Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (13): 2583-2592.doi: 10.3864/j.issn.0578-1752.2016.13.014

• HORTICULTURE • Previous Articles     Next Articles

The Relationship Between Sap Flow Velocity and Environmental Factors of the 19 a Apple Trees on the Loess Plateau at Different Time Scales

ZHANG Jing1, WANG Li1, HAN Xue1, ZHANG Lin-sen2   

  1. 1College of Resources and Environment, Northwest A&F University/State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
    2College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2016-01-17 Online:2016-07-01 Published:2016-07-01

Abstract: 【Objective】The Changwu Tableland was taken as a study area in consideration of its typical representative of the Loess Plateau. The purposes of the study were to estimate water consumption rate of 19 a apple trees at different time scales by environmental factors, and provide a theoretical basis for the scientific distribution, sustainable management and production capacity of apple trees. 【Method】Thermal dissipation probe (TDP) was used to measure sap flow velocity of 8 standard 19 a apple trees on the Changwu Tableland located on the Loess Plateau from May to September, 2014, the data collector CR1000 (Campbell Scientific, UN) was used to collect and analyze the data, and the meteorological data were monitored continuously by automatic weather station 50 m away from the plot. The characteristics of sap flow were analyzed, and the relationship model between the rate of sap flow rate and environmental factors at different time scales was established.【Result】 The most close correlations between the sap flow velocity of the 19 a apple tree and various environmental factors at the hour scale was vapor pressure difference (VPD). Radiation (Rs), wind velocity (Ws) and soil temperature (Ts) also showed significant correlations with the sap flow. The sap flow curve had a single peak. The empirical model for the hour scale was: v=-11.683+2.3VPD+0.009Rs+0.55Ts+0.880Ws. At the day scale, Ts and VPD were significantly correlated with the sap flow velocity. The empirical model for the day scale was: v=1.637+0.404Ts- 3.097VPD. The sap flow velocity showed an order of August>July>June>September>May. Only Ts showed a correlation with the sap flow velocity. The empirical model for the month scale was: v=-3.524+0.509Ts. With the increasing time scales, the number of environmental factors associated with the sap flow velocity was gradually reduced, but Ts was the dominant factor at every scale and the correlation coefficients were gradually increased. Wind velocity (Ws) showed a significant correlation at the hour scale. VPD had a significantly positive correlation with the sap flow velocity at the hour scale and a significant and negative correlation at the day scale. The correlation between the Rs and sap flow velocity at the three time scales was not found. For the three stepwise regression equations, the correlation coefficient for the month scale was the largest. 【Conclusion】 At the larger time scale, the consumption of water can be estimated by monitoring a small number of environmental factors, but at the smaller time scales, most of the environmental factors will influence the sap flow. Therefore, estimates of the consumption by the environmental factors cannot be achieved with a great accuracy, and the method of TDP needs to be used to monitor the consumption.

Key words: apple, TDP, sap flow velocity, time scale, environment factor

[1]    韩雪, 王力, 王艳萍. 自然降雨条件下夏玉米冠层截留特征及影响因素. 中国农业科学, 2014, 47(8): 1541-1549.
Han X, Wang L, Wang Y P. Summer corn canopy interception and its influencing factors under natural rainfall. Scientia Agricultura Sinica, 2014, 47(8): 1541-1549. (in Chinese)
[2]    刘艳伟, 朱仲元, 乌云, 荆玉龙, 朝伦巴根. 浑善达克沙地天然植被蒸散量两种计算方法的比较. 农业机械学报, 2010, 41(11): 84-88.
Liu Y W, Zhu Z Y, Wu Y, JinG Y L, Chao L B G. Comparison of evapotranspiration of the natural vegetation in the otindag sandy area using two calculation methods. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(11): 84-88. (in Chinese)
[3]    梁宗锁, 康绍忠, 石培泽, 潘英华, 何立绩. 隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益. 中国农业科学, 2000, 33(6): 26-32.
Liang Z S, Kang S Z, Shi P Z, Pan Y H, He L J. Effect of alternate furrow irrigation on maize production, root density and water-saving benefit. Scientia Agricultura Sinica, 2000, 33(6): 26-32. (in Chinese)
[4]    Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology, 1987, 3(4): 309-320.
[5]    Vergeynst L L, VANDEGEHUCHTE M W, McGuire M A, TESKEY R O, Steppe K. Changes in stem water content influence sap flux density measurements with thermal dissipation probes. Trees, 2014, 28(3): 949-955.
[6]    刘奉觉, Edwards W, 郑世锴, 巨关升, 王广举, 卢永农. 杨树树干液流时空动态研究. 林业科学研究, 1993, 6(4): 368-372.
Liu F J, Edwards W, Zheng S K, Ju G S, Wang G J, Lu Y N. A study on the dynamics of sap flow in space and time in polar stems. Forest Research, 1993, 6(4): 368-372. (in Chinese)
[7]    赵春彦, 司建华, 冯起, 常宗强, 鱼腾飞, 李炜. 荒漠河岸胡杨(Populus euphratica) 树干液流的时滞效应. 中国沙漠, 2014, 34(5): 1254-1260.
Zhao C Y, Si J H, Feng Q, Chang Z Q, Yu T F, Li W. Time lag characteristics of stem sap flow of populus euphratica in desert riparian forest. Journal of Desert Research, 2014, 34(5): 1254-1260. (in Chinese)
[8]    Bu?ková R, Acosta M, Da?enová E, Pokorný R, Pavelka M. Environmental factors influencing the relationship between stem CO2 efflux and sap flow. Trees, 2014, 29(2): 333-433.
[9]    HUANG J, ZHOU Y, YIN L, WENNINGER J, ZHANG J, HOU G. Climatic controls on sap flow dynamics and used water sources of Salix psammophila in a semi-arid environment in northwest China. Environmental Earth Sciences, 2015, 73(1): 289-301.
[10]   GUO Q, ZHANG W. Sap flow of Abies georgei var. smithii and its relationship with the environment factors in the Tibetan subalpine region, China. Journal of Mountain Science, 2015, 12(6): 1373-1382.
[11]   VOSE J M, SWANK W T, HARVEY G J,CLINTON B D, Sobek C. Leaf water relations and sap flow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant. International Journal of Phytoremediation, 2(1): 53-73.
[12]   ZHANG H D, WEI W, CHEN L D, YANG Y U, YANG L, Jia F Y. Analysis of sap flow characteristics of the Chinese pine in typical Loess Plateau Region of China. Environmental Science, 2015, 36(1): 349-356.
[13]   张涵丹, 卫伟, 陈利顶, 于洋, 杨磊, 贾福岩. 典型黄土区油松树干液流变化特征分析. 环境科学, 2015, 36(1): 349-356.
Zhang H D, Wei W, Chen L D, Yu Y, Yang L, Jia F Y. Analysis of sap flow characteristics of the Chinese pine in typical Loess Plateau region of China. Environmental Science, 2015, 36(1): 349-356. (in Chinese)
[14]   Nakai T, Abe H, Muramoto T, Nakao T. The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings. Journal of Wood Science, 2005, 51(5): 441-447.
[15]   FIORA A, CESCATTI A. Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree Physiology, 2006, 26(9): 1217-1225.
[16]   王文杰, 孙伟, 邱岭, 祖元刚, 刘伟. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系. 林业科学, 2012, 48(1): 77-85.
Wang W J, Sun W, Qiu L, Zu Y G, Liu W. Relations between stem sap flow density of larix gmelinii and environmental factors under different temporal scale. Scientia Silvae Sinicae, 2012, 48(1): 77-85. (in Chinese)
[17]   李少宁, 陈波, 鲁绍伟, 张玉平, 潘青华, 王华. 不同时间尺度下杨树人工林液流密度特征. 灌溉排水学报, 2012, 31(6): 121-125.
Li S N, Chen B, Lu S W, Zhang Y P, Pan Q H, Wang H. Characteristics of stem sap flow density of poplar plantation in different temporal scales. Journal of Irrigation and Drainage, 2012, 31(6): 121-125. (in Chinese)
[18]   孙慧珍, 周晓峰, 赵惠勋. 白桦树干液流的动态研究. 生态学报, 2002, 22(9): 1387-1391.
Sun H Z, Zhou X F, Zhao H X. A research on stem sap flow dynamics of betula palatyphylla. Acta Ecologica Sinica, 2002, 22(9): 1387-1391. (in Chinese)
[19]   熊伟, 王彦辉. 宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应. 林业科学, 2003, 39(2): 1-7.
Xiong W, Wang Y H. Regulations of water use for transpiration of larix principl rupprechtll plantation and its response on environmental factors in southern ningxia hilly area. Scientia Silvae Sinicae, 2003, 39(2): 1-7. (in Chinese)
[20]   王力, 王艳萍. 黄土塬区苹果树干液流特征. 农业机械学报, 2013, 44(10): 152-158.
Wang L, Wang Y P. Characteristics of stem sap flow of apple tree in Loss Tableland. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 152-158. (in Chinese)
[21]   宋孝玉, 沈冰, 史文娟, 胡笑涛. 黄土区不同下垫面农田降雨入渗及产流关系的数值模拟. 农业工程学报, 2005, 21(1): 1-5.
Song X Y, Shen B, Shi W J, Hu X T. Simulating the relationship between the infiltration and runoff of different underlying farmland in the loess region. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(1): 1-5. (in Chinese)
[22]   王华田, 马履一. 利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究. 植物生态学报, 2002, 26(6): 661-667.
Wang H T, Ma L Y. Measurement of whole tree’s water consumption with thermal dissipation sap flow probe (TDP). Acta Phytoecologica Sinica, 2002, 26(6): 661-667. (in Chinese)
[23]   Tyree M T. The Cohesion-Tension theory of sap ascent: current controversies. Journal of Experimental Botany, 1997, 48(10): 1753-1765.
[24]   Cochard H, Cruiziat P, Tyree M T. Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant physiology, 1992, 100(1): 205-209.
[25]   樊大勇, 谢宗强. 木质部导管空穴化研究中的几个热点问题. 植物生态学, 2004, 28(1): 126-132.
Fan D Y, Xie Z Q. Several controversial viewpoints in studying the caciation of xylem vessels. Acta Phytoecologica Sinica, 2004, 28(1): 126-132. (in Chinese)
[26]   孙鹏森, 马履一, 王小平, 翟明普. 油松树干液流的时空变异性研究. 北京林业大学学报, 2000, 22(5): 1-6.
Sun P S, Ma L Y, Wang X P, Zhai M P. Temporal and spacial variation of sap flow of Chinese pinel (Pinus tabulaeformis). Journal of Beijing Foresity, 2000, 22(5): 1-6. (in Chinese)
[27]   Choat B, Lahr E C, Zwieniecki M A, Holbrook N M. The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 2005, 28(9): 1082-1089.
[28]   王瑞辉, 马履一, 奚如春, 徐军亮. 元宝枫生长旺季树干液流动态及影响因素. 生态学杂志, 2006, 25(3): 231-237.
Wang R H, Ma L Y, Xi R C, Xu J L. Fluctuation of acer truncatum sap flow inrapid growth season and relevant variable. Chinese Journal of Ecology, 2006, 25(3): 231-237. (in Chinese)
[29]   刘鑫, 张金池, 汪春林, 庄家尧, 韩诚, 顾哲衍, 杨志华. 长三角地区典型树种杉木液流速率变化特征. 南京林业大学学报(自然科学版), 2014, 38(2): 86-92.
Liu X, Zhang J C, Wang C L, Zhuang J Y, Han C, Gu Z Y, Yang Z H. The variation characteristics of sap flow of Chinese fir in the Yangtze River Delta. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2): 86-92. (in Chinese)
[30]   桑玉强, 张劲松. 华北山区核桃液流变化特征及对不同时间尺度参考作物蒸散量的响应. 生态学报, 2014, 34(23): 6828-6836.
Sang Y Q, Zhang J S. Characteristics of Juglans regia L. sap flow and its response to reference evapotranspiration on different time scales in the rocky mountain of North China. Acta Ecologica Sinica, 2014, 34(23): 6828-6836. (in Chinese)
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[4] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[5] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[6] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[7] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[10] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
[11] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[12] SUN Qing,ZHAO YanXia,CHENG JinXin,ZENG TingYu,ZHANG Yi. Fruit Growth Modelling Based on Multi-Methods - A Case Study of Apple in Zhaotong, Yunnan [J]. Scientia Agricultura Sinica, 2021, 54(17): 3737-3751.
[13] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
[14] ZHOU Zhe,BIAN ShuXun,ZHANG HengTao,ZHANG RuiPing,GAO QiMing,LIU ZhenZhen,YAN ZhenLi. Screening of ARF-Aux/IAA Interaction Combinations Involved in Apple Fruit Size [J]. Scientia Agricultura Sinica, 2021, 54(14): 3088-3096.
[15] HUANG JinFeng,LÜ TianXing,WANG Xu,WANG YingDa,WANG DongMei,YAN ZhongYe,LIU Zhi. Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple [J]. Scientia Agricultura Sinica, 2021, 54(14): 3097-3112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!