Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (2): 441-458.doi: 10.3864/j.issn.0578-1752.2026.02.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Atlas Construction and Regulatory Analysis of Duck Testicular Cell Development

TAO ZhiYun1, XU WenJuan1, LU LiZhi2, SONG WeiTao1, ZHANG ShuangJie1, LIU HongXiang1, WANG ZhiCheng1, GU HaoTian1, ZHU ChunHong1(), LI HuiFang1()   

  1. 1 Jiangsu Institute of Poultry Sciences, Yangzhou 225125, Jiangsu
    2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2025-02-27 Accepted:2025-11-30 Online:2026-01-16 Published:2026-01-22
  • Contact: ZHU ChunHong, LI HuiFang

Abstract:

【Objective】 The aim of this study was to analyze the cellular heterogeneity of duck testes before and after maturation using single-cell sequencing technology, to construct a developmental map of duck testicular cells, and to further reveal the process and regulatory mechanisms of testicular maturation. 【Method】 Each three testes samples from 10 week (immature testis group, IMT) and 23 week old (mature testis group, MT) ducks were collected, and single-cell suspensions were prepared for single-cell sequencing. The quality control, standardization, dimensionality reduction, and cluster analysis on the obtained sequencing data were performed to construct testicular maps of ducks at different developmental stages. Cell subpopulations were annotated, intergroup differences were analyzed, and key regulatory genes and signaling pathways of testicular development and maturation were screened. 【Result】 More than 30 million high-quality sequencing data were obtained from the each six samples. After quality control, 54 702 valid cells were obtained (27 756 in the IMT group and 26 946 in the MT group). Through cell clustering and identification of marker genes, 21 cell sub-populations were successfully identified, including 10 germ cell sub-populations and 11 somatic cell sub- populations. During the development and maturation of duck testes, spermatogonial stem cells, spermatogonia, primary spermatocytes, and Sertoli cells type 1 and type 3 decreased significantly, while intermediate spermatocytes, secondary spermatocytes, round spermatids, elongated spermatids, and Sertoli cells type 2 and type 4 increased significantly. Differential gene analysis identified 4 495 differential genes (1 737 up-regulated and 2 758 down-regulated). Among them, genes such as Gm614, SPATC1, TSSK6, ZIC1, PHF7, Armc12 and FAM166C were significantly up-regulated in germ cells, and genes such as PKIA, SNX22, Wnt6, LAMA1, SCN4B, CDH6 and FAM110C were significantly down-regulated in Sertoli cells. Functional enrichment analysis showed that the top 20 GO terms all belonged to the cell component category. KEGG analysis indicated that signaling pathways such as protein processing in the endoplasmic reticulum and cellular senescence played key regulatory roles. Furthermore, protein-protein interaction network analysis of differentially expressed genes of these two signaling pathways showed that SEC63 regulated the protein processing process in the endoplasmic reticulum through interactions with ERLEC1, AMFR and RAD23B, etc., while CDK6 might regulate the cellular senescence signaling pathway through interactions with CHEK2, CCNA2, CCNA1 and CDC25, etc. 【Conclusion】 This study constructed the single-cell transcription map of duck testes before and after maturity for the first time, revealed the dynamic change rules of cell sub-populations during testicular development, discovered a large number of differentially expressed genes, and suggested that SEC63 and CDK6 might play important roles in the testicular maturation mechanism by regulating the endoplasmic reticulum stress response and cell cycle progression, respectively.

Key words: duck, testis, single-cell sequencing, atlas construction, regulatory analysis

Table 1

Statistics of sample data"

样本Sample Reads数
Number of Reads
有效
Barcodes
Valid Barcodes (%)
测序饱和度
Sequencing Saturation (%)
用于比对的Barcode序列中质量分数≥30的碱基百分比
Q30 Bases in Barcodes (%)
用于比对的Reads中质量分数≥30的碱基百分比
Q30 Bases in RNA Read (%)
UMI序列中质量分数≥于30的碱基百分比
Q30 Bases in UMI (%)
过滤前
细胞数量
Before filter number of cells
过滤后
细胞数量
After filter number of cells
检测到的
总基因数
Total genes detected
IMT-1 332505029 94.20 76.30 95.70 94.60 96.90 7125 6567 21063
IMT-2 340882637 93.80 57.80 96.60 94.70 97.50 14059 12446 21483
IMT-3 336445006 94.00 67.90 96.20 94.20 97.20 9518 8743 21282
MT-1 327578469 97.20 44.80 96.60 91.30 96.20 11258 10109 21399
MT-2 343434190 97.30 48.20 96.80 92.50 96.40 9864 9010 21475
MT-3 300961645 96.90 47.40 96.80 92.10 96.30 8471 7827 21308

Fig. 1

Construction of duck testicular atlas and analysis of differentially expressed genes upregulated in subgroups"

Fig. 2

Maker gene recognition of duck testicular cell subpopulations A: Violin plots of DDX4 expression in several germ cell subpopulations; B: UMAP map of marker gene recognition for various cell subpopulations; C: Bubble plot of marker gene expression in various germ cell subpopulations; D: Development trajectory maps of identified seven reproductive cell subpopulations; E: Bubble plot of marker gene expression in various subpopulations of somatic cells"

Table 2

Differences in testicular cell counts and cell ratios among different subpopulations of testes at different developmental stages"

类群
Cluster
细胞类型
Cell type
未成熟睾丸组 Immature testis, IMT 成熟睾丸组 Mature testis, MT
细胞数
Cell count
细胞比率
Cell ratio (%)
细胞数
Cell count
细胞比率
Cell ratio (%)
9 精原干细胞 Spermatogonial stem cell 1880 6.77 1070 3.97
0 精原细胞 Spermatogonia 4878 17.57 1599 5.93
10 初级精母细胞 Early spermatocytes 1383 4.98 549 2.04
6 中间型精母细胞 Middle spermatocytes 444 1.60 3582 13.29
2 次级精母细胞 Later spermatocytes 44 0.16 5830 21.64
15 圆形精子细胞 Round spermatids 12 0.04 339 1.26
11 长形精子细胞 Elongated spermatids 7 0.03 1497 5.56
3 未鉴定的生殖细胞1 Unidentified cell 1 2266 8.16 3199 11.87
5 未鉴定的生殖细胞2 Unidentified cell2 3652 13.16 493 1.83
7 未鉴定的生殖细胞3 Unidentified cell 3 2765 9.96 1132 4.20
8 支持细胞1型 Sertoli cell 3 4492 16.18 1832 6.80
4 支持细胞2型 Sertoli cell 2 1305 4.70 3902 14.48
1 支持细胞3型 Sertoli cell 1 2561 9.23 1157 4.29
17 支持细胞4型 Sertoli cell 4 1 0 194 0.72
12 T细胞T cell 737 2.66 58 0.22
13 巨噬细胞Macrophages 603 2.17 78 0.29
14 管周肌样细胞 Peritubular myoid cell 333 1.20 160 0.59
16 内皮细胞Endothelial cell 123 0.44 121 0.45
18 间质细胞Leydig cell 98 0.35 80 0.30
19 红细胞Red cell 107 0.39 22 0.08
20 粒细胞Granulocyte 65 0.23 52 0.19

Fig. 3

Analysis of differentially expressed genes in duck testicular cells at different developmental stages A: Volcanic map of differentially expressed genes between IMT and MT groups; B: Bubble plot of the expression of TOP20 differentially expressed genes in various subpopulations of testicular cells"

Table 3

List of TOP20 differentially expressed genes in duck testicular cells at different development stages"

基因ID
Gene ID
基因名称
Gene name
差异倍数
log2FC
描述
Description
功能
Function
ncbi_113844722 Gm614 11.98 非典型蛋白CXorf65同源异构体X2
Uncharacterized protein CXorf65 homolog isoform X2
-
ncbi_119716153 SPATC1 11.15 精子发生和中心体相关1
Spermatogenesis and centriole associated 1
.预测能够实现r-微管蛋白结合活性
It is predicted to be capable of r-tubulin binding activity
ncbi_106017448 ncbi_106017448 10.38 - -
ncbi_113844195 TSSK6 10.34 睾丸特异性丝氨酸/苏氨酸蛋白激酶6
Ttestis-specific serine/threonine-protein kinase 6
与雄性不育和精子形态异常有关
It is associated with male sterility and abnormal sperm morphology
ncbi-101805470 ZIC1 10.14 锌指蛋白ZIC 1
Zinc finger protein ZIC 1
在中枢神经系统器官发生的早期阶段以及脊髓背侧发育和小脑成熟过程中起着重要作用
It plays an important role in the early stages of central nervous system organogenesis, as well as in dorsal spinal cord development and cerebellar maturation
ncbi_101798232 PHF7 9.98 PHD手指蛋白7
PHD finger protein 7
在支持细胞中表达,与精子发生的转录调控有关
It is expressed in Sertoli cells and is associated with the transcriptional regulation of spermatogenesis
ncbi_113839899 Armc12 9.98 含犰狳重复序列蛋白12异构体X2
Armadillo repeat-containing protein 12 isoform X2
参与细胞生长和精子线粒体鞘组装的正向调节,与生精失败有关
It is involved in the positive regulation of cell growth and sperm mitochondrial sheath assembly, and is associated with spermatogenic failure
ncbi_101794437 ncbi_101794437 9.9 - -
ncbi_119716622 ncbi_119716622 9.77 - -
ncbi_101789599 FAM166C 9.74 UPF0573蛋白C2orf70同源物
UPF0573 protein C2orf70 homolog
位于轴丝微管内,预测与有鞭毛的精子运动有关
It is located within the axonemal microtubules and predicted to be associated with flagellated sperm motility
ncbi_101800754 PKIA -5.11 cAMP依赖性蛋白激酶抑制剂α
cAMP-dependent protein kinase inhibitor alpha
与PKA的Cα和Cβ催化亚基相互作用并抑制其活性
It interacts with and inhibits the activity of the Cα and Cβ catalytic subunits of PKA
ncbi_101799487 SNX22 -5.16 排序连接蛋白22
Sorting nexin-22
可能在细胞内运输中发挥作用
It may play a role in intracellular transport
ncbi_101803438 Wnt6 -5.84 蛋白Wnt-6亚型X1
Protein Wnt-6 isoform X1
参与控制未分化精原干细胞的增殖
It is involved in controlling the proliferation of undifferentiated spermatogonial stem cells
ncbi_106016481 ncbi_106016481 -5.87 - -
ncbi_101791570 LAMA1 -6.19 层粘连蛋白亚基α-1
Llaminin subunit alpha-1
通过高亲和力受体与细胞结合,被认为通过与其他细胞外基质成分相互作用,在胚胎发育过程中介导细胞附着、迁移和组织到组织中
It binds to cells via high-affinity receptors and is thought to mediate cell attachment, migration, and organization into tissues during embryonic development by interacting with other extracellular matrix components
ncbi_101795249 SCN4B -6.67 X1钠通道亚基β-4亚型X1
Sodium channel subunit beta-4 isoform
调节通道门控动力学
It regulates channel gating dynamics
ncbi_113843439JIGNY ncbi_113843439 -6.96 未鉴定蛋白LOC113843439 Uncharacterized protein LOC113843439 -
ncbi_119715879 CDH6 -6.99 钙粘蛋白-6
Cadherin-6
在细胞分化和形态发生中起关键作用
It plays a critical role in cell differentiation and morphogenesis
ncbi_113845450 ncbi_113845450 -7.37 - -
ncbi_101796927 FAM110C -7.96 FAM110C蛋白
Protein FAM110C
激活a-微管蛋白活性。参与细胞迁移的正向调控
It activates α-tubulin activity and participates in the positive regulation of cell migration

Fig. 4

Function analysis of differentially expressed genes in duck testicular cells at different developmental stages A: GO analysis of significant differences genes between IMT and MT groups; B: KEGG analysis of significant differences genes between IMT and MT groups; C: Protein-protein network mapping of differentially expressed genes of protein processing in endoplasmic reticulum signaling pathway; D: Protein-protein network mapping of differentially expressed genes of the cellular senescence signaling pathway"

[1]
马荆鄂, 熊信威, 周敏, 吴斯琪, 韩甜, 饶友生, 王樟凤, 许继国. 基于垂体全长转录组测序分析鸡睾丸性状相关基因 中国农业科学, 2024, 57(20): 4130-4147. doi: 10.3864/j.issn.0578-1752.2024.20.017

doi: 10.3864/j.issn.0578-1752.2024.20.017
MA J E, XIONG X W, ZHOU M, WU S Q, HAN T, RAO Y S, WANG Z F, XU J G. Full-length transcriptomic analysis of chicken pituitary reveals candidate genes for testicular trait. Scientia Agricultura Sinica, 2024, 57(20): 4130-4147. doi: 10.3864/j.issn.0578-1752.2024.20.017 (in Chinese)

doi: 10.3864/j.issn.0578-1752.2024.20.017
[2]
卜治文, 陆璐洋, 白顺, 康振龙, 韩圣林, 叶岚. 精子发生转录调控机制的研究进展. 中国细胞生物学学报, 2024, 46(4): 595-606.
BU Z W, LU L Y, BAI S, KANG Z L, HAN S L, YE L. Advances in transcriptional regulation of spermatogenesis. Chinese Journal of Cell Biology, 2024, 46(4): 595-606. (in Chinese)
[3]
CHEN Y, ZHENG Y X, GAO Y, LIN Z, YANG S M, WANG T T, WANG Q, XIE N N, HUA R, LIU M X, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Research, 2018, 28(9): 879-896.

doi: 10.1038/s41422-018-0074-y pmid: 30061742
[4]
WANG M, LIU X X, CHANG G, CHEN Y D, AN G, YAN L Y, GAO S, XU Y W, CUI Y L, DONG J, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell, 2018, 23(4): 599-614.e4.

doi: S1934-5909(18)30392-8 pmid: 30174296
[5]
LUKASSEN S, BOSCH E, EKICI A B, WINTERPACHT A. Single-cell RNA sequencing of adult mouse testes. Scientific Data, 2018, 5: 180192.

doi: 10.1038/sdata.2018.192
[6]
GREEN C D, MA Q Y, MANSKE G L, SHAMI A N, ZHENG X N, MARINI S, MORITZ L, SULTAN C, GURCZYNSKI S J, MOORE B B, et al. A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-seq. Developmental Cell, 2018, 46(5): 651-667.e10.

doi: S1534-5807(18)30636-1 pmid: 30146481
[7]
DI PERSIO S, NEUHAUS N. Human spermatogonial stem cells and their niche in male (in)fertility: Novel concepts from single-cell RNA-sequencing. Human Reproduction, 2023, 38(1): 1-13.

doi: 10.1093/humrep/deac245
[8]
DONG F, PING P, MA Y, CHEN X F. Application of single-cell RNA sequencing on human testicular samples: A comprehensive review. International Journal of Biological Sciences, 2023, 19(7): 2167-2197.

doi: 10.7150/ijbs.82191 pmid: 37151874
[9]
高源. 安格斯牛睾丸组织非编码RNA鉴定及单细胞转录图谱绘制[D]. 杨凌: 西北农林科技大学, 2021.
GAO Y. Non-coding RNA identification and single-cell transcriptome atlas of angus bull testis[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[10]
WANG X D, PEI J, XIONG L, GUO S K, CAO M L, KANG Y D, DING Z Q, LA Y F, LIANG C N, YAN P, GUO X. Single-cell RNA sequencing reveals atlas of yak testis cells. International Journal of Molecular Sciences, 2023, 24(9): 7982.

doi: 10.3390/ijms24097982
[11]
YANG H, MA J Y, WAN Z, WANG Q, WANG Z B, ZHAO J, WANG F, ZHANG Y L. Characterization of sheep spermatogenesis through single-cell RNA sequencing. FASEB Journal, 2021, 35(2): e21187.

doi: 10.1096/fsb2.v35.2
[12]
YU X W, LI T T, DU X M, SHEN Q Y, ZHANG M F, WEI Y D, YANG D H, XU W J, CHEN W B, BAI C L, et al. Single-cell RNA sequencing reveals atlas of dairy goat testis cells. Zoological Research, 2021, 42(4): 401-405.
[13]
ZHANG L K, LI F Y, LEI P P, GUO M, LIU R F, WANG L, YU T Y, LV Y H, ZHANG T, ZENG W X, LU H Z, ZHENG Y. Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis. Journal of Animal Science and Biotechnology, 2021, 12(1): 122.

doi: 10.1186/s40104-021-00638-3 pmid: 34872612
[14]
YAN Z Q, WANG P F, YANG Q L, GUN S B. Single-cell RNA sequencing reveals an atlas of Hezuo pig testis cells. International Journal of Molecular Sciences, 2024, 25(18): 9786.

doi: 10.3390/ijms25189786
[15]
ESTERMANN M A, WILLIAMS S, HIRST C E, ROLY Z Y, SERRALBO O, ADHIKARI D, POWELL D, MAJOR A T, SMITH C A. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo. Cell Reports, 2020, 31(1): 107491.

doi: 10.1016/j.celrep.2020.03.055
[16]
HICKFORD D E, FRANKENBERG S, PASK A J, SHAW G, RENFREE M B. DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes. Biology of Reproduction, 2011, 85(4): 733-743.

doi: 10.1095/biolreprod.111.091629 pmid: 21653890
[17]
TAN K, SONG H W, WILKINSON M F. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development, 2020, 147(3): dev183251.
[18]
SOHNI A, TAN K, SONG H W, BUROW D, DE ROOIJ D G, LAURENT L, HSIEH T C, RABAH R, HAMMOUD S S, VICINI E, WILKINSON M F. The neonatal and adult human testis defined at the single-cell level. Cell Reports, 2019, 26(6): 1501-1517.e4.

doi: S2211-1247(19)30063-4 pmid: 30726734
[19]
LI Y N, LIU X, ZHANG X H, WANG H Y, CHEN J Y, WEI J K, LI Y B, CHEN H X, WANG Q, LIU K Q, LIU Y Y, SHAO C W. Single-cell RNA sequencing of the testis of Ciona intestinalis reveals the dynamic transcriptional profile of spermatogenesis in protochordates. Cells, 2022, 11(24): 3978.

doi: 10.3390/cells11243978
[20]
TIAN Y, SUN P, LIU W X, SHAN L Y, HU Y T, FAN H T, SHEN W, LIU Y B, ZHOU Y, ZHANG T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB Journal, 2022, 36(6): e22348.

doi: 10.1096/fsb2.v36.6
[21]
GRIVE K J, HU Y, SHU E, GRIMSON A, ELEMENTO O, GRENIER J K, COHEN P E. Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genetics, 2019, 15(3): e1007810.

doi: 10.1371/journal.pgen.1007810
[22]
YOU X, CHEN Q, YUAN D, ZHANG C C, ZHAO H X. Common markers of testicular Sertoli cells. Expert Review of Molecular Diagnostics, 2021, 21(6): 613-626.

doi: 10.1080/14737159.2021.1924060
[23]
WU H, QIN J L, ZHAO Q, LU L, LI C. Microdissection of the bulk transcriptome at single-cell resolution reveals clinical significance and myeloid cells heterogeneity in lung adenocarcinoma. Frontiers in Immunology, 2021, 12: 723908.

doi: 10.3389/fimmu.2021.723908
[24]
陶志云, 徐文娟, 穆金泉, 朱春红, 宋卫涛, 刘宏祥, 章双杰, 王志成, 李慧芳. 金定鸭睾丸生长发育规律的初步研究. 畜牧与兽医, 2025, 57(8): 1-6.
TAO Z Y, XU W J, MU J Q, ZHU C H, SONG W T, LIU H X, ZHANG S J, WANG Z C, LI H F. Preliminary study on the growth and development of Jingding duck testes. Animal Husbandry & Veterinary Medicine, 2025, 57(8):1-6. (in Chinese)
[25]
AZIZI H, NIAZITABAR A, MOHAMMADI A, SKUTELLA T. Characterization of DDX4 gene expression in human cases with non-obstructive azoospermia and in sterile and fertile mice. Journal of Reproduction & Infertility, 2021, 22(2): 85-91.
[26]
WANG M Y, DING H, WU S X, WANG M Y, WEI C, WANG B, BAO Z M, HU J J. Vasa is a potential germ cell marker in leopard coral grouper (Plectropomus leopardus). Genes, 2022, 13(6): 1077.

doi: 10.3390/genes13061077
[27]
ÚBEDA-MANZANARO M, REBORDINOS L, SARASQUETE C. Cloning and characterization of Vasa gene expression pattern in adults of the Lusitanian toadfish Halobatrachus didactylus. Aquatic Biology, 2014, 21(1): 37-46.
[28]
NIE X C, MUNYOKI S K, SUKHWANI M, SCHMID N, MISSEL A, EMERY B R, STUKENBORG J B, MAYERHOFER A, ORWIG K E, ASTON K I, et al. Single-cell analysis of human testis aging and correlation with elevated body mass index. Developmental Cell, 2022, 57(9): 1160-1176.e5.

doi: 10.1016/j.devcel.2022.04.004 pmid: 35504286
[29]
EHRMANN J F, GRABARCZYK D B, HEINKE M, DESZCZ L, KURZBAUER R, HUDECZ O, SHULKINA A, GOGOVA R, MEINHART A, VERSTEEG G A, CLAUSEN T. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science, 2023, 379(6637): 1117-1123.

doi: 10.1126/science.ade8873 pmid: 36758105
[30]
QI C X, LEI L, HU J Q, WANG G, LIU J Y, OU S W. Serine incorporator 2 (SERINC2) expression predicts an unfavorable prognosis of low-grade glioma (LGG): Evidence from bioinformatics analysis. Journal of Molecular Neuroscience, 2020, 70(10): 1521-1532.

doi: 10.1007/s12031-020-01620-w pmid: 32642801
[31]
ZHOU H Y, WANG Y C, WANG T, WU W, CAO Y Y, ZHANG B C, WANG M D, MAO P. CCNA2 and NEK2 regulate glioblastoma progression by targeting the cell cycle. Oncology Letters, 2024, 27(5): 206.

doi: 10.3892/ol
[32]
MURPHY M, STINNAKRE M G, SENAMAUD-BEAUFORT C, WINSTON N J, SWEENEY C, KUBELKA M, CARRINGTON M, BRÉCHOT C, SOBCZAK-THÉPOT J. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature Genetics, 1997, 15(1): 83-86.
[33]
KAGAWA W, KURUMIZAKA H. From meiosis to postmeiotic events: Uncovering the molecular roles of the meiosis-specific recombinase Dmc1. The FEBS Journal, 2010, 277(3): 590-598.

doi: 10.1111/ejb.2010.277.issue-3
[34]
BANNISTER L A, PEZZA R J, DONALDSON J R, DE ROOIJ D G, SCHIMENTI K J, CAMERINI-OTERO R D, SCHIMENTI J C. A dominant, recombination-defective allele of Dmc1 causing male- specific sterility. PLoS Biology, 2007, 5(5): e105.

doi: 10.1371/journal.pbio.0050105
[35]
HIKIBA J, HIROTA K, KAGAWA W, IKAWA S, KINEBUCHI T, SAKANE I, TAKIZAWA Y, YOKOYAMA S, MANDON-PÉPIN B, NICOLAS A, et al. Structural and functional analyses of the DMC1-M200V polymorphism found in the human population. Nucleic Acids Research, 2008, 36(12): 4181-4190.

doi: 10.1093/nar/gkn362 pmid: 18566005
[36]
WU X, YANG Y, ZHONG C Y, WANG T, DENG Y H, HUANG H J, LIN H R, MENG Z N, LIU X C. Single-cell atlas of adult testis in protogynous hermaphroditic orange-spotted grouper, Epinephelus coioides. International Journal of Molecular Sciences, 2021, 22(22): 12607.
[37]
SWEENEY C, MURPHY M, KUBELKA M, RAVNIK S E, HAWKINS C F, WOLGEMUTH D J, CARRINGTON M. A distinct cyclin A is expressed in germ cells in the mouse. Development, 1996, 122(1): 53-64.

doi: 10.1242/dev.122.1.53 pmid: 8565853
[38]
RAVNIK S E, WOLGEMUTH D J. The developmentally restricted pattern of expression in the male germ line of a MurineCyclin A, cyclin A2, Suggests roles in both mitotic and meiotic cell cycles. Developmental Biology, 1996, 173(1): 69-78.

doi: 10.1006/dbio.1996.0007
[39]
YANG R, MOROSETTI R, KOEFFLER H P. Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Research, 1997, 57(5): 913-920.

pmid: 9041194
[40]
LIU D, MATZUK M M, SUNG W K, GUO Q X, WANG P, WOLGEMUTH D J. Cyclin A 1 is required for meiosis in the male mouse. Nature Genetics, 1998, 20(4): 377-380.

doi: 10.1038/3855
[41]
PANIGRAHI S K, VASILEVA A, WOLGEMUTH D J. Sp 1 transcription factor and GATA1 Cis-acting elements modulate testis-specific expression of mouse cyclin A1. PLoS ONE, 2012, 7(10): e47862.

doi: 10.1371/journal.pone.0047862
[42]
ZHAO L Y, YAO C C, XING X Y, JING T, LI P, ZHU Z J, YANG C, ZHAI J, TIAN R H, CHEN H X, et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nature Communications, 2020, 11: 5683.

doi: 10.1038/s41467-020-19414-4 pmid: 33173058
[43]
ZHAO X X, WEN X, JI M P, GUAN X J, CHEN P P, HAO X R, CHEN F F, HU Y, DUAN P, GE R S, CHEN H L. Differentiation of seminiferous tubule-associated stem cells into leydig cell and myoid cell lineages. Molecular and Cellular Endocrinology, 2021, 525: 111179.

doi: 10.1016/j.mce.2021.111179
[44]
DESCALZI CANCEDDA F, DOZIN B, ZEREGA B, CERMELLI S, CANCEDDA R. Ex-FABP: A fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2000, 1482(1/2): 127-135.

doi: 10.1016/S0167-4838(00)00159-X
[45]
HU G, LIU L Y, MIAO X X, ZHAO Y N, PENG Y N, LIU L W, LI X Y. The response of cecal microbiota to inflammatory state induced by Salmonella enterica serovar Enteritidis. Frontiers in Microbiology, 2022, 13: 963678.

doi: 10.3389/fmicb.2022.963678
[46]
WANG Q, THIAM M, BARRETO SÁNCHEZ A L, WANG Z X, ZHANG J, LI Q H, WEN J, ZHAO G P. Gene co-expression network analysis reveals the hub genes and key pathways associated with resistance to Salmonella enteritidis colonization in chicken. International Journal of Molecular Sciences, 2023, 24(5): 4824.

doi: 10.3390/ijms24054824
[47]
LIU L, WANG D, LI X Z, ADETULA A A, KHAN A, ZHANG B, LIU H G, YU Y, CHU Q. Long-lasting effects of lipopolysaccharide on the reproduction and splenic transcriptome of hens and their offspring. Ecotoxicology and Environmental Safety, 2022, 237: 113527.

doi: 10.1016/j.ecoenv.2022.113527
[48]
苏杰. 出生后湖羊睾丸发育图谱、组织结构及X染色体剂量补偿研究[D]. 呼和浩特: 内蒙古农业大学, 2022.
SU J. Study on testicular development map, tissue structure and X chromosome dose compensation of Hu sheep after birth[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese)
[49]
MÄKELÄ J A, KOSKENNIEMI J J, VIRTANEN H E, TOPPARI J. Testis development. Endocrine Reviews, 2019, 40(4): 857-905.

doi: 10.1210/er.2018-00140
[50]
O’DONNELL L, SMITH L B, REBOURCET D. Sertoli cells as key drivers of testis function. Seminars in Cell & Developmental Biology, 2022, 121: 2-9.
[51]
SOSNIK J, MIRANDA P V, SPIRIDONOV N A, YOON S Y, FISSORE R A, JOHNSON G R, VISCONTI P E. Tssk 6 is required for Izumo relocalization and gamete fusion in the mouse. Journal of Cell Science, 2009, 122(Pt 15): 2741-2749.

doi: 10.1242/jcs.047225
[52]
WANG X K, KANG J Y, WEI L X, YANG X G, SUN H D, YANG S M, LU L, YAN M, BAI M Z, CHEN Y Y, et al. PHF 7 is a novel histone H2A E3 ligase prior to histone- to-protamine exchange during spermiogenesis. Development, 2019, 146(13): dev175547.
[53]
SHIMADA K, PARK S, MIYATA H, YU Z F, MOROHOSHI A, OURA S, MATZUK M M, IKAWA M. ARMC 12 regulates spatiotemporal mitochondrial dynamics during spermiogenesis and is required for male fertility. PNAS 2021, 118(6): e2018355118.
[54]
LIU W S, WEI X L, LIU X Y, CHEN G W, ZHANG X Y, LIANG X M, ISACHENKO V, SHA Y W, WANG Y F. Biallelic mutations in ARMC12 cause asthenozoospermia and multiple midpiece defects in humans and mice. Journal of Medical Genetics, 2023, 60(2): 154-162.

doi: 10.1136/jmedgenet-2021-108137
[55]
ARUGA J, MILLEN K J. ZIC 1 function in normal cerebellar development and human developmental pathology. Zic family. Singapore: Springer Singapore, 2018: 249-268.
[56]
GUIRY A, FLYNN D, HUBERT S, O’KEEFFE A M, LEPROVOST O, WHITE S L, FORDE P F, DAVOREN P, HOUEIX B, SMITH T J, et al. Testes and brain gene expression in precocious male and adult maturing Atlantic salmon (Salmo salar). BMC Genomics, 2010, 11: 211.

doi: 10.1186/1471-2164-11-211 pmid: 20350334
[57]
VAN PATTEN S M, HOWARD P, WALSH D A, MAURER R A. The alpha- and beta-isoforms of the inhibitor protein of the 3', 5'-cyclic adenosine monophosphate-dependent protein kinase: Characteristics and tissue- and developmental-specific expression. Molecular Endocrinology, 1992, 6(12): 2114-2122.
[58]
VAN PATTEN S M, DONALDSON L F, MCGUINNESS M P, KUMAR P, ALIZADEH A, GRISWOLD M D, WALSH D A. Specific testicular cellular localization and hormonal regulation of the PKIalpha and PKIbeta isoforms of the inhibitor protein of the cAMP-dependent protein kinase. The Journal of Biological Chemistry, 1997, 272(32): 20021-20029.

doi: 10.1074/jbc.272.32.20021
[59]
TAKASE H M, NUSSE R. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. PNAS 2016, 113(11): E1489-E1497.
[60]
WANG M, LUAN X J, YAN Y D, ZHENG Q W, CHEN W Y, FANG J. Wnt 6 regulates the homeostasis of the stem cell niche via Rac1-and Cdc42-mediated noncanonical Wnt signalling pathways in Drosophila testis. Experimental Cell Research, 2021, 402(1): 112511.

doi: 10.1016/j.yexcr.2021.112511
[61]
HASI G, SODNOMPIL T, NA H Y, LIU H J, JI M S, XIE W W, NASENOCHIR N. Whole transcriptome sequencing reveals core genes related to spermatogenesis in Bactrian camels. Journal of Animal Science, 2023, 10110.1093: jas.
[62]
LI F X, JANG H, PUTTABYATAPPA M, JO M, CURRY. Ovarian FAM110C (family with sequence similarity 110C): Induction during the periovulatory period and regulation of granulosa cell cycle kinetics in rats. Biology of Reproduction, 2012, 86(6): 185: 1-9.
[63]
CHU D S, SHAKES D C. Spermatogenesis. Advances in Experimental Medicine and Biology, 2013, 757:171-203.

doi: 10.1007/978-1-4614-4015-4_7 pmid: 22872478
[64]
CHEN X, CUBILLOS-RUIZ J R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nature Reviews Cancer, 2021, 21(2): 71-88.

doi: 10.1038/s41568-020-00312-2 pmid: 33214692
[65]
MENDEZ R, RICHTER J D. Translational control by CPEB: A means to the end. Nature Reviews Molecular Cell Biology, 2001, 2(7): 521-529.

doi: 10.1038/35080081 pmid: 11433366
[66]
HERMO L, PELLETIER R M, CYR D G, SMITH C E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: Changes in spermatid organelles associated with development of spermatozoa. Microscopy Research and Technique, 2010, 73(4): 279-319.

doi: 10.1002/jemt.20787 pmid: 19941292
[67]
SU R W, SUN Z G, ZHAO Y C, CHEN Q J, YANG Z M, LI R S, WANG J. The uterine expression of SEC63 gene is up-regulated at implantation sites in association with the decidualization during the early pregnancy in mice. Reproductive Biology and Endocrinology, 2009, 7: 12.

doi: 10.1186/1477-7827-7-12
[68]
JUNG S J, JUNG Y, KIM H. Proper insertion and topogenesis of membrane proteins in the ER depend on Sec63. Biochimica et Biophysica Acta (BBA) - General Subjects, 2019, 1863(9): 1371-1380.

doi: 10.1016/j.bbagen.2019.06.005
[69]
ZHANG Q Y, JIAO Y H, MA N, ZHANG L, SONG Y Q. Identification of endoplasmic reticulum stress-related biomarkers of periodontitis based on machine learning: A bioinformatics analysis. Disease Markers, 2022, 2022(1): 8611755.
[70]
LI L, LI B, XIE C, ZHANG T, BORASSI C, ESTEVEZ J M, LI X S, LIU X M. Arabidopsis RAD23B regulates pollen development by mediating degradation of KRP1. Journal of Experimental Botany, 2020, 71(14): 4010-4019.

doi: 10.1093/jxb/eraa167
[71]
CHIU C G, ST-PIERRE P, NABI I R, WISEMAN S M. Autocrine motility factor receptor: A clinical review. Expert Review of Anticancer Therapy, 2008, 8(2): 207-217.

doi: 10.1586/14737140.8.2.207 pmid: 18279062
[72]
SHMULEVICH R, KRIZHANOVSKY V. Cell senescence, DNA damage, and metabolism. Antioxidants & Redox Signaling, 2021, 34(4): 324-334.
[73]
THOMA O M, NEURATH M F, WALDNER M J. Cyclin-dependent kinase inhibitors and their therapeutic potential in colorectal cancer treatment. Frontiers in Pharmacology, 2021, 12: 757120.

doi: 10.3389/fphar.2021.757120
[74]
DAI Y, JIN F Y, WU W, KUMAR S K. Cell cycle regulation and hematologic malignancies. Blood Science, 2019, 1(1): 34-43.

doi: 10.1097/BS9.0000000000000009 pmid: 35402801
[75]
ALEEM E, ARCECI R J. Targeting cell cycle regulators in hematologic malignancies. Frontiers in Cell and Developmental Biology, 2015, 3: 16.

doi: 10.3389/fcell.2015.00016 pmid: 25914884
[76]
OTTO T, SICINSKI P. Cell cycle proteins as promising targets in cancer therapy. Nature Reviews Cancer, 2017, 17(2): 93-115.

doi: 10.1038/nrc.2016.138 pmid: 28127048
[77]
ZHANG L, MENG X N, XIANG Z, LI D M, HAN X D. From the cover: roles of mmu_piR_003399 in microcystin-leucine arginine- induced reproductive toxicity in the spermatogonial cells and testis. Toxicological Sciences, 2018, 161(1): 159-170.

doi: 10.1093/toxsci/kfx209
[1] LIU HongXiang, ZHANG XuePing, WANG YiFei, WANG ZhiCheng, GU HaoTian, SONG WeiTao, TAO ZhiYun, XU WenJuan, ZHANG ShuangJie, LU LiZhi, LI HuiFang, ZHU ChunHong. Genome-Wide Association Study of Egg Production Traits in Jinding Duck [J]. Scientia Agricultura Sinica, 2025, 58(15): 3145-3158.
[2] WU YongBao, TANG Jing, CAO JunTing, WANG QiMeng, XIE Ming, ZHOU ZhengKui, HOU ShuiSheng, WEN ZhiGuo. Effects of Methionine Supplementation on Growth Performance, Carcass Trait, and Plasma Biochemical Indice of Growing Pekin Ducks Fed a Low-Energy and Low-Protein Diet [J]. Scientia Agricultura Sinica, 2025, 58(12): 2475-2486.
[3] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
[4] JING LiQuan, LI Fan, ZHAO YiHan, WANG XunKang, ZHAO FuCheng, LAI ShangKun, SUN XiaoLin, WANG YunXia, YANG LianXin. Research Progress on the Carbon and Nitrogen Sink of Duckweed Growing in Paddy and Its Effects on Rice Yield [J]. Scientia Agricultura Sinica, 2023, 56(23): 4717-4728.
[5] WU ShiHao, HUANG TianRan, HUANG Ming. Effect of Heat Treatment on the Warmed-Over Flavor of Nanjing Water-Boiled Salted Duck Detected by HS-SPME-GC-MS Technology and Electronic Nose [J]. Scientia Agricultura Sinica, 2023, 56(17): 3435-3451.
[6] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[7] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[8] ZHAO DongMin,HUANG XinMei,ZHANG LiJiao,LIU QingTao,YANG Jing,HAN KaiKai,LIU YuZhuo,LI Yin. The Induction of Unfolded Protein Response in Tembusu Virus Infected Ducklings [J]. Scientia Agricultura Sinica, 2021, 54(4): 855-863.
[9] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[10] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[11] JiaJie CUI,Qiang XIE,ShuangShuang ZHAI,Tao GONG,YongWen ZHU,Lin YANG,WenCe WANG. Effects of Light Intensity on c-fos, Biological Clock Gene Expression and Melatonin in Cherry Valley Meat Ducks [J]. Scientia Agricultura Sinica, 2020, 53(4): 848-856.
[12] CHEN Liu,NI Zheng,YU Bin,HUA JiongGang,YE WeiCheng,YUN Tao,LIU KeShu,ZHU YinChu,ZHANG Cun. Optimized Promoter Regulating of Duck Tembusu Virus E Protein Expression Delivered by a Vectored Duck Enteritis Virus in vitro [J]. Scientia Agricultura Sinica, 2020, 53(24): 5125-5134.
[13] LI TaoTao,WANG Xia,MA YouJi,YIN DeEn,ZHANG Yong,ZHAO XingXu. Molecular Characterization of Tibetan Sheep BOLL and Its Expression Regulation and Functional Analysis in Testis [J]. Scientia Agricultura Sinica, 2020, 53(20): 4297-4312.
[14] YANG ZhiYuan,DUAN HuiJuan,WANG XiaoLei,LIU LiXin,ZHAO JiCheng,PAN Jie,LIU YueHuan,LIN Jian. Virulence, E Gene Sequence and Antigenic Difference of 4 Duck Tembusu Virus Isolations [J]. Scientia Agricultura Sinica, 2019, 52(23): 4406-4414.
[15] SUN Ying,ZHANG Bing,LI Ling,HUANG XiaoJie,HOU LiDan,LIU Dan,LI QiHong,LI JunPing,WANG LeYuan,LI HuiJiao,YANG ChengHuai. Construction of a Recombinant Duck Enteritis Virus Expressing Hemagglutinin of H9N2 Avian Influenza Virus [J]. Scientia Agricultura Sinica, 2019, 52(23): 4398-4405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!