Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (10): 1835-1843.doi: 10.3864/j.issn.0578-1752.2016.10.001
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
ZHONG Ping1, CHEN Pu-rui1, WANG Qian1, XIAO Fu-liang1, ZHANG Kuan1, MA Fu-rong1, HUANG Mei-ling2, WANG Ping-rong1, DENG Xiao-jian1, SUN Chang-hui1
[1] Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice. Current Opinion in Plant Biology, 2008, 11(2): 209-214.
[2] 任三娟, 孙出, 童川, 赵霏, 舒庆尧, 沈圣泉. 水稻小穗退化突变体spd-hp73的遗传分析及基因定位. 浙江大学学报 (农业与生命科学版), 2013, 39(3): 267-273.
Ren S J, Sun C, Tong C, Zhao F, Shu Q Y, Shen S Q. Genetic analysis and gene mapping of a rice spikelet degradation mutant (spd-hp73). Journal of Zhejiang University (Agriculture & Life Sciences), 2013, 39(3): 267-273. (in Chinese)
[3] kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiology, 2010, 51(1): 47-57.
[4] Li M, Tang D, Wang K J, Wu X R, Lu L L, Yu H X, Gu M H, Yan C J, Cheng Z K. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal, 2011, 9(9): 1002-1013.
[5] Ikeda-Kawakatsu K, Yasuno N, Oikawa T, Iida S, Nagato Y, Maekawa M, Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. The Plant Physiology, 2009, 150(2): 736-747.
[6] Nakagawa M, Shimamoto K, Kyozuka J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice.The Plant Journal, 2002, 29(6): 743-750.
[7] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. The Plant Journal, 2009, 58(4): 592-605.
[8] Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Qu L H, Chen F, Xin P, Yan C, Chu J, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 13(9): 848-852.
[9] Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J, Nagato Y. ABBERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. The Plant Journal, 2012, 69(1): 168-180.
[10] Ikeda K, Nagasawa N, Nagato Y. ABBERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Developmental Biology, 2005, 282(2): 349-360.
[11] Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of the USA, 1998, 95(5): 1979-1982.
[12] Prasad K, Kushalappa K, Vijayraghavan U. Mechanism underlying regulated expression of RFL, a conserved transcription factor, in the developing rice inflorescence. Mechanisms of Development, 2003, 120(4): 491-502.
[13] Rao N N, Prasad K, Kumar P R, Vijayraghavan U. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proceedings of the National Academy of Sciences of the USA, 2008, 105(9): 3646-3651.
[14] Deshpande G M, Ramakrishna K, Chongloi G L, Vijayraghavan U. Functions for rice RFL in vegetative axillary meristem specification and outgrowth. Journal of Experimental Botany, 2015, 66(9): 2773-2784.
[15] Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary and to establish floral meristem identity in rice spikelet. Development, 2003, 130(16): 3841-3850.
[16] 刘华清, 吴为人, 段远霖, 官华忠, 陈娟, 李维明, 薛勇彪. 水稻小穗特征基因FZP的图位克隆. 遗传学报, 2003, 30(9): 811-816.
Liu H Q, Wu W R, Duan Y L, Guan H Z, Chen J, Li W M, Xue Y B. Towards the positional cloning of a spikelet identity gene Frizzle Panicle (FZP) in rice (Oryza sativa L.). Acta Genetica Sinica, 2003, 30(9): 811-816. (in Chinese)
[17] Bai X F, Huang Y, Mao D H, Wen M, Zhang L, Xing Y Z. Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Scientific Reports, 2016, 6: 19022.
[18] Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice. The Plant Physiology, 2013, 162(2): 872-884.
[19] Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445(7128): 652-655.
[20] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309(5735): 741-745.
[21] Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proceedings of the National Academy of Sciences of the USA, 2013, 110(8): 3167-3172.
[22] Shang X L, Xie R R, Tian H, Wang Q L, Guo F Q. Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. Journal of Intergrative Plant Biology, 2015, Oct 28. doi: 10.1111/jipb.12444. [Epub ahead of print]
[23] Li F, Liu W B, Tang J Y, Chen J F, Tong H N, Hu B, Li C L, Fang J, Chen M S, Chu C C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20(7): 838-849.
[24] McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theoretical and Applied Genetics, 1988, 76(6): 815-829.
[25] Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice. Molecular and General Genetics, 1996, 252(5): 597-607.
[26] Howell S H, Lall S, Che P. Cytokinins and shoot development. Trends in Plant Science, 2003, 8(9): 453-459.
[27] Ferreira F J, Kieber J J. Cytokinin signaling. Current Opinion in Plant Biology, 2005, 8(5): 518-525.
[28] Riefler M, Novak O, Strnad M, Schmulling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell, 2006, 18(1): 40-54.
[29] Gonzalez-Rizzo S, Crespi M, Frugier F. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. The Plant Cell, 2006, 18(10): 2680-2693.
[30] Murray J D, Karas B J, Sato S, Tabata S, Amyot L, Szczyglowski K. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 2007, 315(5808): 101-104.
[31] Hanano S, Domagalska M A, Nagy F, Davis S J. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells, 2006, 11(12): 1381-1392.
[32] Mok D W, Mok M C. Cytokinin metabolism and action. Annual, Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 89-118.
[33] Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annual, Review of Plant Physiology and Plant Molecular Biology, 2006, 57: 431-499. |
[1] | XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248. |
[2] | ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263. |
[3] | ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45. |
[4] | FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. |
[5] | SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. |
[6] | GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545. |
[7] | LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556. |
[8] | HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567. |
[9] | GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588. |
[10] | ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. |
[11] | WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240. |
[12] | ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836. |
[13] | JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889. |
[14] | ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640. |
[15] | WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679. |
|