Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3368-3376.doi: 10.3864/j.issn.0578-1752.2011.16.009

• HORTICULTURE • Previous Articles     Next Articles

Construction and Analysis of Eggplant Thermo-Sensitive Parthenocarpy SSH cDNA Library

ZHANG  Ying, CHEN  Yu-Hui, ZHANG  Zhen-Xian, FANG  Zhi-Yuan, LIAN  Yong, LIU  Fu-Zhong   

  1. 1. 中国农业大学农学与生物技术学院
    2. 中国农业科学院蔬菜花卉研究所
  • Received:2011-01-17 Revised:2011-05-18 Online:2011-08-15 Published:2011-05-18

Abstract: 【Objective】The aim of this experiment is to investigate the parthenocarpy-related genes in eggplant, and study the parthenocarpic molecular mechanism. 【Method】One forward and one reverse cDNA library were constructed by suppression subtractive hybridization (SSH). All the materials are from the same facultative parthenocapic line D-10, including the parhtenocarpic ovaries and fruits at low temperature, and the unparthenocarpic ovaries and fruits at optimal temperature. The positive clones of the libraries were sequenced randomly, analysed by BLAST, classified by GO and analysed by real-time quantitative PCR. 【Result】A total of 2 347 positive clones in the forward and reverse libraries were obtained. After sequenced and assembled, 1 248 high-quality unigenes were gotten. Blast analysis was made with no redundant database, 1 109 of these unigenes were homologous to known genes, and 139 could be new genes. In Gene Ontology database, 527 unigenes were assigned functional description, and 206, 445, 361 ESTs were, respectively, involved in cell component, molecular function and biological process. According to classification results, the difference between parthenocarpy and unparthenocarpy almost existed in intracellular region. Parthenocarpy may be regulated by some factors and kinases, and most of the differentially expressed genes were involved in basic biological processes.【Conclusion】The SSH cDNA libraries were successfully constructed. Three parthenocarpic related unigenes, including MADS-box gene, pistil extensin-like protein and fruit-ripening gene, were obtained and the possible mechanism was analyzed.

Key words: eggplant, parthenocarpy, SSH, EST

[1]Romano D, Leonardi C. The responses of tomato and eggplant to different minimum air temperatures. Acta Horticulturae, 1994, 366:57-66.

[2]Nothmann J, Koller D. Effects of growth regulators on fruit and seed development in eggplant (Solanum melongena L.). Journal of Horticultural Science (UK) , 1975, 50: 23-27.

[3]Acciarri N, Restaino F, Vitelli G, Perrone D, Zottini M, Pandolfini T, Spena A, Rotino G L. Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnology, 2002, 2: 4-10.

[4]Saito T, Yoshida T, Morishita M. Breeding strategy for labor-saving cultivation in fruit vegetables. Proceedings of Vegetable and Tea Science, 2005, 2: 29-35.

[5]Boyac  H, Oguz A, Ünlü M, Denizer B, Abak K. Growth, pollen quantity and quality and fruit characteristics of some pathenocarpic and non-parthenocarpic eggplant in unheated greenhouse. Acta Horticulturae, 2009, 807(1): 239-244.

[6]Restaino F, Perrone D, Correale A. New parthenocarpic genotypes of eggplant suitable for greenhouse cultivation.// Palloix A, Daunay M C. Ed. Xth meeting on genetics and breeding of capsicum and eggplant. Paris: Place published:INRA Paris,1998: 273.

[7]肖蕴华, 吴绍岩. 茄子单性结实种质材料9101的发现. 中国蔬菜, 1998(2): 21.

Xiao Y H, Wu S Y. Discovery of parthenocarpy 9101 in eggplant. China Vegetables, 1998(2): 21.(in Chinese)

[8]田时炳, 刘君绍, 皮  伟, 赵晓凤, 杨治元. 低温下茄子单性结实观察试验初报. 中国蔬菜, 1999(5): 30.

Tian S B, Liu J S, Pi W, Zhao X F, Yang Z Y. Eggplant parthenocarpy view test preliminary study. China Vegetables, 1999(5): 30. (in Chinese)

[9]Liu F Z, Lian Y, Chen Y H. Study on characteristics of parthenocarpic germplasm of eggplant. IPGRI News Letter for Asia, The Pacific and Oceania, 2004(45): 20-22.

[10]刘富中, 连 勇,陈钰辉,宋 燕. 温度和蕾期去雄及去柱头处理对茄子单性结实性的影响. 园艺学报,2005, 32(6): 1021-1025.

Liu F Z, Lian Y, ChenY H, Song Y. The effect of temperature and bud stage treatment on parthenocarpic gene expression of eggplant. Acta Horticulturae Sinica, 2005, 32(6): 1021-1025. (in Chinese)

[11]Kikuchi K, Honda I, Matsuo S, Fukuda M, Saito T: Stability of fruit set of newly selected parthenocarpic eggplant lines. Scientia Horticulturae, 2008, 115(2): 111-116.

[12]张  映,刘富中,陈钰辉,连  勇. 低温下茄子单性结实特性的研究. 中国蔬菜, 2009 (2) : 16- 20.

Zhang Y,Liu Fu Z, Chen Y H, Lian Y. Characteristics of eggplant parthenocarpy at low temperature. China Vegetables, 2009 (2) : 16- 20. (in Chinese)

[13]Koga T, Shimomura K, Sueyoshi T, Hamachi Y. Effects of seasons on the fruit setting and fruit growth of parthenocarpic eggplant lines in forcing culture. Horticultural Research (Japan), 2009, 8(2): 149-153.

[14]Koga T, Shimomura K, Sueyoshi T, Mitsui H, Hamachi Y. The relationship between parthenocarpy and yield and yield-related traits in eggplant. Horticultural Research (Japan), 2010, 9(3): 273-277.

[15]王  静, 张伟春, 魏毓棠, 何  明, 山  春. 茄子单性结实的果实内可溶性糖、蛋白质含量变化的研究. 辽宁农业科学, 2005(1): 38-39.

Wang J, Zhang W C, Wei Y T, He M, Shan C. Study on Soluble sugar, protein content in eggplant parthenocarpic fruits. Liaoning Agricultural Sciences, 2005(1): 38-39. (in Chinese)

[16]张伟春, 魏毓棠, 王  静, 何  明, 唐  萍, 杜雪晶. 茄子子房内源激素含量与单性结实的关系. 沈阳农业大学学报, 2009, 40(1): 3-6.

Zhang W C, Wei Y T, Wang J, He M, Tang P, Du X J. The Relationship between endogenous hormone and parthenocarpy in the eggplant fruits. Journal of Shenyang Agricultural University, 2009, 40(1):3-6. (in Chinese)

[17]武彦荣, 郭秀林, 高秀瑞, 李  冰, 潘秀清. 茄子单性结实系开花期内源激素含量的变化. 河北农业科学, 2009, 13(9): 14-16.

Wu Y R, Guo X L, Gao X R, Li B, Pan X Q. Changes of endogenous hormones contents during flowering stage of parthenocarpic eggplant. Journal of Hebei Agricultural Sciences, 2009, 13(9): 14-16. (in Chinese)

[18]张伟春, 魏毓棠, 王  静, 何  明, 唐  萍. 茄子单性结实与非单性结实品系胚胎发育及果实解剖结构的观察. 沈阳农业大学学报, 2008,39(5): 534-537.

Zhang W C, Wei Y T, Wang J, He M, Tang P. Observation of embryo development and fruit anatomic structure of parthenogenetic and non-parthenogenetic eggplants. Journal of Shenyang Agricultural University, 2008, 39(5): 534-537. (in Chinese)

[19]田时炳,刘富中,王永清,罗章勇,陈义康,刘君绍,连 勇. 茄子单性结实性的遗传分析. 园艺学报, 2003,30 (4): 413-416.

Tian S B, Liu F Z, Wang Y Q, Luo Z Y, Chen Y K, Liu J S, Lian Y. Genetics analysis of parthenocarpy in eggplant. Acta Horticulturae Sinica, 2003,30(4): 413-416.(in Chinese)

[20]刘富中, 万  翔, 陈钰辉, 连  勇, 宋  明. 茄子单性结实基因的遗传分析及AFLP分子标记. 园艺学报, 2008,35(9): 1305-1309.

Liu F Z, Wan X, Chen Y H, Lian Y, Song M. Inheritance of the eggplant parthenocarpy and AFLP molecular marker. Acta Horticulturae Sinica, 2008,35 (9): 1305-1309. (in Chinese)

[21]Saito T, Yoshida T, Monma S, Matsunaga H, Sato T, Saito A, Yamada T. Development of the parthenocarpic eggplant cultivar ‘Anominori’. Japan Agricultural Research Quarterly, 2009, 43(2): 123-127.

[22]杨国栋, 李海涛, 吕书文, 张海艳. 单性结实茄子新品种辽茄15号的选育. 中国蔬菜,2009(10): 76-78.

Yang G D, Li H T, Lü W S, Zhang H Y. A new parthenocarpic eggplant F1 hybrid-‘Liaoqie N0.15’. China Vegetables, 2009(10): 76-78. (in Chinese)

[23]Shimomura K, Koga T, Sueyoshi T, Hamachi Y. Development and suitability of DNA markers for breeding of parthenocarpic eggplant. Horticultural Research (Japan), 2010, 9(1): 13-17.

[24]Rotino G L, Perri E, Zottini M, Sommer H, Spena A. Genetic engineering of parthenocarpic plants. Nature Biotechnology, 1997, 15(13): 1398-1401.

[25]Cooper W, Jia L, Goggin F. Acquired and R-gene-mediated resistance against the potato aphid in tomato. Journal of Chemical Ecology, 2004, 30(12): 2527-2542.

[26]师红雯, 黄  原. 基因产物功能分类系统. 生命的化学, 2006, 26(4): 366-369.

Shi H W, Huang Y. The functional classification system of gene p roducts. Chemistry of Life,  2006, 26 (4) : 366-369. ( in Chinese)

[27]Ampomah-Dwamena C, Morris B, Sutherland P, Veit B, Yao J. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiology, 2002, 130(2): 605-617.

[28]Schultz C J, Hauser K, Lind J L, Atkinson A H, Pu Z Y, Anderson M A, Clarke A E. Molecular characterisation of a cDNA sequence encoding the backbone of a style-specific 120 kDa glycoprotein which has features of both extensins and arabinogalactan proteins. Plant Molecular Biology, 1997, 35(6): 833-845.

[29]Cordes S, Deikman J, Margossian L, Fischer R. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. The Plant Cell Online,1989, 1(10): 1025-1034.

[30]陈学好, 王  佳, 徐  强, 嵇  怡, 梁国华. 一个与黄瓜单性结实基因连锁的ISSR标记. 分子植物育种, 2008, (1): 85-88.

Chen X H, Wang J, Xu Q, Ji Y, Liang G H. An ISSR marker linked to the parthenocarpic gene of cucumber. Molecular Plant Breeding, 2008, (1): 85-88. (in Chinese)

[31]Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell Online, 2003, 15(11): 2603-2611.

[32]Lind J, Bacic A, Clarke A, Anderson M. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. The Plant Journal, 1994, 6(4): 491-502.

[33]Beecher B, Zurek D, McClure B. Effects of RNases on rejection of pollen from Nicotiana tabacum and N. plumbaginifolia. Sexual Plant Reproduction, 2001, 14(1): 69-76.

[34]Gomord V, Faye L. Posttranslational modification of therapeutic proteins in plants. Current Opinion in Plant Biology, 2004, 7(2): 171-181.

[35]Serpe M, Nothnagel E. Arabinogalactan-proteins in the multiple domains of the plant cell surface. Advances in Botanical Research, 1999, 30: 207-289.

[36]Wu H, Wang H, Cheung A. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell, 1995, 82(3): 395-403.

[37]Hancock N C, Kent L, McClure B. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. The Plant Journal, 2005, 43(5): 716-723.

[38]McClure B, Gray J, Anderson M, Clarke A. Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature, 1990, 347(6265): 757-760.

[39]DellaPenna D, Lincoln J, Fischer R, Bennett A. Transcriptional analysis of polygalacturonase and other ripening associated genes in Rutgers, rin, nor, and Nr tomato fruit. Plant Physiology, 1989, 90(4): 1372-1377.

[40]Sadanandom A, Poghosyan Z, Fairbairn D, Murphy D. Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in Arabidopsis. Plant Physiology, 2000, 123(1): 255-264.

[41]Berlett B S, Stadtman E R. Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 1997, 272(33): 20313-20316.

[42]Dann M S, Pell E J. Decline of activity and quantity of ribulose bisphosphate carboxylase/oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiology, 1989, 91(1): 427-432.
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[3] XU Qian, WANG Han, MA Sai, HU QiuHui, MA Ning, SU AnXiang, LI Chen, MA GaoXing. Inhibition and Interaction of Pleurotus eryngii Polysaccharide and Its Digestion Products on Starch Digestive Enzymes [J]. Scientia Agricultura Sinica, 2023, 56(2): 357-367.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[6] JIANG Hui,FENG Yu,QIN YuMing,ZHU LiangQuan,FAN XueZheng,DING JiaBo. Method Improvement and Its Application of Micro Complement Fixation Test for Brucellosis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1676-1684.
[7] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[8] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[9] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[10] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[11] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[12] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[13] GUO Yan, ZHANG ShuHang, LI Ying, ZHANG XinFang, WANG GuangPeng. Diversity Analysis of 36 Leaf Phenotypic Traits of Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(5): 991-1009.
[14] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[15] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!