Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 2131-2138.doi: 10.3864/j.issn.0578-1752.2011.10.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

QTL Mapping for Drip Loss in a White Duroc × Erhualian F2 Resource Population

 ZHOU  Li-Hua, GUO  Yuan-Mei, DUAN  Yan-Yu, ZHANG  Zhi-Yan, YANG  Kai-Xuan, MA  Jun-Wu   

  1. 1.江西农业大学生物技术国家重点实验室培育基地,南昌 330045
  • Received:2010-12-27 Online:2011-05-15 Published:2011-03-22

Abstract: 【Objective】 A genome-wide scanning was performed to detect quantitative trait loci (QTL) for drip loss. 【Method】Using EZ-DripLoss and bag methods, drip loss of longissimus muscle (LM) and semimembranous muscle (SM) were measured at 24 and 48 h after sampling in 884 F2 animals from a White Duroc×Erhualian resource population. The correlations among 6 drip loss traits and between drip loss and other meat quality traits were analyzed by SAS version 9. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. QTL were identified by regression interval mapping using the online software of QTL Express. 【Result】 Correlation between the drip loss of two muscles or between drip loss obtained by two methods were high (r= 0.50-0.58, P<0.01) , and the correlation between consecutive measurements was higher (r=0.59-0.72, P<0.01). Drip loss was correlated with pH24h, Minolta L, subjective color score, marbling, moisture content and intramuscular fat content at moderate or low levels (r=0.09-0.35, P<0.05). A total of 9 QTLs were identified, including 6 QTLs for drip loss of LM on SSC2, SSC10 and SSC12; the one on SSC10 reached the 5% genome-wide significant level. Three QTLs for drip loss of SM were detected on SSC2, SSC6 and SSC17. 【Conclusion】 Four novel QTL on SSC6, SSC10, SSC12 and SSC17 were identified. Several QTL for drip loss overlapped with previously mapped QTL for pH or intramuscular fat content. None of QTL affected drip loss of both LM and SM. Erhualian founders carried favorable alleles (decreasing drip loss) at most of the detected QTL.

Key words: pig, longissimus muscle, semimebraneous muscle, drip loss, QTL mapping

[1]Forrest J, Morgan M, Borggaard C, Rasmussen A, Jespersen B, Andersen J. Development of technology for the early postmortem prediction of water holding capacity and drip loss in fresh pork. Meat Science, 2000, 55: 115-122.

[2]Karol A, Drogemuller C, Wimmers K, Schellander K, Leeb T. Molecular characterization of five porcine candidate genes for drip loss in pork. Animal Biotechnology, 2010, 21(2): 114-121.

[3]乔莉娟, 王立贤. 猪肉滴水损失不同测定方法的比较以及与猪肉品质和胴体性状的关系. 中国畜牧兽医, 2004, 31(11): 43.

Qiao L J, Wang L X. Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Acta Veterinaria et Zootechnica Sinica, 2004, 31(11): 43. (in Chinese)

[4]Mörlein D, Link G, Werner C, Wicke M. Suitability of three commercially produced pig breeds in Germany for a meat quality program with emphasis on drip loss. Meat Science, 2007, 77(4): 504-511.

[5]Suzuki K, Irie M, Kadowaki H, Shibata T, Kumagai M, Nishida A. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. Journal of Animal Science, 2005, 83(9): 2058-2065.

[6]Offer G, Knight P. The structural basis of water-holding in meat. Part 2: Drip losses. Developments in Meat Science Volume 4. New York: Elsevier Science Publishers, 1988: 173-243.

[7]Sellier P. Genetics of meat and carcass traits. The Genetics of the Pig. New York: CAB International, 1998: 463-510.

[8]Hu Z L, Fritz E R, Reecy J M. AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Research, 2007, 35: D604-D609.

[9]de Koning D J, Harlizius B, Rattink A P, Groenen M A, Brascamp E W,van Arendonk J A. Detection and characterization of quantitative trait loci for meat quality traits in pigs. Journal of Animal Science, 2001, 79(11): 2812-2819.

[10]Edwards D B, Ernst C W, Raney N E, Doumit M E, Hoge M D, Bates R O. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. Journal of Animal Sciecne, 2008, 86(2): 254-266.

[11]Kim J J, Rothschild M F, Beever J, Rodriguez-Zas S, Dekkers J C. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. Journal of Animal Sciecne, 2005, 83(6): 1229-1240.

[12]Kim J J, Zhao H, Thomsen H, Rothschild M F, Dekkers J C. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genetics Research, 2005, 85(3): 235-248.

[13]Liu G, Jennen D G, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers H J, Murani E, Ponsuksili S, Kim J J, Schellander K, Wimmers K. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Animal Genetics, 2007, 38(3): 241-252.

[14]Liu G, Kim J J, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen J L, Schellander K. Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mammalian Genome, 2008, 19(6): 429-438.

[15]Malek M, Dekkers J C, Lee H K, Baas T J, Prusa K, Huff-Lonergan E, Rothschild M F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mammalian Genome, 2001, 12(8): 637-645.

[16]Markljung E, Braunschweig M H, Karlskov-Mortensen P, Bruun C S, Sawera M, Cho I C, Hedebro-Velander I, Josell A, Lundstrom K, von Seth G, Jorgensen C B, Fredholm M, Andersson L. Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace II: meat quality traits. BMC Genetics, 2008. DOI: 10.1186/1471-2156-9-22.

[17]Ramos A M, Pita R H, Malek M, Lopes P S, Guimaraes S E, Rothschild M F. Analysis of the mouse high-growth region in pigs. Journal of Animal Breeding and Genetics, 2009, 126(5): 404-412.

[18]Rohrer G A, Thallman R M, Shackelford S, Wheeler T, Koohmaraie M. A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Animal Genetics, 2006, 37(1): 17-27.

[19]Stearns T M, Beever J E, Southey B R, Ellis M, McKeith F K, Rodriguez-Zas S L. Evaluation of approaches to detect quantitative trait loci for growth, carcass, and meat quality on swine chromosomes 2, 6, 13, and 18. II. Multivariate and principal component analyses. Journal of Animal Science, 2005, 83(11): 2471-2481.

[20]Thomsen H, Lee H K, Rothschild M F, Malek M, Dekkers J C. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. Journal of Animal Science, 2004, 82(8): 2213-2228.

[21]van Wijk H J, Dibbits B, Baron E E, Brings A D, Harlizius B, Groenen M A, Knol E F, Bovenhuis H. Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. Journal of Animal Science, 2006, 84(4): 789-799.

[22]Bertram H C, Petersen J S, Andersen H J. Relationship between RN− genotype and drip loss in meat from Danish pigs. Meat Science, 2000, 56(1): 49-55.

[23]Milan D, Jeon J T, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy P L, Chardon P, Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science, 2000, 288(5469): 1248-1251.

[24]Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, Plastow G, Rothschild M. Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics, 2001, 159(3): 1151-1162.

[25]Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien P J, MacLennan D H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 1991, 253(5018): 448-451.

[26]Guyonnet-Duperat V, Geverink N, Plastow G S, Evans G, Ousova O, Croisetiere C, Foury A, Richard E, Mormede P, Moisan M P. Functional implication of an Arg307Gly substitution in corticosteroid-binding globulin, a candidate gene for a quantitative trait locus associated with cortisol variability and obesity in pig. Genetics, 2006, 173(4): 2143-2149.

[27]Qiu H, Xu X, Fan B, Rothschild M F, Martin Y, Liu B. Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Molecular Biology Reports, 2010, 37(1): 629-636.

[28]Srikanchai T, Murani E, Wimmers K, Ponsuksili S. Four loci differentially expressed in muscle tissue depending on water-holding capacity are associated with meat quality in commercial pig herds. Molecular Biology Reports, 2010, 37(1): 595-601.

[29]Wimmers K, Murani E, Te Pas M F, Chang K C, Davoli R, Merks J W, Henne H, Muraniova M, da Costa N, Harlizius B, Schellander K, Boll I, Braglia S, de Wit A A, Cagnazzo M, Fontanesi L, Prins D, Ponsuksili S. Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Animal Genetics, 2007, 38(5): 474-484.

[30]Ciobanu D C, Bastiaansen J W, Lonergan S M, Thomsen H, Dekkers J C, Plastow G S, Rothschild M F. New alleles in calpastatin gene are associated with meat quality traits in pigs. Journal of Animal Science, 2004, 82(10): 2829-2839.

[31]薛慧良, 徐来祥. 猪钙蛋白酶抑制蛋白基因的基因型与肉质性状的关联性分析. 中国生物化学与分子生物学报, 2009, 25(7): 615-619.

Xue H L, Xu L X. Calpastatin genotype is associated with the meat quality traits in pigs. Chinese Journal of Biochemistry and Molecular Biololgy, 2009, 25(7): 615-619. (in Chinese)

[32]Ponsuksili S, Jonas E, Murani E, Phatsara C, Srikanchai T, Walz C, Schwerin M, Schellander K, Wimmers K. Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics, 2008, 9: 367.

[33]兰旅涛, 郭源梅, 陈从英, 杨  斌, 毛辉荣, 任  军, 周利华. 在白色杜洛克×二花脸F2 资源家系中定位影响猪210 日龄8 个体尺性状的QTL. 中国农业科学, 2010, 43(15): 3214-3220.

Lan L T, Guo Y M, Chen C Y, Yang B, Mao H R, Ren J, Zhou L H. QTL mapping for eight traits related to porcine body dimensions at 210 days in a White Duroc × Erhualian F2 resource population. Scientia Agricultura Sinica, 2010, 43(15): 3214-3220. (in Chinese)

[34]赵书广. 中国养猪大成. 北京: 中国农业出版社, 2001: 126-127.

Zhao S G. China Pig Breeding. Beijing: China Agriculture Press, 2001: 126-127. (in Chinese)

[35]Guo Y, Mao H, Ren J, Yan X, Duan Y, Yang G, Ren D, Zhang Z, Yang B, Ouyang J, Brenig B, Haley C, Huang L. A linkage map of the porcine genome from a large-scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates. Animal Genetics, 2009, 40(1): 47-52.

[36]Huang L S, Ma J W, Ren J, Ding N S, Guo Y M, Ai H S, Li L, Zhou L H, Chen C Y. Genetic variations of the porcine PRKAG3 gene in Chinese indigenous pig breeds. Genetics Selection Evolution, 2004, 36(4): 481-486.

[37]肖石军, 周利华, 李  琳, 李  堪, 杨广成, 徐  娜, 丁能水. 我国部分引进猪种IGF2 和RYRl 基因主效位点的遗传变异分析. 江西农业大学学报, 2007, 29(6): 862-865.

Xiao S J, Zhou L H, Li L, Li K, Yang G C, Xu N, Ding N S. Genetic variation of IGF2 and RYR1 causative mutations in some imported pig breeds. Acta Agriculture Universitatis Jiangxiensis, 2007, 29(6): 862-865. (in Chinese)

[38]Haley C S, Knott S A, Elsen J M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics, 1994, 136(3): 1195-1207.

[39]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3): 963-971.

[40]Visscher P M, Thompson R, Haley C S. Confidence intervals in QTL mapping by bootstrapping. Genetics, 1996, 143(2): 1013-1020.

[41]Duan Y Y, Ma J W, Yuan F, Huang L B, Yang K X, Xie J P, Wu G Z, Huang L S. Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc × Chinese Erhualian resource population. Journal of Animal Science, 2009, 87(1): 9-16.

[42]Ma J, Ren J, Guo Y, Duan Y, Ding N, Zhou L, Li L, Yan X, Yang K, Huang L, Song Y, Xie J, Milan D. Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc x Chinese Erhualian resource population. Animal Genetics, 2009, 40(5): 637-647.

[43]刘冠勇, 罗  欣. 影响肉与肉制品系水力因素之探讨. 肉类研究, 2000(3): 16-18.

Liu G Y, Luo X. A study on factors affecting the water holding capacity of meat and meat products. Meat Research, 2000(3): 16-18. (in Chinese)

[44]Qiao R M, Ma J W, Guo Y M, Duan Y Y, Zhou L H, Huang L S. Validation of a paternally imprinted QTL affecting pH24h distinct from PRKAG3 on SSC15. Animal Genetics, 2010: DOI: 10.1111/ j.1365-2052.2010.02133.x.

[45]李长强, 闫益波, 高士争. 猪的肌内脂肪生成及其调控. 饲料工业, 2007, 28(7): 26-29.

Li C Q, Yan Y B, Gao S Z. The generation of IMF and it’s influencing factors in porcine. Feed Industry, 2007, 28(7): 26-29. (in Chinese)

[46]周光宏. 肉食家畜不同部位肌肉组分其系水力的比较性研究. 南京农业大学学报, 1989, (4): 84-87.

Zhou G H. Comparison of components and water holding capacities of selected muscles of meat animals. Journal of Nanjing Agricultural University, 1989(4): 84-87. (in Chinese)

[47]Otto G, Roehe R, Looft H, Thoelking L, Kalm E. Comparison of different methods for determination of drip loss and their relationships to meat quality and carcass characteristics in pigs. Meat Science, 2004, 68(3): 401-409.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[3] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[4] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[5] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[6] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[7] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[10] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[11] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[12] HU RongRong,DING ShiJie,GUO Yun,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,TANG ChangBo,ZHOU GuangHong. Effects of Trolox on Proliferation and Differentiation of Pig Muscle Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(24): 5290-5301.
[13] TANG ZhenShuang,YIN Dong,YIN LiLin,MA YunLong,XIANG Tao,ZHU MengJin,YU Mei,LIU XiaoLei,LI XinYun,QIU XiaoTian,ZHAO ShuHong. To Evaluate the “Two-Step” Genomic Selection Strategy in Pig by Simulation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4677-4684.
[14] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[15] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!