Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (23): 4985-4995.doi: 10.3864/j.issn.0578-1752.2013.23.015

• HORTICULTURE • Previous Articles     Next Articles

A Construction of the Core-Collection of Juglans regia L. Based on AFLP Molecular Markers

 WANG  Hong-Xia-1, ZHAO  Shu-Gang-2, GAO  Yi-3, XUAN  Li-Chun-4, ZHANG  Zhi-Hua-1   

  1. 1.Mountainous Areas Research Institute, Agricultural University of Hebei/Research Center for Agricultural Engineering Technology of Mountain District, Baoding 071001, Hebei
    2.College of Life Science, Agricultural University of Hebei, Baoding 071001, Hebei
    3.College of Horticulture, Agricultural University of Hebei, Baoding 071001, Hebei
    4.Forestry Bureau of Qian’an, Qian’an 064400, Hebei
  • Received:2013-05-28 Online:2013-12-01 Published:2013-08-20

Abstract: 【Objective】 Walnut is an important economic tree species in China, and its germplasm resources are very rich. There were many problems in the processing of germplasm preservation such as large area occupied, higher management costs, which brought great difficulties to the conservation, utilization and evaluation. Therefore, construction of walnut core collection is very important for preservation, study and application of Juglans regia L. germplasm resources.【Method】 Based on AFLP markers, candidate core collections were constructed by using proportional strategy and UPGMA clustering sampling method within subgroups after dividing 131 Juglans regia germplasm into 45 subgroups. The core collection was eventually identified by comparison of the genetic diversity parameters of these candidate core collections, such as the number of polymorphic loci, percentage of polymorphic loci, and morphological indicators. 【Result】The core collections including Tianqiao1 from Hebei province, Xiluo2 and Xilin1 from Shaanxi province, Jinglong1 from Shanxi province, Fenghui from Shandong province, Liaoning8 and Liao73013 from Liaoning province, Wen185 from Xinjiang, Lvbo from Henan province, Beijing746 from Beijing, Vina from America, Qingxiang from Japan, Anbian1 from North Korea, reserved 10% samples of original collection. The retention rate of polymorphic loci was 75.4% in the core collection.【Conclusion】The core collection which was constructed in this study can largely represent the genetic information of the original germplasm, and it was matched with the requirements of the core collection.

Key words: Juglans regia L. , core collection , amplified fragment length polymorphism (AFLP) , genetic diversity

[1]Frankle O H. Genetic perspectives of genmplasm conservation//Arber W, Illmensee K, Peacock W J, Starlinger P. Genetic Manipulation: Impact on Man and Society. Cambridge: Cambridge University Press, 1984: 161-170.

[2]Brown A H D. Core collection: A practical approach to genetic resources management. Genome, 1989, 31: 818-824.

[3]邱丽娟, 曹永生, 常汝镇, 周新安, 王国勋, 孙建英, 谢华, 张博, 李向华, 许占有, 刘立宏. 中国大豆(Glycine max)核心种质构建. 中国农业科学, 2003, 36(12): 1442-1449.

Qiu L J, Cao Y S, Chang R Z, Zhou X A, Wang G X, Sun J Y, Xie H, Zhang B, Li X H, Xu Z Y, Liu L H. Establishment of Chinese soybean (G.max) core collectionⅠ. sampling strategy. Scientia Agricultura Sinica, 2003, 36(12): 1442-1449. (in Chinese)

[4]Spagnoletti Zeuli P L, Qualset C O. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theoretical and Applied Genetics, 1993, 87: 295-304.

[5]Diwan N, Mcintosh M S, Bauchan G R. Methods of developing a core collection of annual Medicago species. Theoretical and Applied Genetics, 1995, 90: 755-761.

[6]Zewdie Y, Tong N, Bosland P. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, 2004, 51: 147-151.

[7]魏兴华, 汤圣祥, 余汉勇, 江云珠. 浙江粳稻地方品种核心样品的构建方法. 作物学报, 2001, 27(3): 324-328.

Wei X H, Tang S X, Yu H Y, Jiang Y Z. Methods of developing a core collection for Zhejiang traditional Japonica rice germplasm. Acta Agronomica Sinica, 2001, 27(3): 324-328. (in Chinese)

[8]张秀荣, 郭庆元, 赵应忠, 冯祥运, 周明德, Hodgkin T. 中国芝麻资源核心收集品研究. 中国农业科学, 1998, 31(3): 49-55.

Zhang X R, Guo Q Y, Zhao Y Z, Feng X Y, Zhou M D, Hodgkin T. Establishment of sesame germplasm core collection in China. Scientia Agricultura Sinica, 1998, 31(3): 49-55. (in Chinese)

[9]Hokanson S C, Szewc-Mcfadden A K, Lamboy W F, McFerson J R. Microsatellite(SSR)markers reveal genetic identities, genetic diversity and relationships in Malus×domestica Borkh. core subset collection. Theoretical and Applied Genetics, 1998, 97: 671-683.

[10]刘遵春, 张春雨, 张艳敏, 张小燕, 吴传金, 王海波, 石俊, 陈学 森. 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010, 43(2): 358-370.

Liu Z C, Zhang C Y, Zhang Y M, Zhang X Y, Wu C J, Wang H B, Shi J, Chen X S. Study on method of constructing core collection of Malus sieversii based on quantitative traits. Scientia Agricultura Sinica, 2010, 43(2): 358-370. (in Chinese)

[11]李银霞, 安丽君, 姜全, 赵剑波, 李天红. 桃(Prunus persica (L.)Batsch)品种核心种质的构建与评价. 中国农业大学学报, 2007, 12(5): 22-28.

Li Y X, An L J, Jiang Q, Zhao J B, Li T H. Establishment and evaluation of the core collection of peach (Prunus persica (L.) Batsch.)cultivars. Journal of China Agricultural University, 2007, 12(5): 22-28. (in Chinese)

[12]张靖国, 胡红菊, 田瑞, 陈启亮, 杨晓平. 中国砂梨初级核心种质的构建. 湖北农业科学, 2011, 50(8): 1590-1592.

Zhang J G, Hu H J, Tian R, Chen Q L, Yang X P. Establishment of primary core collection of Pyrus pyrifolia germplasms in China. Hubei Agricultural Sciences, 2011, 50(8): 1590-1592. (in Chinese)

[13]刘勇, 孙中海, 刘德春, 吴波, 周群. 利用分子标记技术选择柚类核心种质资源. 果树学报, 2006, 23(3): 339-345.

Liu Y, Sun Z H, Liu D C, Wu B, Zhou Q. Screening the core collection of pomelo germplasm based on molecular marker. Journal of Fruit Science, 2006, 23(3): 339-345. (in Chinese)

[14]高志红, 章镇, 韩振海, 房经贵. 中国果梅核心种质的构建与检测. 中国农业科学, 2005, 38(2): 363 -368.

Gao Z H, Zhang Z, Han Z H, Fang J G. Development and evaluation of core collection of Japanese apricot germplasms in China. Scientia Agricultura Sinica, 2005, 38(2): 363-368. (in Chinese)

[15]郭大龙, 刘崇怀, 张君玉, 张国海. 葡萄核心种质的构建. 中国农业科学, 2012, 45(6): 1135-1143.

Guo D L, Liu C H, Zhang J Y, Zhang G H. Construction of grape core collections. Scientia Agricultura Sinica, 2012, 45(6): 1135-1143. (in Chinese)

[16]崔艳华, 邱丽娟, 常汝镇, 吕文河. 植物核心种质研究进展. 植物遗传资源学报, 2003, 4(3): 279-284.

Cui Y H, Qiu L J, Chang R Z, Lü W H. Advances in research on core collection of plant germplasm resources. Journal of Plant Genetic Resources, 2003, 4(3): 279-284. (in Chinese)

[17]Fjiellstrom R G, Parfitt D E. RFLP inheritance and linkage in walnut. Theoretical and Applied Genetics, 1994, 89: 665-670.

[18]Nicese F P, Hormaza J I, Mcgranahan G H. Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotype based on RAPD markers. Euphytica, 1998, 101: 199-206.

[19]Potter D, Gao F Y, Aiello G, Leslie C, Granahan G M. Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut(Juglans regia L.) cultivars. Journal of the American Society for Horticultural Science, 2002, 127(1): 75-81.

[20]Fornari B, Cannata F, Spada M, Malvolti M E. Allozyme analysis of genetic diversity and differentiation in European and Asiatic walnut Juglans regia L.) populations. Forest Genetics, 1999, 6(2): 115-127.

[21]Fornari B, Malvolti M E, Taurchini D, Fineschi S, Beritognolo I, Maccaglia E, Cannata F. Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. Acta Horticulturae, 2001, 544: 167-178.

[22]王滑, 郝俊民, 王宝庆, 裴东. 中国核桃8个天然居群遗传多样性分析. 林业科学, 2007, 43(7): 120-124.

Wang H, Hao J M, Wang B Q, Pei D. SSR analysis of genetic diversity of eight natural walnut populations in China. Scientia Silvae Sinicae, 2007, 43(7): 120-124. (in Chinese)

[23]Foroni I, Woeste K, Monti L M, Rao R. Identification of ‘Sorrento’walnut using simple sequence repeats (SSRs). Genetic Resources and Crop Evolution, 2007, 54: 1081-1094.

[24]Ciarmiello L F, Piccirillo P, Pontecorvo G, Luca A D, Kafantaris I, Woodrow P. A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Molecular Biology Reports, 2011, 38(2): 1237-1249.

[25]Wang H, Zhao S, Zhang Z, Gao Y, Zhao Y, Fang J, He F. Genetic relationship and diversity of eight Juglans species in China estimated through AFLP analysis. Acta Horticulturae (ISHS), 2010, 861: 143-150.

[26]王红霞, 赵书岗, 高仪, 张志华, 玄立春. 普通核桃遗传多样性的AFLP分析. 中国农业科学, 2011, 44(7): 1434-1442.

Wang H X, Zhao S G, Gao Y, Zhang Z H, Xuan L C. Genetic diversity of Juglans regia L. cultivars revealed by AFLP analysis. Scientia Agricultura Sinica, 2011, 44(7): 1434-1442. (in Chinese)

[27]李自超, 张洪亮, 曾亚文, 杨忠义, 申时全, 孙传清, 王象坤. 云南地方稻种资源核心种质取样方案研究. 中国农业科学, 2000, 33(5): 1-7.

Li Z C, Zhang H L, Zeng Y W, Yang Z Y, Shen S Q, Sun C Q, Wang X K. Study on sampling schemes of core collection of local varieties of rice in Yunnan, China. Scientia Agricultura Sinica, 2000, 33(5): 1-7. (in Chinese)

[28]Tohme J, Gonzales D O, Beebe S, Duque M C. AFLP analysis of gene pools of a wild bean core collection. Crop Science, 1996, 36(5): 1375-1384.

[29]郗荣庭, 张毅萍. 中国果树志•核桃卷. 北京: 中国林业出版社, 1996: 94-171.

Xi R T, Zhang Y P. Flora of China Fruits Walnut. Beijing: China

Forestry Press, 1996: 94-171. (in Chinese)

[30]明军, 张启翔, 兰彦平. 梅花品种资源核心种质构建. 北京林业大学学报, 2005, 27(2): 65-69.

Ming J, Zhang Q X, Lan Y P. Core collection of Prunus mume Sieb.et Zucc. Journal of Beijing Forestry University, 2005, 27(2): 65-69. (in Chinese)

[31]Polignano G B, Uggenti P, Sxippa G. Diversity analysis and core collection formation in Bari faba bean germplasm. Plant Genetic Resources Newsletter, 2001, 125: 33-38.

[32]何余堂, 涂金星, 傅廷栋, 李殿荣, 陈宝元. 陕西省白菜型油菜核心种质的初步构建. 中国油料作物学报, 2002, 24(1): 6-9.

He Y T, Tu J X, Fu T D, Li D R, Chen B Y. Preliminary development of core collection of Brassica campestris in Shaanxi province. Chinese Journal of Oil Crop Sciences, 2002, 24(1): 6-9. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!