Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (6): 1205-1218.doi: 10.3864/j.issn.0578-1752.2015.06.16
• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles Next Articles
CHEN Liang1, 2, HUANG Qing-hua1, MENG Li-hui1, XING Huan1, YAO Bin2, YANG Xiao-guang3, ZHANG Hong-fu1
[1] James C. Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No. 46. ISAAA, Ithaca, NY. 2013.
[2] Flachowsky G, Schafft H, Meyer U. Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: a review. Journal of Consumer Protection and Food Safety, 2012, 7(3):179-194.
[3] EFSA G M O. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food and Chemical Toxicology, 2008, 46: 2-70.
[4] Codex Alimentarius Commission. Principles for the Risk Analysis of Foods Derived from Modern Biotechnology (CAC/GL 44-2003). 2003.
[5] OECD. Safety evaluation of foods derived by modern biotechnology. Concepts and Principles. Paris, 1993.
[6] Millstone E, Brunner E, Mayer S. Beyond ‘substantial equivalence’. Nature, 1999, 401(6753): 525-526.
[7] Clark E A, Lehman H. Assessment of GM crops in commercial agriculture. Journal of Agricultural and Environmental Ethics, 2001, 14(1): 3-28.
[8] Broderick N A, Raffa K F, Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15196-15199.
[9] Feitrlson J J, Payne H, Kim L. Bacillus thuringiensis: insects and beyond. Nature Biotechnology, 1992, 10: 271-275.
[10] Schuler T H, Poppy G M, Kerry B R, Denholm I. Inseet-resistant transgenic plants. Trends in Biotechnology, 1998, 16(4): 168-175.
[11] Bentley R. The shikimate pathway-a metabolic tree with many branches. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25(5): 307-384.
[12] Roberts F, Roberts C W, Johnson J J, Kyle D E, Krell T, Coggins J R, Coombs G H, Milhous W K, Tzipori S, Ferguson D J, Chakrabarti D, McLeod R. Evidence for the shikimate pathway in apicomplexan parasites. Nature, 1998, 393(6687): 801-805.
[13] Gruys K J, Walker M C, Sikorski J A. Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. Biochemistry, 1992, 31(24): 5534-5544.
[14] Gruys KJ, Marzabadi M R, Pansegrau P D, Sikorski J A. Steady-state kinetic evaluation of the reverse reaction for Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase. Archives of Biochemistry and Biophysics, 1993, 304(2): 345-351.
[15] Chen R M, Xue G X, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski M C, Shi J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 2008, 17(4): 633-643.
[16] Oxenius A, Martinic M M A., Hengartner H, Klenerman P. CpG-containing oligonucleotides are ef?cient adjuvants for induction of protective antiviral immune responses with T-Cell peptide vaccines. Journal of Virology, 1999, 73(5):4120-4126.
[17] Zelenay S, Elías F, Fló J. Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. European Journal of Immunology, 2003, 33(5): 1382-1392.
[18] Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial bio?lm formation. Science, 2002, 295:1487.
[19] Rizzi A, Raddadi N, Sorlini C, Nordgrd L, Nielsen KM, Daffonchio D. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs. Critical Reviews in Food Science and Nutrition. 2012, 52(2):142-61.
[20] Schubbert R, Renz D, Schmitz B, Doerfler W. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proceedings of the National Academy of Sciences of the United States of America, 1997, 943(3): 961-966.
[21] Sharma R, Damgaard D, Alexander T W, Dugan M E, Aalhus J L, Stanford K, McAllister T A. Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1699-1709.
[22] Palka-Santini M, Schwarz-Herzke B, Hösel M, Renz D, Auerochs S, Brondke H, Doerfler W. The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins. Molecular Genetics and Genomics, 2003, 270(3): 201-215.
[23] Sanden M, Berntssen M H G, Hemre G I. Intracellular localization of dietary and naked DNA in intestinal tissue of Atlantic salmon, Salmosalar L. using in situ hybridization. European Food Research and Technology, 2007, 225: 533-543.
[24] Beever D E, Phipps R H. The fate of plant DNA and novel proteins in feeds for farm livestock: A United Kingdom perspective. Journal of Animal Science, 2001, 79 (E. Suppl.): E290-E295.
[25] Buzoianu S G, Walsh M C, Rea M C, O'Donovan O, Gelencsér E, Ujhelyi G, Szabó E, Nagy A, Ross R P, Gardiner G E, Lawlor P G. Effects of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material. PLoS ONE, 2012, 7(10): e47851.
[26] Alexander T W, Reuter T, Okine E, Sharma R, McAllister T A. Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready rapeseed meal. British Journal of Nutrition, 2006, 96(6): 997-1005.
[27] Trabalza-Marinucci M, Brandi G, Rondini C, Avellinia L, Giammarinib C, Costarellid S, Acutia G, Orlandie C, Filippinid G, Chiaradiaa E, Malatestaf M, Crottid S, Antoninia C, Amaglianib G, Manualid E, Mastrogiacomo A R, Moscatid L, Naceur Haouetd M, Gaitia A, Magnanib M. A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Livestock Science, 2008, 113(2-3): 178-190.
[28] Jennings J C, Kolwyck D C, Kays S B, Whetsell A J, Surber J B, Cromwell G L, Lirette R P, Glenn K C. Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. Journal of Animal Science, 2003, 81(6):1447-1455.
[29] Aeschbacher K, Messikommer R,.Meile L. Wenk C. Bt 176 Corn in Poultry Nutrition: Physiological Characteristics and Fate of Recombinant Plant DNA in Chickens. Poultry Science, 2005, 84(3): 385-394.
[30] Ma Q, Gao C, Zhang J, Zhao L, Hao W, Ji C. Detection of transgenic and endogenous plant DNA fragments and proteins in the digesta, blood, tissues, and eggs of laying hens fed with phytase transgenic corn. PLoS ONE, 2013, 8(4): e61138.
[31] Walsh M C, Buzoianu S G, Gardiner G E, Rea M C, Gelencsér E, Jánosi A, Epstein M M, Ross R P, Lawlor P G. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS ONE, 2011, 6(11): e27177.
[32] 朱元招, 尹靖东, 李德发, 王凤来. 生长猪对转基因豆粕外源DNA的代谢研究. 畜牧兽医学报, 2005, 36(10): 1083-1086.
Zhu Y Z, Yin J D, Li D F, Wang F L. Study on Metabolism of Exogenous DNA from Transgenic Soybean Meal in Grower Pigs. Acta Veterinaria Et Zootechnica Sinica, 2005, 36(10): 1083-1086. (in Chinese)
[33] Mazza R, Soave M, Morlacchini M, Piva G, Marocco A. Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Research, 2005, 14: 775-784.
[34] Walsh M C, Buzoianu S G, Rea M C, O'Donovan O, Gelencsér E, Ujhelyi G, Ross R P, Gardiner G E, Lawlor P G. Effects of feeding Bt MON810 maize to pigs for 110 days on peripheral immune response and digestive fate of the cry1Ab gene and truncated Bt toxin. PLoS ONE, 2012, 6(11): e27177.
[35] Chowdhury E H, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge K S, Saito M, Nakajima Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. Journal of Animal Science, 2003, 81(10): 2546–2551.
[36] de Vries J. Wackernagel W. Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant and Soil, 2004, 266: 91-104.
[37] Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in bio?lm formation. Journal of Bacteriology, 2002, 184(10): 2699-2708.
[38] Nielsen K M, Townsend J P. Monitoring and modeling horizontal gene transfer. Nature Biotechnology, 2004, 22(9): 1110-1114.
[39] Yudina T G, Brioukhanov A L, Zalunin I A, Revina L P, Shestakov A I, Voyushina N E, Chestukhina G G, Netrusov A I. Antimicrobial activity of different proteins and their fragments from Bacillus thuringiensis parasporal crystals against clostridia and archaea. Anaerobe, 2007, 13(1): 6-13.
[40] Koskella J, Stotzky G. Larvicidal toxins from Bacillus thuringiensis subspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Canadian Journal of Microbiology, 2002, 48(3): 262–267.
[41] Sung HG, Min D M, Kim D K, Li D Y, Kim H J, Upadhaya S D, Ha J K. Influence of transgenic corn on the in vitro rumen microbial fermentation. Asian-Australasian Journal of Animal Sciences, 2006, 19(12): 1761-1768.
[42] Buzoianu S G, Walsh M C, Rea M C, O'Sullivan O, Cotter P D, Ross R P, Gardiner G E, Lawlor P G. High throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified Bt MON810 maize for 31 days. Applied and Environmental Microbiology, 2012, 78(12):4217-4224.
[43] Buzoianu S G, Walsh M C, Rea M C, O'Sullivan O, Crispie F, Cotter P D, Ross R P, Gardiner G E, Lawlor P G. The effect of feeding Bt MON810 maize to pigs for 110 days on intestinal microbiota. PLoS ONE, 2012, 7(5): e33668.
[44] Buzoianu S G, Walsh M C, Rea M C, Quigley L, O'Sullivan O, Cotter P D, Ross R P, Gardiner G E, Lawlor P G. Sequence-based analysis of the intestinal microbiota of sows and their offspring fed genetically modified Bt maize in a trans-generational study. Applied and Environmental Microbiology, 2013, 79(24): 7735-7744.
[45] Wiedemann S, Gurtler P, Albrecht C. Effect of feeding cows genetically modi?ed maize on the bacterial community in the bovine rumen. Applied and Environmental Microbiology, 2007, 73(24): 8012-8017.
[46] Einspanier R,Lutz B, Rief S, Berezina O, Zverlov V, Schwarz W, Mayer J. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. European Food. Research and Technology, 2004, 218(3): 269-273.
[47] Bakan B, Melcion D, Richard-Molard C, Cahagnier B. Fungal growth and fusarium mycotoxin content in isogenic traditional maize and genetically modi?ed maize grown in France and Spain. Journal of Agricultural and Food Chemistry, 2002, 50(4):728-731.
[48] Walsh M C, Buzoianu S G, Gardiner G E, Cassidy J P, Rea M C, Ross R P, Lawlor P G. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. British Journal of Nutrition, 2012, 107(3):364-371.
[49] Aumaitre A, Aulrich K, Chesson A, Flachowsky G, Piva G. New feeds from genetically modi?ed plants: substantial equivalence, nutritional equivalence, digestibility, and safety for animals and the food chain. Livestock Production Science, 2002, 74(3): 223-238.
[50] Padgette S R, Taylor N B, Nida D L, Bailey M R, MacDonald J, Holden L R, Fuchs R L. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition, 1996, 126(3):702-716.
[51] Custodio M G, Powers W J, Huff-Lonergan E, Faust M A, Stein J. Growth, pork quality, and excretion characteristics of pigs fed Bt corn or non-transgenic corn. Canadian Journal of Animal Science, 2006, 86: 461-469.
[52] Aulrich K, Böhme H, Daenicke R, Halle I, Flachowsky G. Genetically modified feeds in animal nutrition. 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Arch Tierernahr, 2001, 54(3):183-195.
[53] Reuter T, Aulrich K, Berk A, Flachowsky G. Investigations on genetically modi?ed maize (Bt-maize) in pig nutrition: hemical Composition and Nutritional Evaluation. Arch Tierernahr, 2002, 56(1):23-31.
[54] 杨文竹, 蒲凌奎, 张琪, 陈平, 陈茹梅, 范云六. 转植酸酶基因玉米中植酸酶蛋白在模拟消化液中的稳定性研究. 中国农业科技导报, 2008,10(S1): 86-89.
Yang W Z, Pu L K, Zhang Q, Chen P, Chen R M, Fan Y L. Stability of phytase in transgenic corn in simulated gastric/intestinal fluid. Journal of Agricultural Science and Technology, 2008, 10(S1): 86-89. (in Chinese)
[55] 张军民, 邓丽青, 陈茹梅, 马永喜. 转植酸酶基因玉米对肉仔鸡生长性能及钙磷代谢的影响. 中国畜牧兽医学报, 2011, 31(2): 283-287.
Zhang J M, Deng L Q, Chen R M, Ma Y X. Effect of transgenic phytase corn on growth performance and Ca-P metabolism in broiler. Chinese Journal of Veterinary Science, 2011, 31(2): 283-287. (in Chinese)
[56] Wang X Q, Wang S, Zhang J M, Yang J P. The effect of dietary supplementation with phytase transgenic corn on growth performance, phosphorus utilization and excretion in growing pigs. Agricultural Sciences in China, 2011, 10(5): 769-776.
[57] Gao CQ, Ma Q G, Ji C, Luo X G, Tang H F, Wei Y M. Evaluation of the compositional and nutritional equivalency of phytase transgenic corn to conventional corn in roosters. Poultry Science, 2012, 91(5): 1142–1148.
[58] Buzoianu S G, Walsh M C, Rea M C, Cassidy J P, Ross R P, Gardiner G E, Lawlor P G. Effect of feeding genetically modi?ed Bt MON810 maize to ~40 day old pigs for 110 days on growth and health indicators. Animal, 2012 (10):1609-1619.
[59] Walsh M C, Buzoianu S G, Gardiner G E, Rea M C, O’Donovan O, Ross R P, Lawlor P G. Effects of feeding Bt MON810 maize to sows during ?rst gestation and lactation on maternal and offspring health indicators. British Journal of Nutrition, 2013, 109(5): 873-881.
[60] Buzoianu S G, Walsh M C, Rea M C, Cassidy J P, Ryan T P, Ross R P, Gardiner G E, Lawlor P G. Transgenerational effects of feeding genetically modified maize to nulliparous sows and offspring on offspring growth and health. Journal of Animal Science, 2013, 91(1): 318-330.
[61] Brake J, Vlachos D. Evaluation of transgenic Event 176 ‘Bt’ corn in broiler chickens. Poultry Science, 1998, 77(5): 648-653.
[62] Shimada N, Murata H, Mikami O, Yoshioka M, Guruge K S, Yamanaka N, Nakajima Y, Miyazaki S. Effects of feeding calves genetically modified corn Bt11: a clinico-biochemical study. Journal of Veterinary Medical Science, 2006, 68(10): 1113–1115.
[63] Steinke K, Guertler P, Paul V, Wiedemann S, Ettle T, Albrecht C, Meyer H H, Spiekers H, Schwarz F J. Effects of long-term feeding of genetically modi?ed corn (event MON810) on the performance of lactating dairy cows. Journal of Animal Physiology and Animal Nutrition, 2010, 94(5): 185-193.
[64] Snell C, Bernheim A, Bergé J B, Kuntz M, Pascal G, Paris A, Ricroch A E. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food and Chemical Toxicology, 2012, 50(3-4): 1134-1148.
[65] 刘莎莎, 谭建庄, 孙哲, 沈景林, 张宏福. 转基因成分在肉鸡体内的代谢残留及对生化指标、器官发育的影响. 饲料工业, 2011, 32(9): 19-25.
Liu S S, Tan J Z, Sun Z, Shen J L, Zhang H F. Fate of transgenic DNA from glyphosate-tolerant soybean meal and effects on serum biochemistry parameters and organ development in broilers. Feed Industry Magazine, 2011, 32(9): 19-25. (in Chinese)
[66] 谭建庄, 刘莎莎, 孙哲, 张宏福, 卢庆萍, 萨仁娜, 赵峰, 杨晓光. 抗草甘膦转基因豆粕对肉仔鸡肠粘膜免疫的影响. 动物营养学报, 2011, 23(5):836-841.
Tan J Z, Liu S S, Sun Z, Zhang H F, Lu Q P, Sa R N, Zhao F, Yang X G. Effect of glyphosate-tolerant soybean meal on intestinal mucosal immunity in broilers. Chinese Journal of Animal Nutrition, 2011, 23(5):836-841. (in Chinese)
[67] Tan J Z, Liu S S, Sun Z, Zhang H F, Wang Y W, Liu D. Comparison of broiler performance, carcass yields and intestinal microflora when fed diets containing transgenic (Mon-40-3-2) and conventional soybean meal. African Journal of Biotechnology, 2012, 11(59): 12371-12378.
[68] Cromwell G L, Lindemann M D, Randolph J H, Parker GR, Coffey R D, Laurent K M, Armstrong C L, Mikel W B, Stanisiewski E P, Hartnell G F. Soybean meal from Roundup Ready or conventional soybeans in diets for growing-finishing swine. Journal of Animal Science, 2002, 80(3): 708-715.
[69] Mejia L, Jacobs C M, Utterback P L, Parsons C M, Rice D, Sanders C, Smith B, Iiams C, Sauber T. Evaluation of the nutritional equivalency of soybean meal with the genetically modified trait DP-3Ø5423-1 when fed to laying hens. Poultry Science, 2010(89): 2634-2639.
[70] Malatesta M, Boraldi F, Annovi G, Baldelli B, Battistelli S, Biggiogera M, Quaglino D. A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing. Histochemistry and Cell Biology, 2008(130): 967-977.
[71] ?wi?tkiewicz M, Bednarek D, Markowski J, Hanczakowska E, Kwiatek K. Effect of feeding genetically modified maize and soybean meal to sows on their reproductive traits, haematological indices and offspring performance. Bulletin of the Veterinary Institute in Pulawy, 2013, 57(3): 413-418.
[72] McNaughton J, Roberts M, Rice D, Smith B, Hinds M, Delaney B, Iiams C, Sauber T. Comparison of broiler performance and carcass yields when fed transgenic maize grain containing event DP-Ø9814Ø-6 and processed fractions from transgenic soybeans containing event DP-356Ø43-5. Poultry Science, 2011, 90(8): 1701-1711.
[73] McNaughton J, Roberts M, Rice D, Smith B, Hinds M, Delaney B, Iiams C, Sauber T. Nutritional equivalency evaluation of transgenic maize grain from event DP-Ø9814Ø-6 and transgenic soybeans containing event DP-356Ø43-5: Laying hen performance and egg quality measures. Poultry Science, 2011, 90(2): 377-389.
[74] Tudisco R, Mastellone V, Cutrignelli M I, Lombardi P, Bovera F, Mirabella N, Piccolo G, Calabrò S, Avallone L, Infascelli F. Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modi?ed soybean and in their offsprings. Animal, 2010, 4(10): 1662-1671.
[75] Hyun Y, Bressner G E, Ellis M, Lewis A J, Fischer R, Stanisiewski E P, Hartnell G F. Performance of growing-?nishing pigs fed diets containing Roundup Ready corn (event nk603), a nontransgenic genetically similar corn, or conventional corn lines. Journal of Animal Science, 2004, 82(2): 571-580.
[76] Stein H H, Sauber T E, Rice D W, Hinds M A, Smith B L, Dana G, Peters D N,. Hunst P. Growth performance and carcass composition of pigs fed corn grain from DAS-Ø15Ø7-1 (Herculex I) hybrids 1. The Professional Animal Scientist, 2009, 25: 689-694.
[77] Stein H H, Rice D W, Smith B L, Hinds M A, Sauber T E, Pedersen C, Wulf D M, Peters D N. Evaluation of corn grain with the genetically modified input trait DAS-59122-7 fed to growing-finishing pigs. Journal of Animal Science, 2009, 87(4): 1254-1260.
[78] Jacobs C M, Utterback P L, Parsons C M, Rice D, Smith B, Hinds M, Liebergesell M, Sauber T. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain. Poultry Science, 2008, 87(3):475-479. |
[1] | WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286. |
[2] | YANG GaiQing, WANG LinFeng, LI WenQing, ZHU HeShui, FU Tong, LIAN HongXia, ZHANG LiYang, TENG ZhanWei, ZHANG LiJie, REN Hong, XU XinYing, LIU XinHe, WEI YuXuan, GAO TengYun. Study on Milk Quality Based on Circadian Rhythm [J]. Scientia Agricultura Sinica, 2023, 56(2): 379-390. |
[3] | WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240. |
[4] | JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466. |
[5] | CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956. |
[6] | WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549. |
[7] | ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251. |
[8] | LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294. |
[9] | MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542. |
[10] | LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472. |
[11] | GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898. |
[12] | LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides [J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642. |
[13] | CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653. |
[14] | GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484. |
[15] | LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256. |
|