Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 877-886.doi: 10.3864/j.issn.0578-1752.2021.05.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effect of Overexpression of OsRRK1 Gene on Rice Leaf Development

YinHua MA1(),KaiQin MO1,Lu LIU1,PingFang LI1,ChenZhong JIN1(),Fang YANG2()   

  1. 1School of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology/Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Loudi 417000, Hunan
    2College of Life Sciences, Wuhan University/National Key Laboratory of Hybrid Rice, Wuhan 430072
  • Received:2020-07-16 Accepted:2020-08-26 Online:2021-03-01 Published:2021-03-09
  • Contact: ChenZhong JIN,Fang YANG E-mail:mayinhua1988@126.com;hnldjcz@sina.com;fang-yang@whu.edu.cn

Abstract:

【Objective】OsRRK1 (RoP-Interacting receptor-like kinase 1) is a member of the cytoplasmic receptor kinases RLCK VI family. In this study, the leaf morphology of OE-OsRRK1 transgenic rice was observed to clarify the role of OsRRK1 in the leaf development of rice. 【Method】Primers were designed based on target sequences published in the rice genome database to construct OsRRK1 overexpression vector, then transformed to Japonica variety Hejiang 19 mediated by Agrobacterium tumefaciens. Positive plants were identified by PCR analysis. The copy number of inserted exogenous genes in transgenic plants was identified by Southern blot hybridization. The expression level of transgenic plants at RNA level was confirmed by Northern blot hybridization and qRT-PCR. T2 generation homozygote plants at heading stage was selected to determine the leaf rolling index (LRI). Paraffin sections and aniline blue staining were used to observe the changes of rice bulliform cells after cross-cutting, and Image J software was used to calculate the area of the bubble cells. Chlorophyll content in plant leaves was measured by chlorophyll tester.【Result】44 positive transgenic plants were obtained and 17 lines were randomly selected for Southern blot analysis. Among the 17 lines, 8 lines were single-copy insertion and 9 lines were multi-copy insertion. 2 multi-copy lines (OE-1 and OE-4) and 5 single-copy lines (OE-5, OE-21, OE-22, OE-24 and OE-25) were randomly selected for subsequent analysis. qRT-PCR analysis revealed that OsRRK1 was overexpressed with different degree in different transgenic lines. Among them, OE-1, OE-4 and OE-25 lines with the highest OsRRK1 expression level, while OE-5 lines with the lowest and OE-21, 22 and 24 lines with the middle. Three single copy transgenic lines OE-5, OE-22 and OE-25 and WT control were selected for Northern blot analysis. The results were in consistent with the results of qRT-PCR results. Leaf rolling index of the seven selected lines and WT control revealed that the degree of leaf curl was positive correlated with the expression level of OsRRK1, with the higher the expression level, the higher the degree of rolling. Paraffin section and staining revealed the number and area of bulliform cells in the flag leaves of OE-OsRRK1 transgenic plants changed obviously compared to WT. OE-OsRRK1 transgenic plants showed less bulliform cell number than those in the control whose average is 4.6. OE-OsRRK1 transgenic plants with curlier leaf, with the more severe bulliform cell degeneration, less number, smaller area. Chlorophyll content determination revealed that the OE-22, OE-24 and OE-25 lines have higher chlorophyll content than those of the WT rice leaves.【Conclusion】The overexpression of OsRRK1affect the number and size of bulliform cells in rice leaves, which cause leaf rolling, and the degree of leaf rolling is positively correlated with the expression level of OsRRK1. The overexpression of OsRRK1 gene will lead to the increase of chlorophyll content in rice.

Key words: Oryza sativa, OsRRK1, cytoplasmic receptor-like kinase, leaf rolling, chlorophyll content

Table 1

Primers used in vector construction"

引物Primer 引物序列Primer sequence (5′-3′)
OE-OsRRK1-F ATGAGGCCTCTGTACCTGC
OE-OsRRK1-R CTAATTGCTCAAAGATGATGAGC
UBIS(F) TGTTTCTTTTGTCGATGCTCACCC
UBIA(R) TTCTATCGCGGCTTAACGTAATTCA
hyg-L GCTCCATACAAGCCAACCAC
hyg-R GAAAAAGCCTGAACTCACCG

Fig. 1

Construction of OsRRK1 overexpression vector A: Amplification of OsRRK1 full-length ORF; B: Restriction identification of recombinant vector; C: Successfully constructed OE-OsRRK1 vector"

Fig. 2

Molecular identification of transgenic rice plants with OsRRK1 overexpression (OE-OsRRK1) A: PCR detection of target genes in OE-OsRRK1 transgenic plants; M: MarkerIII; +: Positive plasmid control; -: Non-transgenic rice negative control; The rest are some OE-OsRRK1 transgenic rice plants. B: Southern blot analysis of OE-OsRRK1 transgenic plants. C: Fluorescence quantitative PCR analysis of OE-OsRRK1 transgenic plants; ** t-test, P<0.01. The same as below. D: Northern blot analysis of OE-OsRRK1 transgenic plants; WT: Wild-type Hejiang 19; OE-1-OE-25: Part of OE-OsRRK1 transgenic rice plants, in which OE-5, OE-7, OE-16, OE-19, OE-21, OE-22, OE-24, OE-25 were single copy strains; OE-5: Strains with single copy of low expression level; OE-22: Single copy of medium expression level of strains; OE-25: Strains with single copy of high expression strains"

Fig.3

Leaf phenotypes of WT and OE-OsRRK1 transgenic plants A: The flag leaves of WT and OE-25 plants at heading stage, Bars=5 cm; B: Leaf curl index of WT and OE-OsRRK1 transgenic plants"

Fig. 4

Bulliform cell number and size in the leaves of OE-OsRRK1 plants A: Leaf cross-section of OE-OsRRK1 plants (Bars=100 μm); the red arrow indicates the bulliform cell; B: The bulliform cell number in WT and OE-OsRRK1 plants; C: The bulliform cell area in WT and OE-OsRRK1 plants. WT: Wildtype hejiang19; OE-1, OE-4, OE-21, OE-22, OE-24, and OE-25: OE-OsRRK1 transgenic plants"

Fig. 5

Chlorophyll relative content of WT and OE-OsRRK1 plants WT: Wild type of Hejiang19; OE-22, OE-24, and OE-25: OE-OsRRK1 transgenic plants"

[1] 沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009,7(5):852-860.
SHEN N W, QIAN Q, ZHANG G H. Research progress on rice rolled leaf and it’s application in breeding program. Molecular Plant Breeding, 2009,7(5):852-860. (in Chinese)
[2] 徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013,39(5):767-774.
doi: 10.3724/SP.J.1006.2013.00767
XU J, WANG L, QIAN Q, ZHANG G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agronomica Sinica, 2013,39(5):767-774. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00767
[3] 郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究: Ⅱ. 光合特性、物质生产与产量形成. 作物学报, 2004,30(9):883-887.
LANG Y Z, ZHANG Z J, GU X Y, YANG J C, ZHU Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): Ⅱ. Photosynthetic character, dry mass production and yield forming. Acta Agronomica Sinica, 2004,30(9):883-887. (in Chinese)
[4] 周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018,53(6):848-855.
doi: 10.11983/CBB17236
ZHOU T T, RAO Y C, REN D Y. Research advances in the cytological and molecular mechanisms of leaf rolling in rice. Chinese Bulletin of Botany, 2018,53(6):848-855. (in Chinese)
doi: 10.11983/CBB17236
[5] HU J, ZHU L, ZENG D, GAO Z, GUO L, FANG Y, ZHANG G, DONG G, YAN M, LIU J, QIAN Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Molecular Biology, 2010,73(3):283-292.
pmid: 20155303
[6] LI L, SHI Z, LI L, SHEN G, WANG X, AN L, ZHANG J. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Molecular Plant, 2010,3(5):807-817.
pmid: 20494951
[7] FANG L, ZHAO F, CONG Y, SANG X, DU Q, WANG D, LI Y, LING Y, YANG Z, HE G. Rolling‐leaf14 is a 2OG‐Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnology Journal, 2012,10(5):524-532.
pmid: 22329407
[8] ZOU L, SUN X, ZHANG Z, LIU P, WU J, TIAN C, QIU J, LU T. Leaf rolling controlled by the homeodomain leucine zipper class IV Gene Roc5 in rice1. Plant Physiology, 2011,156(3):1589-1602.
doi: 10.1104/pp.111.176016
[9] XU Y, WANG Y H, LONG Q Z, HUANG J X, WANG Y L, ZHOU K N, ZHENG M, SUN J, CHEN H, CHEN A H, JIANG L, WANG C M, WAN J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014,239(4):803-816.
pmid: 24385091
[10] HIBARA K, OBARA M, HAYASHIDA E, ABE M, ISHIMARU T, SATOH H, ITOH J, NAGATO Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Developmental Biology, 2009,334(2):345-354.
doi: 10.1016/j.ydbio.2009.07.042 pmid: 19665012
[11] 李聪. OsLBD3-7基因过表达导致水稻叶片近轴卷曲[D]. 北京: 中国农业科学院, 2016.
LI C. OsLBD3-7 overexpression induced adaxually rolled leaves in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[12] FUJINO K, MATSUDA Y, OZAWA K, NISHIMURA T, KOSHIBA T, FRAAIJE M W, SEKIGUCHI H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008,279(5):499-507.
doi: 10.1007/s00438-008-0328-3 pmid: 18293011
[13] ZHANG G, XU Q, ZHU X, QIAN Q, XUE H. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. The Plant Cell, 2009,21(3):719-735.
pmid: 19304938
[14] XIANG J, ZHANG G, QIAN Q, XUE H. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells1. Plant Physiology, 2012,159(4):1488-1500.
doi: 10.1104/pp.112.199968
[15] GAO L L, XUE H W. Global analysis of expression profiles of rice receptor-like kinase genes. Molecular Plant, 2012,5(1):143-153.
pmid: 21765177
[16] VIJ S, GIRI J, DANSANA P K, KAPOOR S, TYAGI A K. The Receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Molecular Plant, 2008,1(5):732-750.
pmid: 19825577
[17] YAMAGUCHI K, YAMADA K, ISHIKAWA K, YOSHIMURA S, HAYASHI N, UCHIHA-SHI K, ISHIHAMA N, KISHI-KABOSHI M, TAKAHASHI A, TSUGE S, OCHIAI H, TADA Y, SHIMAMOTO K, YOSHIOKA H, KAWASAKI T. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe, 2013,13(3):347-357.
doi: 10.1016/j.chom.2013.02.007
[18] WANG J, WU G, PENG C, ZHOU X, LI W, HE M, WANG J, YIN J, MA W, MA B, WANG Y, CHEN W, QIN P, LI S, CHEN X. The receptor-like cytoplasmic kinase OsRLCK102 regulates XA21-mediated immunity and plant development in rice. Plant Molecular Biology Reporter, 2016,34(3):628-637.
doi: 10.1007/s11105-015-0951-1
[19] ZHOU X, WANG J, PENG C, ZHU X, YIN J, LI W, HE M, WANG J, CHERN M, YUAN C, WU W, MA W, QIN P, MA B, WU X, MA W, LI S, RONALD P, CHEN X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environment, 2016,39(6):1381-1392.
doi: 10.1111/pce.12696
[20] 黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005(8):1685-1691.
HUANG X Q, ZHAO H X, DONG C L, SUN Y Y, WANG P R, DENG X J. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Botanica Boreali-Occidentalia Sinica, 2005(8):1685-1691. (in Chinese)
[21] MOLENDIJK A J, RUPERTI B, SINGH M K, DOVZHENKO A, DITENGOU F A, MILIA M, WESTPHAL L, ROSAHL S, SOELLICK T, UHRIG J, WEINGARTEN L, HUBER M, PALME K. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. The Plant Journal, 2008,53(6):909-923.
doi: 10.1111/j.1365-313X.2007.03384.x pmid: 18088316
[22] DORJGOTOV D, JURCA M E, FODOR-DUNAI C, SZUCS A, OTVOS K, KLEMENT E, BIRO J, FEHER A. Plant Rho-type(Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Letters, 2009,583(7):1175-1182.
pmid: 19285078
[23] MA Y, ZHAO Y, SHANGGUAN X, SHI S, ZENG Y, WU Y, CHEN R, YOU A, ZHU L, DU B, HE G. Overexpression of OsRRK1 changes leaf morphology and defense to insect in rice. Frontiers in Plant Science, 2017,8(8):1783.
doi: 10.3389/fpls.2017.01783
[24] TOKI S, HARA N, ONO K, ONODERA H, TAGIRI A, OKA S, TANAKA H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006,47(6):969-976.
pmid: 16961734
[25] HIEI Y, OHTA S, KOMARI T, KUMASHIRO T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994,6(2):271-282.
pmid: 7920717
[26] 杨浩萌, 薛哲勇, 赵乐, 漆小泉, 黄芳. 集胞藻Slr1515基因提高转基因水稻植株剑叶长度及叶绿素含量. 植物学报, 2013,48(5):489-497.
doi: 10.3724/SP.J.1259.2013.00489
YANG H M, XUE Z Y, ZHAO L, QI X Q, HUANG F. Increased chlorophyll content and flag leaf length in transgenic rice expressing Slr1515 of Synechocystis sp. PCC 6803. Chinese Bulletin of Botany, 2013,48(5):489-497. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00489
[27] CHEN R, ZHAO X, SHAO Z, WEI Z, WANG Y, ZHU L, ZHAO J, SUN M, HE R, HE G. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell, 2007,19(3):1-15.
doi: 10.1105/tpc.107.190180
[28] 王育花, 赵森, 陈芬, 肖国樱. 利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究. 生命科学研究, 2007(4):301-305.
WANG Y H, ZHAO S, CHEN F, XIAO G Y. Estimation of the copy number of exogenous gene in transgenic rice by real-time fluor escence quantitative PCR. Life Science Research, 2007(4):301-305. (in Chinese)
[29] 刘微, 王树涛, 陈英旭, 吴伟祥. 转Bt(Cry1Ab)基因对水稻光合特性及光合产物积累的影响. 中国农业科学, 2011,44(3):627-633.
LIU W, WANG S T, CHEN Y X, WU W X. Effect of Cry1Ab Gene on photosynthetic characteristics and photosynthate accumulation of rice. Scientia Agricultura Sinica, 2011,44(3):627-633. (in Chinese)
[30] 童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田. 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008(3):505-511.
TONG P, YANG S M, MA J, WU H Z, FU T L, LI M, WANG M T. Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Chinese Journal of Applied Ecology, 2008(3):505-511. (in Chinese)
[31] 朱寒, 时元智, 洪大林, 程一帆, 王力. 水肥调控对水稻叶片SPAD值与产量的影响. 中国农村水利水电, 2019(11):50-53, 65.
ZHU H, SHI Y Z, HONG D L, CHENG Y F, WANG L. Effects of water and fertilizer application on leaf SPAD values and yield of rice. China Rural Water and Hydropower, 2019(11):50-53, 65. (in Chinese)
[32] 叶子飘, 闫小红, 段世华. 高产水稻剑叶的叶绿素含量、捕光色素分子的内禀特性与饱和光强关系的研究. 井冈山大学学报(自然科学版), 2015,36(2):25-32.
YE Z P, YAN X H, DUAN S H. Investion on the relationship between saturation irradiance and chlorohyll contents of flag leaves and intrinsic characteristics of light-harvesting pigment molecules in high-yielding rice. Journal of Jinggangshan University (Natural Science), 2015,36(2):25-32. (in Chinese)
[33] 范淑秀, 陈温福. 超高产水稻品种叶绿素变化规律研究初报. 沈阳农业大学学报, 2005(1):14-17.
FAN S X, CHEN W F. Changes of chlorophyll content of high- yielding rice. Journal of Shenyang Agricultural University, 2005(1):14-17. (in Chinese)
[34] LAFITTE H R, PRICE A H, COURTOIS B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theoretical and Applied Genetics, 2004,109(6):1237-1246.
pmid: 15490102
[35] 李合生. 现代植物生理学. 北京: 高等教育出版社, 2012.
LI H S. Modern Plant Physiology. Beijing: Higher Education Press, 2012. (in Chinese)
[1] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[2] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[3] DENG AiXing,LIU YouHong,MENG Ying,CHEN ChangQing,DONG WenJun,LI GeXing,ZHANG Jun,ZHANG WeiJian. Effects of 1.5℃ Field Warming on Rice Yield and Quality in High Latitude Planting Area [J]. Scientia Agricultura Sinica, 2022, 55(1): 51-60.
[4] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[5] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[6] REN ZhiJie,LI Qian,SUN YuJia,KONG DongDong,LIU LiangYu,HOU CongCong,LI LeGong. OsCSC11 Mediates Dry-Hot Wind/Drought-Induced Ca2+ Signal to Regulate Stamen Development in Rice [J]. Scientia Agricultura Sinica, 2021, 54(10): 2039-2052.
[7] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[8] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[9] PAN ZhengYan,LIU Bo,JIANG HongBo,YAO JiPan,BAI YuanJun,XU ZhengJin. Effect of Panicle Neck Blast on Grain Yield and Stem Node Metabolites at the Rice Filling Stage [J]. Scientia Agricultura Sinica, 2020, 53(20): 4177-4188.
[10] ZHOU YuLu,LIN Hong,ZHANG DaBing,WANG CanHua,YU Jing. The Function of the Polyketide Synthase OsPKS1 and OsPKS2 in Regulating Pollen Wall Formation in Rice [J]. Scientia Agricultura Sinica, 2019, 52(8): 1295-1307.
[11] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[12] ZHOU JiaQin,ZHU JunZhao,YANG SiXue,ZHU ZhouJie,YAO Jie,ZHENG WenJuan,ZHU ShiHua,DING WoNa. Cloning and Functional Analysis of a Root Development Related Gene OsKSR7 in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 777-785.
[13] Mu ZHANG, ShuanHu TANG, QiaoYi HUANG, YuWan PANG, Qiong YI, Xu HUANG, Ping LI, HongTing FU. The Nutrient Supply Characteristics of Co-Application of Slow-Release Urea and Common Urea in Double-Cropping Rice [J]. Scientia Agricultura Sinica, 2018, 51(20): 3985-3995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!