Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (16): 3287-3295.doi: 10.3864/j.issn.0578-1752.2015.16.018

• RESEARCH NOTES • Previous Articles     Next Articles

Respiratory Metabolism Changes During Dormancy Induction of Grape Buds

WANG Hai-bo, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi   

  1. Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2015-02-12 Online:2015-08-16 Published:2015-08-16

Abstract: 【Objective】The changes of respiratory rate and respiratory pathway during the dormancy induction period, and the relationship between respiration and dormancy induction of grape bud were studied for the purpose of laying a theoretical foundation for the control technology of dormancy such as no-dormancy culture and promote early autumn cultivation, and solve the problem of the annual supply of fresh grapes. 【Method】 The experiment was undertaken in type Ⅱ low carbon high energy saving greenhouse in trial demonstration garden area. Three-year-old high chilling requirement grape V. vinifera-V. labrusca cv. ‘Summer Black’ and low chilling requirement grape V. vinifera cv. ‘Jingmi’ were used as test material and ‘Beta’ as rootstock. Respiration inhibitors and oxygen electrode were used for determination of the respiratory rate and respiratory pathway changes in grape buds, combined with single bud cuttings sand culture method to define the natural dormancy induction process, and to investigate the changes of respiratory metabolism during dormancy in grape buds. 【Result】 The starting and ending time of dormancy induction of low chilling requirement grape cultivar was later and depth of dormancy was shallower than high chilling requirement grape V. vinifera-V. labrusca cv. ‘Summer Black’. Change tendency oftotalrespiratory rate of different chilling requirement grape cultivars had the similar single peak curves, the maximum total respiratory rate appeared at the end of dormancy induction. The total respiratory rate and the increase amplitude of low chilling requirement grape bud was significantly lower than high chilling requirement grape bud at the end of the dormancy induction. During the dormancy induction period, the activity of different respiratory pathways at the oxidation substrate level and the electron transport level changed obviously, and the change trend was basically identical which closely related with its natural dormancy process. The operation activity and capacity of pentose phosphate pathway (PPP), fat protein- tricarboxylic acid cycle (fat protein-TCA) at the oxidation substrate level and operation activity and capacity of alternative pathway at the electron transport level of grape buds increased rapidly with the advance of the natural dormancy process. For the low chilling requirement grape cultivar, PPP, fat protein-TCA at the oxidation substrate level, alternative pathway at the electron transport level of grape buds and other operation activity and capacity of respiratory pathway which is closely related to dormancy induction were lower than high chilling requirement grape buds. 【Conclusion】 During dormancy induction period, total respiratory rate peak was a sign of the end of grape dormancy induction. The rapid increase in the operation activity and capacity of PPP, alternative pathway, fat protein-TCA were the key for buds into dormancy induction and the symbolic physiological change in dormancy induction period.

Key words: grape, bud, dormancy induction, chilling requirement, respiratory rate, respiratory pathway

[1]    Campoy J A, Ruiz D, Egea J. Dormancy in temperate fruit trees in a global warming context: A review. Scientia Horticulturae, 2011, 130: 357-372.
[2]    Olsen J E. Mechanisms of dormancy regulation. Acta Horticulturae, 2006, 727: 157-165.
[3]    Bigras F J, Daoust A L. Influence of photoperiod on shoot and toot frost tolerance and bud phenology of white spruce seedlings. Canadian Journal of Gastroenterology, 1993, 23: 219-228.
[4]    Fennel A, Hoover E. Photoperiod influences growth, bud dormancy and cold acclimation in Vitis labruscana and V. riparia. Journal of the American Society for Horticultural Science, 1991, 116(2): 270-273.
[5]    Jian L C, Li P H, Sun L H, Chen T H H. Alteration in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. Journal of Experimental Botany, 1997, 311(48): 1195-1207.
[6]    Tung C H, Deyoe D R. Dormancy induction in container-grown Abies seedlings: Effects of environmental cues and seedlings age. New Forests, 1991, 5: 13-22.
[7]    Whitelam G C, Devlin P F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell & Environment, 1997, 20: 752-758.
[8]    简令成, 卢存福, 邓江明, 李积宏, Li Paul H. 木本植物休眠的诱导因子及其细胞内Ca2+水平的调节作用. 应用与环境生物学报, 2004, 10(1): 1-6.
Jian L C, Lu F C, Deng J M, Li J H, Li P H. Inducing factor and regulating role of Intracellular Ca2+ level for woody plant bud dormancy. Chinese Journal of Applied & Environmental Biology, 2004, 10(1): 1-6. (in Chinese)
[9]    Heide O M, Prestrud A K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 2005, 25: 109-114.
[10]   Stewart C R, Martin B A, Reding L, Corwick S. Respiration and alternative oxidase in corn seeding tissues during germination at different temperatures. Plant Physiology, 1990, 92: 755-760.
[11]   Faust M, Erez A, Rowland L J, Wang S Y, Norman H A. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience, 1997, 32: 623-629.
[12]   汤佩松. 高等植物呼吸代谢途径的调节控制和代谢生理功能间的相互制约. 植物学报, 1979, 21(2): 93-106.
Tang P S. Regulation and control of multiple pathways of respiratory metabolism in relation to other physiological functions in high plants. Acta Botanica Sinica, 1979, 21(2): 93-106. (in Chinese)
[13]   李政红, 高东升, 李宪利. 桃芽自然休眠于两条主要电子传递途径变化的关系. 植物生理与分子生物学学报, 2006, 32(2): 156-162.
Li Z H, Gao D S, Li X L. The relation between en-dormancy and changes in two main electron transport pathways of nectarine (Prunus persica var. nectariana) buds. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 156-162. (in Chinese)
[14]   Arora R, Rowland L J, Tanino K. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience, 2000, 38(5):911-921.
[15]   李瑾, 高东升, 于芹, 徐臣善, 赵锴. 光周期处理对油桃芽休眠诱导效应及呼吸速率的影响. 中国农业科学, 2009, 42(1): 210-215.
Li J, Gao D S H, Yu Q, Xu C S, Zhao K. Effect of photoperiod treatments on dormancy induction and changes of correlated respiratory rate of nectarine peach bud. Scientia Agricultura Sinica, 2009, 42(1): 210-215. (in Chinese)
[16]   谭钺, 李玲, 李冬梅, 陈修德, 李瑾, 高东升. 光周期对油桃芽休眠诱导及呼吸代谢的影响. 应用与环境生物学报, 2012, 18(5): 838-842.
Tan Y, Li L, Li D M, Chen X D, Li J, Gao D S. Effects of photoperiod on dormancy induction and respiration of nectarine buds. Chinese Journal of Applied & Environmental Biology, 2012, 18(5): 838-842. (in Chinese)
[17]   王海波, 王孝娣, 高东升, 王宝亮, 李疆, 刘凤之. 不同需冷量 桃品种芽休眠诱导期间的生理变化. 果树学报, 2009, 26(4): 445-449.
Wang H B, Wang X D, Gao D S, Wang B L, Li J, Liu F Z. Physiological changes of different chilling requirement peach cultivars during bud dormancy induction. Journal of Fruit Science, 2009, 26(4): 445-449. (in Chinese)
[18]   李冬梅, 谭秋平, 张海森, 高东升, 于芹. 光周期对油桃叶芽休眠诱导期抗氰呼吸的影响. 应用与环境生物学报, 2010, 16(6): 775-778.
Li D M, Tan Q P, Zhang H S, Gao D S, Yu Q. Effects of photoperiod on cyanide-resistant respiration of nectarine leaf buds during dormancy induction. Chinese Journal of Applied & Environmental Biology, 2010, 16(6): 775-778. (in Chinese)
[19]   李冬梅, 张海森, 谭秋平, 李玲, 于芹, 高东升. 短日照对休眠诱导期油桃花芽两条电子传递途径的调控. 应用生态学报, 2011, 22(11): 2849-2854.
Li D M, Zhang H S, Tan Q P, Li L, Yu Q, Gao D S. Regulation effects of short sunlight on two electron transport pathways in nectarine flower bud during dormancy induction. Chinese Journal of Applied Ecology, 2011, 22(11): 2849-2854. (in Chinese)
[20]   于芹, 高东升, 徐小明, 李瑾, 徐臣善. 油桃芽体自然休眠诱导与两条主要电子传递途径的关系. 中国农业科学, 2008, 41(12): 4149-4154.
Yu Q, Gao D S, Xu X M, Li J, Xu C S. Relationship between endodormancy induction and changes in two main electron transport pathways of nectarine buds. Scientia Agricultura Sinica, 2008, 41(12): 4149-4154. (in Chinese)
[21]   丛深. 葡萄芽自然休眠诱导和解除期间呼吸代谢研究[D]. 北京: 中国农业科学院, 2013.
Cong S. Study on mechanism of respiration during dormancy induction and release[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[22]   丛深, 王海波, 王孝娣, 王宝亮, 郑晓翠, 史祥宾, 刘万春, 刘凤之. 葡萄芽自然休眠期间的呼吸代谢变化. 中国农业科学, 2013,46(6): 1201-1207.
Cong S, Wang H B, Wang X D, Wang B L, Zheng X C, Shi X B, Liu W C, Liu F Z. Respiratory changes during dormancy of grape buds. Scientia Agricultura Sinica, 2013, 46(6): 1201-1207. (in Chinese)
[23]   丛深, 王海波, 王孝娣, 王宝亮, 郑晓翠, 史祥宾, 刘万春, 刘凤 之.带叶休眠对休眠解除期间葡萄芽呼吸代谢的影响. 园艺学报, 2013, 40(10): 1983-1989.
Cong S, Wang H B, Wang X D, Wang B L, Zheng X C, Shi X B, Liu W C, Liu F Z. Effect of dormancy with leaves on respiration of grape buds during dormancy release. Acta Horticulturae Sinica, 2013, 40(10): 1983-1989. (in Chinese)
[24]   王海波, 王孝娣, 程存刚, 王宝亮, 李敏, 高东升, 刘凤之. 桃芽休眠的自然诱导因子及Ca2+在休眠诱导中的作用. 应用生态学报, 2008, 19(11): 2333-2338.
Wang H B, Wang X D, Cheng C G, Wang B L, Li M, Gao D S, Liu F Z. Inducing factor and regulating role of Ca2+ for peach bud dormancy induction. Chinese Journal of Applied Ecology, 2008, 19(11): 2333-2338. (in Chinese)
[25]   王海波. 桃芽自然休眠诱导与短时间高温破眠机制研究[D]. 新疆乌鲁木齐: 新疆农业大学, 2006.
Wang H B. Study on the mechanisms of endodormancy induction and short-term heating releasing dormancy in peach (Prunus persica) bud. Xinjiang Urumchi: Xinjiang Agriculture University, 2006. (in Chinese)
[26]   黄骥, 王建飞, 张红生. 植物戊糖磷酸途径及其两个关键酶的研究进展. 植物学通报, 2004, 21(2): 139-145.
Huang J, Wang J F, Zhang H S. Advances on plant pentose phosphate pathway and its key enzymes. China Bulletin of Botany, 2004, 21(2): 139-145. (in Chinese)
[27]   宋丽丽, 蒋跃明, 李长涛, 刘海, 尤艳莉, 易春, 徐志防. 能量对香石竹切花在瓶插期间呼吸电子途径的影响. 热带亚热带植物学报, 2008, 16(3): 219-224.
Song L L, Jiang Y M, Li C T, Liu H, You Y L, Yi C, Xu Z F. Effect of energy supply on respiration electron transport pathways during vase holding of cut carnation flowers. Journal of Tropical and Subtropical Botany, 2008, 16(3): 219-224. (in Chinese)
[28]   周功克, 孔英诊, 李红玉, 文江祁, 梁厚果. 烟草愈伤组织继代培养期间呼吸途径与活性氧水平动态变化. 应用生态学报, 2000, 11(6): 885-888.
Zhou G K, Kong Y Z, Li H Y, Wen J Q, Liang H G. Dynamic changes of respiration pathway and active oxygen levels in subcultured tobacco callus. Chinese Journal of Applied Ecology, 2000, 11(6): 885-888. (in Chinese)
[29]   Li D M, Tan Y, Yu Q, Chen X D, Li L, Zhang H S, Gao D S. Effects of photoperiod on alternative respiration pathway in nectarine flower buds during dormancy induction. Agricultural Sciences in China, 2011, 10(12): 1881-1886.
[30]   武维华. 植物生理学. 第二版. 北京: 科学出版社, 2008
Wu W H. Plant Physiology. 2nd ed. Beijing: Science Press, 2008. (in Chinese)
[31]   Kinner C M, Beramlage W J. Temperature effects on the activity of the alternative respiratory pathway in chill-sensitive Cucumis sativus. Plant Physiology, 1981, 68: 1474-1478.
[32]   Jolivet Y, Pireaux J C, Dizengremel P. Changes in properties of barley leaf mitochondira isolated from NaCl-treated plants. Plant Physiology, 1990, 94: 641-646.
[33]   Morris C F, Anderberg R J, Goldmark P J, Walker-Simmons M K. Molecular cloning and expression of abscisic acid responsive genes in embryos of dormant wheat seeds. Plant Physiology, 1991, 95: 814-821.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[6] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[7] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[10] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[11] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[14] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[15] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!