Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (12): 2468-2473.doi: 10.3864/j.issn.0578-1752.2012.12.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Analysis of Duck CD8α Gene Promoter and Its Transcriptional Activity

 XU  Qi, CHEN  Yang, HUANG  Zheng-Yang, ZHANG  Yang, CHEN  Chang-Yi, ZHAO  Rong-Xue, LI  Xiu, DUAN  Xiu-Jun, CHEN  Guo-Hong   

  1. 1.江苏省动物遗传繁育与分子设计重点实验室,江苏扬州  225009
    2.江西农业大学动物科学技术学院,江西南昌 330045
    3.国家水禽种质资源基因库,江苏泰州  225300
  • Received:2011-07-20 Online:2012-06-15 Published:2011-11-14

Abstract: 【Objective】 This experiment was conducted to explore the function determination and expression regulation of CD8α gene in ducks by analysis of transcriptional activity of its promoter. 【Method】 The promoter missing mutants were constructed(-625/-1 bp, -1110/-1 bp, -1413/-1 bp, -2151/-1 bp)accroding to the sequence of CD8α gene promoter, and then subcloned into pGL3 basic vectors to construct luciferase reporter gene vectors, respectively. The recombinant vectors were transfected into DT40 cells with Lipofectamine 2000, and the transcriptional activities were detected. 【Result】Results of the study indicated that CD8α gene promoter had obviously promoter activity. The sequence from -1 110 to -625 bp of 5′ flanking region had the strongest promoter activities, including two positive (-625/-1 bp and -1 110/-625 bp) regulatory domains. 【Conclusion】 The luciferase reporter gene eukaryotic expression vector with CD8α gene promoter sequences was constructed successfully using deletion mutation and its major regulatory regions were found, which play an important role for analyzing the promoter activity and transcriptional regulation mechanism.

Key words: duck, CD8&alpha, gene, promoter, transcriptional activity

[1]王洪梅, 张利博, 侯明海, 王长法, 王玲玲, 孙  涛, 何洪彬, 仲跻峰. 牛 Nramp1 基因启动子的克隆及其活性分析. 中国农业科学, 2011, 44(5): 1022-1028.

Wang H M, Zhang L B, Hou M H, Wang C F, Wang L L, Sun T, He H B, Zhong J F. Cloning and activity analysis of bovine natural resistance associated macrophage protein 1 (Nramp1) gene promoter. Scientia Agricultura Sinica, 2011, 44(5): 1022-1028. (in Chinese)

[2]岳  华, 黄  兴, 杨发龙, 李明义, 范根成, 马  莉, 汤  承. 荧光定量RT-PCR检测鸡CD4、CD8基因表达水平. 畜牧兽医学报, 2008, 39(6): 784-790.

Yue H, Huang X, Yang F L, Li M Y, Fan G C, Ma L, Tang C. Development of real-time RT-PCR for detecting the expression level of CD4 and CD8 mRNA in chicken. Acta Veterinaria et Zootechnica Sinaca, 2008, 39(6): 784-790. (in Chinese)

[3]Mancebo E, Moreno-Pelayo M A, Mencía A, de la Calle-Martín O, Allende L M, Sivadorai P, Kalaydjieva L, Bertranpetit J, Coto E, Calleja-Antolín S, Ruiz-Contreras J, Paz-Artal E. Gly111Ser mutation in CD8A gene causing CD8 immunode?ciency is found in Spanish Gypsies. Molecular Immunology, 2008, 45(2): 479-484.

[4]Kothlowa S, Mannesb N K, Schaerera B, Rebeski D E, Kaspers B, Schultzb U. Characterization of duck leucocytes by monoclonal antibodies. Developmental and Comparative Immunology, 2005, 29(8): 733-748.

[5]廖定为, 唐秀山, 蒋一男, 张念之, 夏  春. 北京鸭CD8α分子克隆与表达及其多克隆抗体制备. 中国兽医杂志, 2008, 44(6): 5-7.

Liao D W, Tang X S, Jiang Y N, Zhang N Z, Xia C. Cloning, expression and polyclonal antibodies production of Peking duck CD8α. Chinese Journal of Veterinary Medicine, 2008, 44(6): 5-7. (in Chinese)

[6]李  卫, 白家媛, 许媛媛, 谷长勤, 张万坡, 程国富, 陈  敏, 胡薛英. 麻鸭和樱桃谷鸭的CD3ε、CD4、CD8α基因ORF克隆及序列分析. 中国农业科学, 2009, 42(12): 4428-4434.

LI W, Bai J Y, Xu Y Y, Gu C Q, Zhang W P, Cheng G F, Chen M, Hu X Y. Cloning and sequence analyses of genes coding for CD3ε, CD4, CD8α of Sheldrake and Cherry Valley cuck. Scientia Agricultura Sinica, 2009, 42(12): 4428-4434. (in Chinese)

[7]Picchietti S, Guerra L, Buonocore F, Randelli E, Fausto A M, Abelli L. Lymphocyte differentiation in sea bass thymus: CD4 and CD8-α gene expression studies. Fish and Shell?sh Immunology, 2009, 27(6): 50-56.

[8]Duncan L G, Nair S V, Deane E M. The marsupial CD8 gene locus: molecular cloning and expression analysis of the alpha and beta sequences in the gray short-tailed opossum (Monodelphis domestica) and the tammar wallaby (Macropus eugenii). Veterinary Immunology and Immunopathology, 2009, 129(1/2): 14-27.

[9]Suetake H, Araki K, Akatsu K, Somamoto T, Dijkstra J M, Yoshiura Y, Kikuchi K, Suzuki Y. Genomic organization and expression of CD8α and CD8β genes in fugu Takifugu rubripes. Fish and Shell?sh Immunology, 2007, 23(5): 1107-1118.

[10]Xu S W, Wu J Y, Hu K S, Ping H L, Duan Z G, Zhang H F. Molecular cloning and expression of orange-spotted grouper (Epinephelus coioides) CD8a and CD8b genes. Fish and Shell?sh Immunology, 2011, 30: 600-608.

[11]Gao M H, Kavathas P B. Functional importance of the cyclic AMP response element-like decamer motif in the CD8 alpha promoter. The Journal of Immunology, 1993, 150(10): 4376-4385.

[12]Landry D B, Engel J D, Sen R. Functional GATA-3 binding sites within murine CD8 alpha upstream regulatory sequences. The Journal of Experimental Medicine, 2003, 178(3): 941-949.

[13]Feik N, Bilic I, Tinhofer J, Unger B, Littman D R, Ellmeier W. Functional and molecular analysis of the double-positive stage-specific CD8 enhancer E8III during thymocyte development. The Journal of Immunology, 2005, 174(3): 1513-1524.

[14]袁  舟. 稳定表达鸡CD4、CD8α细胞系的建立与鉴定[D]. 江苏: 扬州大学, 2008.

Yuan Z. Construction and identification of CD4, CD8α cell line stably expressing[D]. Jiangsu: Yangzhou University, 2008. (in Chinese)

[15]Huang Y H, Li N, Burt D W, Wu F. Genomic research and applications in theduck (Anas platyrhynchos). World’s Poultry Science Journal, 2008, 64(3): 329-341.

[16]张  晓, 罗  军, 李建华, 赵旺生, 王  伟. 西农萨能奶山羊脂肪酸合酶基因启动子的克隆及活性测定. 中国农业科学, 2010, 43(3): 640-647.

Zhang X, Luo J, LI J H, Zhao W S, Wang W. Cloning and activity determination of fatty acid synthase (FAS) gene promoter of Xinong Saanen Dairy goat. Scientia Agricultura Sinica, 2010, 43(3): 640-647. (in Chinese)

[17]Kawach Y, Otsuka F, Nakauchi H. Characterization of the mouse CD8 beta chain-encoding gene promoter region. Immunogenetics, 1996, 44(5): 358-365. 

[18]Rath B, Pandey R S, Debata P R, Maruyama N, Supakar P C. Molecular characterization of senescence marker protein-30 gene promoter: identification of repressor elements and functional nuclear factor binding sites. BMC Molecular Biology, 2008, 43(9): 1471-1480.

[19]张宁波, 井文倩, 李 奎. 猪SelS基因启动子区的克隆及序列分析. 畜牧兽医学报, 2011, 42(6): 759-764.

Zhang N B, Jing W Q, Li K. Cloning and sequence analysis of the promoter region of porcine SelS gene. Acta Veterinaria et Zootechnica Sinica, 2011, 42(6): 759-764. (in Chinese)

[20]余瑞元, 王燕峰, 徐长法.  CREB研究进展. 中国生物工程杂志, 2003, 13(1): 39-43.

Yu R Y, Wang Y F, Xu C F. Progress in the studies on CREB. Journal of Chinese Biotechnology, 2003, 13(1): 39-43. (in Chinese)

[21]Wen A Y, Sakamoto K M, Miller L S. The role of the transcription factor CREB in immune function. Journal of Immunology, 2010, 185(11): 6413-6419.

[22]Landry D B, Engel J D, Sen R. Functional GATA-3 binding sites within murine CD8α upstream regulatory sequences. Journal of Experimental Medicine, 1993, 178: 941-949.

[23]Liu W W, Zhang P J, Chen W W, Yu C X, Cui F A, Kong F, Zhang J Y, Jiang A L. Characterization of two functional NKX3.1 binding sites upstream of the PCAN1 gene that are involved in the positive regulation of PCAN1 gene transcription. BMC Molecular Biology, 2008, 9(45): 471-481.

[24]Winslow M M, Dayton T L, Verhaak R G W, Kim-Kiselak C, Snyder E L, Feldser D M, Hubbard D D, Dupage M J, Whittaker C A, Hoersch S, Yoon S, Crowley D, Bonson R T, Chiang D Y, Meyerson M, Jacks T. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature, 2011, 473: 101-104.

[25]张  澄, 王  萍. 转录因子CREB对细胞周期调控机制的研究进展. 中国细胞生物学学报, 2011, 33(5): 577-583.

Zhang C, Wang P. Progress in the regulation of transcription factor CREB on cell cycle. Chinese Journal of Cell Biology, 2011, 33(5): 577-583. (in Chinese)

[26]Hang M H, Chou C M, Hsieh Y C, Lu I C, Devi M K N, Chang J P, Kuo T F, Huang C J. Identification of 5′-upstream region of pufferfish ribosomal protein 129 gene a strong constitutive pmmoter to drive GFP expression in zebrafish. Biochemical and Biophysical Research Communications, 2004, 314: 249-258.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[5] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[6] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[7] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[8] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[9] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[10] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[11] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[12] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[13] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[14] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[15] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!