic variation by regulating their expression. Moreover, two loci were found to be co-localized in two environments or leaves, the gene GRMZM2G074759 within the co-localized locus, encodes an acyl-activating enzyme, highly similar to AAE3. It can increase the lysine content and improve maize quality by increasing the content of α-ketoglutarate (ALA) and oxaloacetate, in addition, ALA could promote chlorophyll biosynthesis and improve crop yield, this gene was considered as the most likely candidate gene. 【Conclusion】 The results indicated that K model having the best result in reducing the false positive. Based on the K model, a total of 18 loci associated with chlorophyll content and several candidate genes may be involved in chlorophyll synthesis pathway were identified.

Key words: maize (Zea mays L.), chlorophyll content, genome-wide association study, high photosynthetic efficiency

Table 1

Descriptive statistics for chlorophyll content in maize three ear leaves of the association population under different environments"

环境
Environment
性状
Traits
变异范围
Range
均值
Mean
标准差
sd.
偏度
Ske.
峰度
Kur.
2012年鹤壁Hebi, 2012 穗上叶Above the uppermost ear leaf 26.25—67.85 52.98 6.91 -0.87 1.51
穗位叶Uppermost ear leaf 22.25—68.60 52.82 7.17 -0.97 1.69
穗下叶Below the uppermost ear leaf 18.25—66.20 52.92 7.58 -1.08 1.92
2017年三亚Sanya, 2017 穗上叶Above the uppermost ear leaf 29.25—68.45 50.97 6.39 -0.46 0.90
穗位叶Uppermost ear leaf 25.83—70.45 51.08 6.37 -0.43 1.16
穗下叶Below the uppermost ear leaf 25.65—69.60 51.03 6.67 -0.48 0.92
2018年长沙Changsha, 2018 穗上叶Above the uppermost ear leaf 27.90—82.93 53.84 6.20 -0.26 3.08
穗位叶Uppermost ear leaf 29.47—82.95 53.83 6.10 -0.08 2.98
穗下叶Below the uppermost ear leaf 22.88—95.28 53.93 7.44 -0.09 4.59
2018年原阳Yuanyang, 2018 穗上叶Above the uppermost ear leaf 30.80—63.35 48.05 5.74 -0.48 0.97
穗位叶Uppermost ear leaf 30.32—61.99 47.88 5.80 -0.39 0.84
穗下叶Below the uppermost ear leaf 29.73—60.64 47.97 6.13 -0.33 0.52
2018年永城Yongcheng, 2018 穗上叶Above the uppermost ear leaf 40.92—69.59 54.67 6.61 0.00 0.00
穗位叶Uppermost ear leaf 38.30—68.48 54.86 6.74 -0.20 0.37
穗下叶Below the uppermost ear leaf 37.85—69.15 54.99 6.96 -0.03 -0.04
综合Blup 穗上叶Above the uppermost ear leaf 43.46—58.68 52.51 3.16 -0.57 1.02
穗位叶Uppermost ear leaf 40.45—60.49 52.57 3.61 -0.55 0.78
穗下叶Below the uppermost ear leaf 40.20—64.44 52.55 4.13 -0.50 0.64

Fig. 1

Correlation coefficients for chlorophyll content in maize three leaves of association population under six environments a, b, c, d, e, f: Stands for Hebi in 2012, Sanya in 2017, Changsha in 2018, Yongcheng in 2018, Yuanyang in 2018 and Blup value, respectively. The number followed character, 1-3: Stands for above the uppermost ear leaf, uppermost ear leaf and below the uppermost ear leaf, respectively. The same as below"

Table 2

Analysis of variance (ANOVA) for chlorophyll content of maize three ear leaves at five environments"

性状
Trait
变异来源
Source
离均差平方和
Type sum of squares
自由度
Df
均方
Mean square
F
F-value
穗上叶
Above the uppermost ear leaf
环境E 62052.294 4 15513.073 1202.047**
基因型G 51835.582 537 96.528 7.479**
基因型×环境 G×E 122215.029 2148 56.897 4.408**
误差Error 138863.674 10760 12.906
总变异Total 374966.579 13449
穗位叶
Uppermost ear leaf
环境E 74363.802 4 18590.951 1466.621**
基因型G 56009.168 537 104.300 8.228**
基因型×环境 G×E 126440.437 2148 58.864 4.643**
误差Error 136394.238 10760 12.676
总变异Total 393207.645 13449
穗下叶
Below the uppermost ear leaf
环境E 101559.963 4 25389.991 1822.287**
基因型G 59378.695 537 110.575 7.936**
基因型×环境 G×E 135210.636 2148 62.947 4.518**
误差Error 149919.461 10760 13.933
总变异Total 446068.755 13449

Fig. 2

Quantile-quantile (QQ) plots resulting from GWAS using three models for chlorophyll content of maize three ear leaves at six environments"

Fig. 3

The Manhattan plots of chlorophyll content of maize three ear leaves at six environments"

Table 3

Candidate genes and their annotation of chlorophyll content in maize three ear leaves at six environments"

位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
1 1 2018年长沙
Changsha, 2018
穗位叶
Uppermost ear leaf
Chr.1.S_33879839 33879839 1.05E-06 5.89 GRMZM2G110023 ATP结合亚基CLPT1叶绿体
ATP-dependent Clp protease ATP-binding subunit CLPT1 chloroplastic
GRMZM2G110004 NA
GRMZM2G035552 ACR8
GRMZM2G035461 自噬蛋白9Autophagy protein 9
2 1 2017年三亚
Sanya, 2017
穗位叶
Uppermost ear leaf
Chr.1.S_249417295 249417295 2.65E-06 5.43 GRMZM2G031771 NA
GRMZM2G031788 NA
GRMZM2G058057 同源线粒体导入受体亚基
Mitochondrial import receptor subunit TOM5 homolog TOM5
GRMZM2G058227 甘油磷酰二元酸酯磷酸二酯酶Glycerophosphoryl diester phosphodiesterase
GRMZM2G058244 UDP -葡萄糖6脱氢酶UDP-glucose 6-dehydrogenase
GRMZM2G172512 未知Unknown
GRMZM2G172584 未知Unknown
2 1 2017年三亚
Sanya, 2017
穗位叶
Uppermost ear leaf
Chr.1.S_249417300 249417300 2.65E-06 5.43 GRMZM2G031771 NA
GRMZM2G031788 NA
GRMZM2G058057 TOM5同源线粒体导入受体亚基
Mitochondrial import receptor subunit TOM5 homolog
GRMZM2G058227 甘油磷酰二元酸酯磷酸二酯酶Glycerophosphoryl diester phosphodiesterase
GRMZM2G058244 UDP -葡萄糖6脱氢酶UDP-glucose 6-dehydrogenase
GRMZM2G172512 未知Unknown
GRMZM2G172584 未知Unknown
2 1 2017年三亚
Sanya, 2017
穗位叶
Uppermost ear leaf
Chr.1.S_249417301 249417301 2.65E-06 5.43 GRMZM2G031771 NA
GRMZM2G031788 NA
GRMZM2G058057 TOM5同源线粒体导入受体亚基
Mitochondrial import receptor subunit TOM5 homolog
GRMZM2G058227 甘油磷酰二元酸酯磷酸二酯酶Glycerophosphoryl diester phosphodiesterase
GRMZM2G058244 UDP -葡萄糖6脱氢酶UDP-glucose 6-dehydrogenase
位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
GRMZM2G172512 未知Unknown
GRMZM2G172584 未知Unknown
3 3 2012年鹤壁
Hebi, 2012
穗下叶Below the uppermost ear leaf Chr.3.S_167437401 167437401 2.88E-07 6.52 GRMZM2G701895 NA
GRMZM2G044055 甲酸精蛋白1Formin-like protein 1
GRMZM2G044092 葡萄糖苷酶42Beta-glucosidase 42
GRMZM2G118362 含五肽复合物的线粒体蛋白
Pentatricopeptide repeat-containing protein mitochondrial
4 3 综合Blup 穗上叶Above the uppermost ear leaf PZE-103136749 192318356 6.48E-07 5.10 GRMZM2G038953 54 kD蛋白3信号识别粒子Signal recognition particle 54 kD protein 3
5 5 综合Blup 穗上叶Above the uppermost ear leaf PZE-105049606 41552842 1.46E-06 4.80 GRMZM2G007185 β13-半乳糖基转移酶4 Probable beta-13-galactosyltransferase 4
5 5 综合Blup 穗上叶Above the uppermost ear leaf PZE-105049607 41552873 2.58E-06 4.53 GRMZM2G007185 β13-半乳糖基转移酶4 Probable beta-13-galactosyltransferase 4
6 5 2012年鹤壁
Hebi, 2012
穗位叶
Uppermost ear leaf
Chr.5.S_174139937 174139937 2.23E-06 5.36 GRMZM5G836353 单氧酶1 Monooxygenase 1
GRMZM2G339523 单氧酶1 Monooxygenase 1
GRMZM2G087169 单氧酶1 Monooxygenase 1
GRMZM2G087068 类Cmc1细胞色素c氧化酶生物发生蛋白
Cytochrome c oxidase biogenesis protein Cmc1-like
GRMZM2G388099 未知Unknown
GRMZM2G087040 乙烯反应转录因子ERF021Ethylene-responsive transcription factor ERF021

GRMZM2G086946 TPX2(靶向蛋白为Xklp2)蛋白家族
TPX2 (targeting protein for Xklp2) protein family
7 5 综合Blup 穗下叶Below the uppermost ear leaf Chr.5.S_216586758 216586758 2.75E-06 5.03 GRMZM2G014116 26S蛋白酶体非ATP酶调节亚基
26S proteasome non-ATPase regulatory subunit 12 homolog B
GRMZM2G014793 O-岩藻糖转移酶家族蛋白O-fucosyltransferase family protein
GRMZM2G015090 植物细胞内ras -group相关LRR蛋白
Plant intracellular Ras-group-related LRR protein 9
GRMZM2G145061 脯氨酰4羟化酶亚基α2 Prolyl 4-hydroxylase alpha-2 subunit
GRMZM2G145107 蔗糖转运2 Sucrose transporter2
GRMZM2G145128 含有重复PPR的线粒体蛋白Pentatricopeptide repeat-containing protein
位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
GRMZM2G145133 未知Unknown
GRMZM2G445944 转录因子TCP21Transcription factor TCP21
GRMZM2G445958 复制蛋白a32 kD亚基A Replication protein A 32 kD subunit A
GRMZM2G145473 未知Unknown
8 7 2012年鹤壁
Hebi, 2012
穗下叶Below the uppermost ear leaf Chr.7.S_9204823 9204823 4.39E-07 6.37 GRMZM2G704349 Pumilio同源3 Pumilio homolog 3
GRMZM2G046776 Pumilio同源3 Pumilio homolog 3
GRMZM2G046750 脂质转运蛋白Lipid-transfer protein
种子贮藏2S白蛋白超家族蛋白Seed storage 2S albumin superfamily protein
GRMZM2G046529 叶绿体中蛋白质脂肪酸输出1 Protein FATTY ACID EXPORT 1 chloroplastic
GRMZM2G004301 Ⅳ型肌醇多磷酸酶Type Ⅳ inositol polyphosphate
9 7 2017年三亚
Sanya, 2017
穗下叶Below the uppermost ear leaf Chr.7.S_145681493 145681493 1.72E-06 5.54 GRMZM2G168913 RNA聚合酶Ⅱ的中介体亚单位8
Mediator of RNA polymerase Ⅱtranscription subunit 8

GRMZM2G168858 NADPH-细胞色素P450还原酶NADPH--cytochrome P450 reductase 2
GRMZM2G357688 锌指蛋白2 Zinc finger protein 2
GRMZM2G436511 BTB/POZ蛋白域 BTB/POZ domain-containing protein
GRMZM2G135651 环核苷酸封闭通道Cyclic nucleotide-gated ion channel 14
9 7 2017年三亚
Sanya, 2017
穗下叶Below the uppermost ear leaf Chr.7.S_145682189 145682189 5.85E-07 6.07 GRMZM2G168913 RNA聚合酶Ⅱ的中介体亚单位8
Mediator of RNA polymeraseⅡ transcription subunit 8
GRMZM2G168858 NADPH-细胞色素P450还原酶2 NADPH--cytochrome P450 reductase 2
GRMZM2G357688 锌指蛋白2Zinc finger protein 2
GRMZM2G436511 BTB/POZ蛋白域BTB/POZ domain-containing protein
GRMZM2G135651 环核苷酸封闭通道Cyclic nucleotide-gated ion channel 14
10 8 2012年鹤壁
Hebi, 2012
穗上叶Above the uppermost ear leaf Chr.8.S_1454124 1454124 1.32E-06 5.55 GRMZM2G378906 外被体蛋白β亚基Coatomer subunit beta
GRMZM2G110368 未知Unknown
11 8 综合Blup 穗位叶
Uppermost ear leaf
Chr.8.S_1454124 1454124 3.95E-06 4.70 GRMZM2G378906 外被体蛋白β亚基Coatomer subunit beta
GRMZM2G110368 未知Unknown
位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
12 9 综合Blup 穗上叶Above the uppermost ear leaf Chr.9.S_9638369 9638369 1.32E-06 4.86 GRMZM2G159402 假定锌指蛋白Putative zinc finger protein
GRMZM2G033130 DUF1296结构域蛋白家族
Putative DUF1296 domain containing family protein
12 9 综合Blup 穗上叶Above the uppermost ear leaf Chr.9.S_9639904 9639904 1.32E-06 4.86 GRMZM2G159402 假定锌指蛋白Putative zinc finger protein
GRMZM2G033130 DUF1296结构域蛋白家族Putative DUF1296 domain containing family protein
12 9 综合Blup 穗上叶Above the uppermost ear leaf chr9.S_9642472 9642472 1.32E-06 4.86 GRMZM2G159402 假定锌指蛋白Putative zinc finger protein
GRMZM2G033130 DUF1296结构域蛋白家族Putative DUF1296 domain containing family protein
12 9 综合Blup 穗上叶Above the uppermost ear leaf Chr.9.S_9643507 9643507 1.32E-06 4.86 GRMZM2G159402 假定锌指蛋白Putative zinc finger protein
GRMZM2G033130 DUF1296结构域蛋白家族Putative DUF1296 domain containing family protein
12 9 综合Blup 穗上叶Above the uppermost ear leaf Chr.9.S_9644832 9644832 1.32E-06 4.86 GRMZM2G159402 假定锌指蛋白Putative zinc finger protein
GRMZM2G033130 DUF1296结构域蛋白家族Putative DUF1296 domain containing family protein
13 9 2017年三亚
Sanya, 2017
穗位叶
Uppermost ear leaf
Chr.9.S_151327393 151327393 1.72E-06 6.01 GRMZM2G178787 叶绿体蛋白激酶Protein kinase 2B chloroplastic
GRMZM2G178826 脱氢奎尼酸合酶3-dehydroquinate synthase
GRMZM2G479529 未知Unknown
GRMZM2G178847 未知Unknown
GRMZM2G178859 原血红素Ⅸ法氏转移酶Protoheme Ⅸ farnesyltransferase
GRMZM2G178880 甘露聚糖合酶7 Probable mannan synthase 7
GRMZM2G178916 含有重复PPR的线粒体蛋白
Pentatricopeptide repeat-containing protein mitochondrial
GRMZM2G479581 未知Unknown
GRMZM2G178945 O-岩藻糖转移酶家族蛋白O-fucosyltransferase family protein
GRMZM2G178960 核酮糖磷酸3-表异构酶Ribulose-phosphate 3-epimerase
GRMZM2G057950 核糖体蛋白L32含有蛋白质的异构体1%3B核糖体蛋白L32,含有蛋白质的异构体
2Ribosomal protein L32 containing protein isoform 1%3B, Ribosomal protein L32 containing protein isoform 2
位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
GRMZM2G058037 类HVA22蛋白Ⅰ HVA22-like proteinⅠ
GRMZM2G361256 ATP结合盒(ABC)蛋白家族3 ABC transporter C family member 3
14 9 2017年三亚
Sanya, 2017
穗位叶
Uppermost ear leaf
Chr.9.S_153737236 153737236 7.91E-07 6.59 GRMZM2G382537 未知Unknown
GRMZM2G382534 羟化酶5 Hydroxylase5
GRMZM2G060564 PLAC8 家族蛋白PLAC8 family protein
GRMZM2G060507 假定类结转录因子家族蛋白Putative knotted-like transcription factor family protein
GRMZM2G064005 Protein FIZZY-RELATED 1 FIZZY-RELATED蛋白
GRMZM2G063931 假定泛素连接酶酶家族,E2泛素连接酶
Putative ubiquitin-conjugating enzyme family%3B, ubiquitin-conjugating enzyme E2
15 10 2012年鹤壁
Hebi, 2012
穗位叶
Uppermost ear leaf
Chr.10.S_45404195 45404195 2.81E-06 4.76 NO -
16 10 2012年鹤壁
Hebi, 2012
穗位叶
Uppermost ear leaf
Chr.10.S_46780569 46780569 2.76E-06 4.75 GRMZM2G135800 NA
GRMZM2G371316 未知Unknown
GRMZM2G371345 黄酮醇3-O-葡糖基转移酶Flavonol 3-O-glucosyltransferase
16 10 2012年鹤壁
Hebi, 2012
穗位叶
Uppermost ear leaf
Chr.10.S_46780652 46780652 2.76E-06 4.75 GRMZM2G135800 NA
GRMZM2G371316 未知Unknown
GRMZM2G371345 黄酮醇3-O-葡糖基转移酶Flavonol 3-O-glucosyltransferase
17 10 2018年长沙
Changsha, 2018
穗位叶
Uppermost ear leaf
Chr.10.S_148643242 148643242 3.04E-06 5.30 GRMZM2G074787 DNA错配修复蛋白MSH3 DNA mismatch repair protein MSH3
GRMZM2G074773 核转录因子Y亚基C-4 Nuclear transcription factor Y subunit C-4
GRMZM2G074759 酰基活化酶3 Acyl activating enzyme3
GRMZM2G074754 C2钙/脂结合植物磷脂酰转移酶家族蛋白
C2 calcium/lipid-binding plant phosphoribosyltransferase family protein
GRMZM2G074718 表达蛋白Expressed protein
GRMZM2G074107 DNA结合蛋白DNA binding protein
位点a
Loci
染色
Chr.
环境
Enviro.
性状
Trait
峰值SNP
Peak SNP
物理位置b
Posi. (bp)
Pc
P value
贡献率d
R2(%)
候选基因e
Candidate gene
功能注释
Annotation
17 10 2018年长沙
Changsha, 2018
穗位叶
Uppermost ear leaf
Chr.10.S_148643247 148643247 3.87E-06 5.27 GRMZM2G074787 DNA错配修复蛋白MSH3
DNA mismatch repair protein MSH3
GRMZM2G074773 核转录因子Y亚基C-4
Nuclear transcription factor Y subunit C-4
GRMZM2G074759 酰基活化酶3 Acyl activating enzyme3
GRMZM2G074754 C2钙/脂结合植物磷脂酰转移酶家族蛋白
C2 calcium/lipid-binding plant phosphoribosyltransferase family protein
GRMZM2G074718 表达蛋白Expressed protein
GRMZM2G074107 DNA结合蛋白DNA binding protein
17 10 2018年长沙
Changsha, 2018
穗位叶
Uppermost ear leaf
Chr.10.S_148643249 148643249 1.78E-07 6.71 GRMZM2G074787 DNA错配修复蛋白MSH3 DNA mismatch repair protein MSH3
GRMZM2G074773 核转录因子Y亚基C-4 Nuclear transcription factor Y subunit C-4
GRMZM2G074759 酰基活化酶3 Acyl activating enzyme3
GRMZM2G074754 C2钙/脂结合植物磷脂酰转移酶家族蛋白
C2 calcium/lipid-binding plant phosphoribosyltransferase family protein
GRMZM2G074718 表达蛋白Expressed protein
GRMZM2G074107 DNA结合蛋白DNA binding protein
18 10 2018年长沙
Changsha, 2018
穗上叶Above the uppermost ear leaf Chr.10.S_148643249 148643249 1.58E-06 5.80 GRMZM2G074787 DNA错配修复蛋白MSH3 DNA mismatch repair protein MSH3
GRMZM2G074773 核转录因子Y亚基C-4 Nuclear transcription factor Y subunit C-4
GRMZM2G074759 酰基活化酶3 Acyl activating enzyme3
GRMZM2G074754 C2钙/脂结合植物磷脂酰转移酶家族蛋白
C2 calcium/lipid-binding plant phosphoribosyltransferase family protein
GRMZM2G074718 表达蛋白Expressed protein
GRMZM2G074107 DNA结合蛋白DNA binding protein
[1] 刘红梅, 周新跃, 刘建丰, 邱颖波, 范峰峰, 徐庆国 . 籼型杂交稻光合特性的配合力分析. 植物遗传资源学报, 2014,15(4):699-705.
doi: 10.13430/j.cnki.jpgr.2014.04.003
LIU H M, ZHOU X Y, LIU J F, QIU Y B, FAN F F, XU Q G . Combining ability analysis of photosynthetic characteristics of indica hybrid rice. Journal of plant genetic resources, 2014,15(4):699-705. (in Chinese)
doi: 10.13430/j.cnki.jpgr.2014.04.003
[2] 李合生 . 现代植物生理学. 北京: 高等教育出版社, 2012.
LI H S . Modern Plant Physiology. Beijing: Higher Education Press, 2012. (in Chinese)
[3] 孙红, 李民赞, 张彦娥, 赵勇, 王海华 . 玉米生长期叶片叶绿素含量检测研究. 光谱学与光谱分析, 2010,30(9):2488-2492.
SUN H, LI M Z, ZHANG Y E, ZHAO Y, WANG H H . Study of chlorophyll content in maize leaves during growing period. Spectroscopy and Spectral Analysis, 2010,30(9):2488-2492. (in Chinese)
[4] 左宝玉, 李世仪, 匡廷云, 段续川 . 玉米不同层次叶片叶绿体的超微结构和叶绿素含量变化. 作物学报, 1987,13(3):213-218.
ZUO B Y, LI S Y, KUANG T Y, DUAN X C . The changes of ulterastructure and chlorophyll content of chloroplast of leaves in different ranks in maize. Acta Agronomica Sinica, 1987,13(3):213-218. (in Chinese)
[5] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳 . 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: Ⅱ.优异等位变异的发掘. 作物学报, 2008,34(8):1339-1349.
doi: 10.3724/SP.J.1006.2008.01339
WEN Z X, ZHAO T J, ZHENG Y Z, LIU S H, WANG C E, WANG F . Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agronomica Sinica, 2008,34(8):1339-1349. (in Chinese)
doi: 10.3724/SP.J.1006.2008.01339
[6] 李玮瑜, 张斌, 张嘉楠, 昌小平, 李润植, 景蕊莲 . 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异. 作物学报, 2012,38(6):962-970.
doi: 10.3724/SP.J.1006.2012.00962
LI W Y, ZHANG B, ZHANG J N, CHANG X P, LI R Z, JING R L . Exploring elite alleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agronomica Sinica, 2012,38(6):962-970. (in Chinese)
doi: 10.3724/SP.J.1006.2012.00962
[7] TIAN F, BADBURY P J, BROWN P J, HUNG H, BUCKLER E S . Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011,43(2):159-162.
[8] ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H . Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011,2:467.
[10] 刘涛, 权文彦, 吴雪莲, 周露, 程宇坤, 姚方杰 . 四川地方小麦品种产量与品质相关性状SSR标记位点的优异等位变异遗传解析. 麦类作物学报, 2015,35(4):449-456.
LIU T, QUAN W Y, WU X L, ZHOU L, CHENG Y K, YAO F J . Genetic analysis of SSR markers related to elite alleles of associated with yield and quality traits of Sichuan wheat landraces. Journal of Triticeae Crops, 2015,35(4):449-456. (in Chinese)
[11] ATWELL S, HUANG Y S, VILHJALMSSON B J, WILLEMS G, HORTON M, LI Y, MENG D, PLATT A, TARONE A M, HU T T, JIANG R, MULIYAFI N W, ZHANG X, ALNER M A, BAXTER I, BRAEHI B, CHORY J, DEARL C, DEBIEU M, DE MEAUX J, ECKER J R, FAURE N, KNISKERN J M, JONES J D, MICHAEL T, NEMRI A, ROUX F, SALT D E, TANG C, TODESCO M, TRAW M B, WEIGEL D, MARJORAM P, BOREVITZ J O, BERGELSON J, NORDBORG M . Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010,465:627-631.
[12] THORNSBERRY J M, GOODMAN M M, DOEBLEY J, KRESOVICH S, NIELSEN D, BUCKLER E S . Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001,28(3):286-289.
[13] ANDRÉ BELÓ, ZHENG P, LUCK S, SHEN B, MEYER D J, LI B, TINGEY S, RAFALSKI A . Whole genome scan detects an allelic variant offad2 associated with increased oleic acid levels in maize. Molecular Genetics & Genomics, 2008,279(1):1-10.
[14] WANG Q, XIE W, XING H, YAN J, MENG X, LI X, FU X, XU J, LIAN X, YU S, XING Y, WANG G . Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Molecular Plant, 2015,8(6):946-957.
doi: 10.1016/j.molp.2015.02.014 pmid: 25747843
[15] NAGATA N, TANAKA R, SATOH S, TANAKA A . Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. The Plant cell, 2005,17(1):233-240.
doi: 10.1105/tpc.104.027276
[16] WU Z, ZHANG X, HE B, DIAO L, WAN J . A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology, 2007,145(1):29-40.
doi: 10.1104/pp.107.100321
[17] 陶士珩, 刘晓明, 储建华, 张荣梅, 杜丽萍, 罗泽伟 . 混合群体连锁不平衡的衰减速率与基因定位. 科学通报, 2000,45(21):2274-2280.
TAO S H, LIU X M, CHU J H, ZHANG R M, DU L P, LUO Z W . Attenuation rate and gene location of linkage disequilibrium in mixed population. Chinese Science Bulletin, 2000,45(21):2274-2280. (in Chinese)
[18] 赵可夫 . 玉米抽雄后不同叶位叶对籽粒产量的影响及其光合性能. 作物学报, 1981,7(4):259-266.
ZHAO K F . Effect of the leaves of different positions in maize on the corn yield and the photosynthetic properties of those leaves after the growing out of the female flowers. Acta Agronomica Sinica, 1981,7(4):259-266. (in Chinese)
[19] MCKENNA S, MEYER M, GREGG C, GERBER S . CorrPlot: An Interactive scatterplot for exploring correlation. Journal of Computational & Graphical Statistics, 2015,25(2):445-463.
[20] CORETEAM R . R: A language and environment for statistical computing. Computing, 2015,14:12-21.
[21] XIAO Y, TONG H, YANG X, XU S, PAN Q, QIAO F, RAIHAN M S, LUO Y, LIU H, ZHANG X, YANG N, WANG X, DENG M, JIN M, ZHAO L, LUO X, ZHOU Y, LI X, LIU J, ZHAN W, LIU N, WANG H, CHEN G, CAI Y, XU G, WANG W, ZHENG D, YAN J . Genome- wide dissection of the maize ear genetic architecture using multiple populations. New Phytologist, 2016,210(3):1095-1106.
doi: 10.1111/nph.13814
[22] YANG N, LU Y, YANG X, HUANG J, ZHOU Y, ALI F, WEN W, LIU J, LI J, YAN J . Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. Plos Genetics, 2014,10(9):e1004573.
doi: 10.1371/journal.pgen.1004573 pmid: 4161304
[23] LI M X, YEUNG J M Y, CHERNY S S, SHAM P C . Evaluating the effective numbers of independent tests and significant P-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 2012,131(5):747-756.
doi: 10.1007/s00439-011-1118-2 pmid: 22143225
[24] BRADBURY P J, ZHANG Z, KROON D E, CASSTEVENS T M, BUCKLER E S . TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23(19):2633-2635.
doi: 10.1093/bioinformatics/btm308
[25] LI H, PENG Z, YANG X, WANG W, FU J, WANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON M L, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J . Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013,45(1):43-72.
doi: 10.1038/ng.2484 pmid: 23242369
[26] FU J, CHENG Y, LINGHU J, YANG X, KANG L, ZHANG Z, ZHANG J, HE C, DU X, PENG Z, WANG B, ZHAI L, DAI C, XU J, WANG W, LI X, ZHENG J, CHEN L, LUO L, LIU J, QIAN X, YAN J, WANG J, WANG G . RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communicate, 2013,4:2832.
doi: 10.1038/ncomms3832 pmid: 24343161
[27] YANG X, YAN J, SHAH T, WARBURTON M L, LI Q, LI L, GAO Y, CHAI Y, FU Z, ZHOU Y, XU S, BAI G, MENG Y, ZHENG Y, LI J . Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical & Applied Genetics, 2010,121(3):417-431.
[28] 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭占勇, 谢慧玲, 汤继华, 李卫华 . 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018,51(5):821-834.
LIU K, ZHANG X H, SUN G Y, YAN P S, GUO H P, CHEN S Y, XUE Y D, GUO Z Y, XIE H L, TANG J H, LI W H . Genome-wide association studies of plant type traits in maize. Scientia Agricultura Sinica, 2018,51(5):821-834. (in Chinese)
[29] ZHAO Z, ZHANG H, FU Z, CHEN H, LIN Y, YAN P, LI W, XIE H, GUO Z, ZHANG X, TANG J . Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method. Plant Biotechnology Journal, 2017,91:135-147.
[30] 赵永萍 . 玉米不同叶位叶片与产量相关性研究. 现代农业科技, 2015,644(6):11-12.
ZHAO Y P . Correlation between leaf position and yield of maize. Modern Agricultural Science and Technology, 2015,644(6):11-12. (in Chinese)
[31] 陈永欣, 翟广谦, 李彦良, 王计虎 . 糯玉米自交系、杂交种棒三叶与产量之间相关性分析. 玉米科学, 2001,9(2):50-52.
CHEN Y X, ZHAI G Q, LI Y L, WANG J H . Analysis on correlativity of three-ear-leaves of inbred line and hybrid-strain yield of glutinous maize. Journal of Maize Sciences, 2001,9(2):50-52. (in Chinese)
[32] 唐海涛, 张彪, 田玉秀, 余东梅, 陈洁, 康继伟 . 玉米杂交种棒三叶光合性状比较研究. 玉米科学, 2009,17(2):86-90.
TANG H T, ZHANG B, TIAN Y X, YU D M, CHEN J, KANG J W . Comparison of photosynthetic characteristics of three ear-leaves hybrids maize. Journal of Maize Sciences, 2009,17(2):86-90. (in Chinese)
[33] 袁吉, 李艳玉, 蔚荣海 . 鲜食糯玉米自交系叶绿素含量及其与产量的关系. 吉林农业, 2011(12):64-65.
YUAN J, LI Y Y, WEI R H . Relationship of content of chlorophyll and yield of inbred line of fresh-eating waxy corn. Jilin Agriculture, 2011(12):64-65. (in Chinese)
[34] 刘贞琦, 刘振业, 马达鹏, 曾淑芬 . 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984,10(1):57-62.
LIU Z Q, LIU Z Y, MA D P, ZENG S F . A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agronomica Sinica, 1984,10(1):57-62. (in Chinese)
[35] 苏云松, 郭华春, 陈伊里 . 马铃薯叶片SPAD值与叶绿素含量及产量的相关性研究. 西南农业学报, 2007,20(4):690-693.
SU Y S, GUO H C, CHEN Y L . Relationship between SPAD readings chlorophyll contents and yield of potato (Solanum tubersosum L.). Southwest China Journal of Agricultural Sciences, 2007,20(4):690-693. (in Chinese)
[36] 王康, 沈荣开, 唐友生 . 用叶绿素测值(SPAD)评估夏玉米氮素状况的实验研究. 灌溉排水学报, 2002,21(4):1-3.
WANG K, SHEN R K, TANG Y S . Evaluating nitrogen status with chlorophyll meter in summer corn. Irrigation and Drainage, 2002,21(4):1-3. (in Chinese)
[37] ZHANG L, KUSABA M, TANAKA A, SAKAMOTO W . Protection of chloroplast membranes by VIPP1 rescues aberrant seedling development in Arabidopsis nyc1 mutant. Frontiers in Plant Science, 2016,7(73):533.
doi: 10.3389/fpls.2016.00533
[38] WANG F, WANG G, LI X, HUANG J, ZHENG J . Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). Journal of Plant Physiology, 2008,165(3):324-330.
doi: 10.1016/j.jplph.2006.11.006
[39] HUANG J, QIN F, ZANG G, KANG Z, ZOU H, HU F, YUE C, LI X, WANG G . Mutation of OsDET1 increases chlorophyll content in rice. Plant Science, 2013,210(210C):241-249.
doi: 10.1016/j.plantsci.2013.06.003
[40] 王爱玉, 张春庆 . 玉米叶绿素含量的QTL定位. 遗传, 2008,30(8):1083-1091.
doi: DOI: 10.3724/SP.J.1005.2008.01083
WANG A Y, ZHANG C Q . QTL mapping for chlorophyll content in maize. Hereditas, 2008,30(8):1083-1091. (in Chinese)
doi: DOI: 10.3724/SP.J.1005.2008.01083
[41] 刘宗华, 谢惠玲, 王春丽, 田国伟, 卫晓轶, 胡彦民 . 氮胁迫和非胁迫条件下玉米不同时期叶绿素含量的QTL分析. 植物营养与肥料学报, 2008,14(5):845-851.
doi: 10.11674/zwyf.2008.0505
LIU Z H, XIE H L, WANG C L, TIAN G W, WEI X Y, HU Y M . QTL analysis of chlorophyll content of maize under N-stress and no N-stress at different development stages. Plant Nutrition and Fertilizer Science, 2008,14(5):845-851. (in Chinese)
doi: 10.11674/zwyf.2008.0505
[42] 方永丰, 李永生, 白江平, 慕平, 孟亚雄, 张金林 . 玉米持绿相关QTL整合图谱构建及一致性QTL区域内候选基因发掘. 草业学报, 2012(4):175-185.
FANG Y F, LI Y S, BAI J P, MU P, MENG Y X, ZHANG J L . Construction of integration QTL map and identification of candidate genes for stay-green in maize. Acta Prataculturae Sinica, 2012(4):175-185. (in Chinese)
[43] MI Y, SUN C, WEI B, SUN F, GUO Y, HU Q, DING W, ZHU L, XIA G . Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells. Biochemical and Biophysical Research Communications, 2018,49(1):473-480.
[44] WANG G, SUN X, WANG G, WANG F, GAO Q, SUN X, TANG Y, CHANG C, LAI J, ZHU L, XU Z, SONG R . Opaque7 encodes an acyl-activating enzyme-like protein that affects storage protein synthesis in maize endosperm. Genetics, 2011,189(4):1281-1295.
doi: 10.1534/genetics.111.133967
[45] MESKAUSKIENE R, NATER M, GOSLINGS D, KESSLER F, OP DEN CAMP R, APEL K . FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 2001,98(22):12826-12831.
doi: 10.1073/pnas.221252798 pmid: 11606728
[46] PONTOPPIDAN B, GAMINIKANNANGARA C . Purification and partial characterisation of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. European Journal of Biochemistry, 2010,225(2):529-537.
[47] GOSLINGS D, MESKAUSKIENE R, KIM C, LEE KP, NATER M, APEL K . Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. The Plant Journal, 2010,40(6):957-967.
[48] 贺丽虹, 赵淑娟, 胡之璧 . 植物细胞色素P450基因与功能研究进展. 药物生物技术, 2008,15(2):142-147.
HE L H, ZHAO S J, HU Z B . Gene and function research progress of plant cytochrome P450s. Pharmaceutical Biotechnology, 2008,15(2):142-147. (in Chinese)
[49] TRANBARGER T J, FORWARD B S, MISRA S . Regulation of NADPH-cytochrome P450 reductase expressed during Douglas-fir germination and seedling development. Plant Molecular Biology, 2000,44(2):141-153.
doi: 10.1023/A:1006425025702 pmid: 11117258
[1] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[2] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[3] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[4] YinHua MA,KaiQin MO,Lu LIU,PingFang LI,ChenZhong JIN,Fang YANG. Effect of Overexpression of OsRRK1 Gene on Rice Leaf Development [J]. Scientia Agricultura Sinica, 2021, 54(5): 877-886.
[5] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[6] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[7] ZHANG Wen,MENG ShuJun,WANG QiYue,WAN Jiong,MA ShuanHong,LIN Yuan,DING Dong,TANG JiHua. Transcriptome Analysis of Maize pTAC2 Effects on Chlorophyll Synthesis in Seedling Leaves [J]. Scientia Agricultura Sinica, 2020, 53(5): 874-889.
[8] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[9] ZHANG ChunXiao,LI ShuFang,LIU XuYang,LIU Jie,LIU WenPing,LIU XueYan,LI ChunHui,WANG TianYu,LI XiaoHui. Establishment of Evaluation System for Drought Tolerance at Maize Germination Stage Under Soil Stress [J]. Scientia Agricultura Sinica, 2020, 53(19): 3867-3877.
[10] ZHANG JiFeng,LIU HuaDong,WANG JingGuo,LIU HuaLong,SUN Jian,YANG LuoMiao,JIA Yan,WU WenShen,ZHENG HongLiang,ZOU DeTang. Genome-Wide Association Study and Candidate Gene Mining of Tillering Number in Japonica Rice [J]. Scientia Agricultura Sinica, 2020, 53(16): 3205-3213.
[11] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
[12] ZHANG XiaoQiong,GUO Jian,DAI ShuTao,REN Yuan,LI FengYan,LIU JingBao,LI YongXiang,ZHANG DengFeng,SHI YunSu,SONG YanChun,LI Yu,WANG TianYu,ZOU HuaWen,LI ChunHui. Phenotypic Variation and Genome-wide Association Analysis of Root Architecture at Maize Flowering Stage [J]. Scientia Agricultura Sinica, 2019, 52(14): 2391-2405.
[13] LI WenTao, YANG JiangBo, ZHANG Ji, WANG KeJian, DENG Lie, Lü Qiang, HE ShaoLan, XIE RangJin, ZHENG YongQiang, MA YanYan, YI ShiLai. The Evaluation of Chlorophyll Content Detection in the Leaves of Newhall Navel Orange Based on Different Sensors [J]. Scientia Agricultura Sinica, 2018, 51(6): 1057-1066.
[14] SHEN ManMan, QU Liang, DOU TaoCun, MA Meng, GUO Jun, LU Jian, HU YuPing, LI YongFeng, WANG KeHua. Genome-Wide Association of Spleen Weight in Layer Chicken [J]. Scientia Agricultura Sinica, 2018, 51(6): 1213-1222.
[15] LIU Kun, ZHANG XueHai, SUN GaoYang, YAN PengShuai, GUO HaiPing, CHEN SiYuan, XUE YaDong, GUO ZhanYong, XIE HuiLing, TANG JiHua, LI WeiHua. Genome-Wide Association Studies of Plant Type Traits in Maize [J]. Scientia Agricultura Sinica, 2018, 51(5): 821-834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!