Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4717-4728.doi: 10.3864/j.issn.0578-1752.2023.23.013

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research Progress on the Carbon and Nitrogen Sink of Duckweed Growing in Paddy and Its Effects on Rice Yield

JING LiQuan1(), LI Fan1, ZHAO YiHan1, WANG XunKang1, ZHAO FuCheng2, LAI ShangKun3, SUN XiaoLin4, WANG YunXia5, YANG LianXin1()   

  1. 1 Agricultural College of Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
    2 Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, Zhejiang
    3 Suqian Institute, Jiangsu Academy of Agricultural Sciences, Suqian 223800, Jiangsu
    4 Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403
    5 College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2023-03-29 Accepted:2023-06-21 Online:2023-12-04 Published:2023-12-04
  • Contact: YANG LianXin

Abstract:

Duckweed (Lemna minor L.) is a floating microscopic plant that is usually found in standing water. Climate change is characterized by rising temperature, which is mainly due to increasing atmospheric CO2 concentration, and it poses potential risks to food production. Owing to factors such as climate warming and/or the eutrophication of water, duckweed growth in paddy fields has shown an increasing trend year by year in China. This paper focused on the impacts of duckweed on paddy fields and highlighted some vital trends. Duckweed reduced the water temperature of paddy by 0.86-2.76 ℃ and the pH value by 0.10-0.45, changed the structure of microbial community, reduced the NH3 volatilization by 18.2%-59.0%, and increased the nitrogen utilization rate by 17.2%-78.0%. As a result, the nitrogen sink of paddy increased and the rice yield rose by 9.0%-34.6% upon duckweed growing in paddy. Duckweed grew and reproduced rapidly, and its annual biomass could reach 8×103-13×103 kg·hm-2, making its carbon sink almost equal to that of rice in the same season. The mutualism between duckweed and rice was greater than its competition, and the coexistence of duckweed and rice in paddy showed an adaptation of the rice field ecosystem to environmental changes. Future research in this field should focus on the effect and its mechanism of duckweed on the paddy environment changes, rice growth, yield, and quality, and the risks which might bring to the paddy fields, especially the interaction with environmental factors (elevated temperature and CO2 concentration, etc.). Such research would provide theoretical support for the sustainable agricultural development of rice farming technology based on biological collaboration, such as rice-duckweed, which can adapt to future changes in climate and environment.

Key words: duckweed (Lemna minor L.), rice, carbon sink, nitrogen sink, yield

Fig. 1

Growth and reproduction of duckweed growing in paddy in the fields of production (a-c) and simulation of future climate condition (d-f) Fig. a and Fig. b are the production fields of rice in Sanya, Hainan province, and Zhenjiang, Jiangsu province, respectively—duckweed grew quickly; Fig. c shows a rice production field in Qian’an, Jilin province—duckweed grew relatively slowly; Fig. d, the growth and reproduction of duckweed growing in the control area of rice field experiment (conventional treatment, Yangzhou, Jiangsu province) was relatively slow; Fig. e, the growth and reproduction of duckweed growing under the treatment of elevated temperature (+1℃) were accelerated; Fig. f, the growth and reproduction of duckweed growing in paddy under the treatment of elevated CO2 concentration (+200 μmol·mol-1) and temperature (+1℃) were fast"

Fig. 2

Botanical characteristics of duckweed and its morphology in paddy Fig. a and Fig. b as quoted from AN et al. [1], represent the morphological characteristics of duckweed during different periods; Fig. c and Fig. d come from the Jiangsu Key Laboratory and Field of Crop Genetics and Physiology"

Table 1

Effects of duckweed growing in field on the ecological environment factors of paddy and rice yield"

报道年份
Report year
组织
Organization
试验地点
Experiment location
施氮水平
N level (kg·hm-2)
产量
Yield
(%)
氨挥发
NH3 volatilization (%)
氮利用率
Nitrogen utilization rate (%)
pH 参考文献Reference
2003 中国水稻研究所
China National Rice Research Institute
温室试验
Greenhouse experiment
0 无效应
No effect
—— —— —— [36]
2008 广西大学
Guangxi University
广西大学科研基地
(108°17′E, 22°50′N) Research base of Guangxi University
275 11.1↑ 18.2↓ —— —— [39]
2009 浙江大学
Zhejiang University
浙江嘉兴
(120°40′E, 30°50′N)
Jiaxing, Zhejiang Province
90/180 9.4-9.8↑ 33.2-53.7↓ —— 0.45↓ [17]
2017 中国科学院
南京土壤研究所
Institute of Soil Science of Chinese Academy of Sciences
中国科学院常熟实验站
(120°57′E, 31°15′N) Changshu Experimental Station, Chinese Academy of Sciences
225/300 9.0-10.0↑ 36.0-59.0↓ 35.0-78.0↑ 0.10-0.30↓ [72]
2017 贵州民族大学
Guizhou Minzu University
贵州省岑巩县水稻基地
(108°46E, 27°12′N)
Rice base in Cengong County, Guizhou Province
—— 11.7-34.6↓ —— —— —— [44]
2019 南京林业大学
Nanjing Forestry University
中山大学
Sun Yat-Sen University
江苏省宜兴
(119°59′E,31°28′N)
Yixing, Jiangsu Province
240 10.9↑ 50.6-54.2↓ 17.2↑ 0.27-0.33↓ [12]
江西省鹰潭
117°10′N)
Yingtan, Jiangxi Province
2021 上海交通大学
Shanghai Jiaotong University
上海市青浦现代农业园
(30°58'9"E, 121°0'34"N)
Shanghai Qingpu Modern Agricultural Park
189.2 28.0↑ —— —— —— [73]
2022 上海交通大学
Shanghai Jiaotong University
上海市青浦现代农业园
(30°58'9"E, 121°0'34"N)
Shanghai Qingpu Modern Agricultural Park
—— 23.0↑ —— —— 0.32-0.39↓ [19]
2023 浙江省农业科学院
Zhejiang Academy of Agricultural Sciences
太湖地区
(120°40' E, 30°50'N)
Taihu region
170/225 —— —— —— —— [20]
[1]
AN D, ZHOU Y, LI C S, XIAO Q, WANG T, ZHANG Y T, WU Y R, LI Y B, CHAO D Y, MESSING J, WANG W Q. Plant evolution and environmental adaptation unveiled by long-read whole- genome sequencing of Spirodela. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18893-18899.
[2]
ZAFFER B, SHEIKH I U, BANDAY M T, ADIL S, AHMED H A, KHAN A S, NISSA S S, MIRZA U. Effect of inclusion of different levels of duckweed (Lemna minor) on the performance of broiler chicken. Indian Journal of Animal Research, 2021, 55(10):1200-1205.
[3]
中国气象局国家气候中心. 中国气候公报(2022). https://mp.weixin.qq.com/s/fFHDGPWDKmUcDEiSyI-Q.
National Climate Center. China Climate Bulletin (2022). https://mp.weixin.qq.com/s/fFHDGPWDKmUcDEiSyI-Q. (in Chinese)
[4]
徐观梅, 杨拔兰. 肥料对红浮萍的增殖关系及在水稻上的增产效果. 中国农业科学, 1963(10): 40-42.
XU G M, YANG B L. Effect of fertilizer on the proliferation of duckweed and its yield-increasing effect on rice. Scientia Agricultura Sinica, 1963(10): 40-42. (in Chinese)
[5]
毛萍, 黄东晓, 王芋华, 周华, 赵海, 王海燕. 基于Web of Science的浮萍研究态势分析. 中国农业科技导报, 2014, 16(3): 177-184.
MAO P, HUANG D X, WANG Y H, ZHOU H, ZHAO H, WANG H Y. Bibliometrics evaluation of the duckweed scientific papers based on web of science. Journal of Agricultural Science and Technology, 2014, 16(3): 177-184. (in Chinese)
[6]
IEAInternational Energy Agency. Global CO2 emissions rose less than initially feared in 2022 as clean energy growth offset much of the impact of greater coal and oil use-News-IEA, 2023. https://www.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-use.
[7]
JING L Q, CHEN C, HU S W, DONG S P, PAN Y, WANG Y X, LAI S K, WANG Y L, YANG L X. Effects of elevated atmosphere CO2 and temperature on the morphology, structure and thermal properties of starch granules and their relationship to cooked rice quality. Food Hydrocolloids, 2021, 112: 106360.

doi: 10.1016/j.foodhyd.2020.106360
[8]
JING L Q, CHEN C, LU Q, WANG Y X, ZHU J G, LAI S K, WANG Y L, YANG L X. How do elevated atmosphere CO2 and temperature alter the physiochemical properties of starch granules and rice taste? Science of The Total Environment, 2021, 766: 142592.

doi: 10.1016/j.scitotenv.2020.142592
[9]
IEAInternational Energy Agency. Global Energy Review: CO2 Emissions in 2021, 2022, www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.
[10]
RADHA B, SUNITHA N C, SAH R P, T P M A, KRISHNA G K, UMESH D K, THOMAS S, ANILKUMAR C, UPADHYAY S, KUMAR A, CH L N M, S B, MARNDI B C, SIDDIQUE K H M. Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Frontiers in Plant Science, 2023, 13: 996514.

doi: 10.3389/fpls.2022.996514
[11]
崔文超, 焦雯珺, 闵庆文. 不同土地经营模式的稻鱼共生系统环境影响评价. 中国生态农业学报 (中英文), 2022, 30(4): 630-640.
CUI W C, JIAO W J, MIN Q W. Environmental impact assessment of rice-fish culture with different land management models. Chinese Journal of Eco-Agriculture, 2022, 30(4): 630-640. (in Chinese)
[12]
SUN H J, DAN A, FENG Y F, VITHANAGE M, MANDAL S, SHAHEEN S M, RINKLEBE J, SHI W M, WANG H L. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere, 2019, 237: 124532.

doi: 10.1016/j.chemosphere.2019.124532
[13]
刘伯顺, 黄立华, 黄金鑫, 黄广志, 蒋小曈. 我国农田氨挥发研究进展与减排对策. 中国生态农业学报(中英文), 2022, 30(6): 875-888.
LIU B S, HUANG L H, HUANG J X, HUANG G Z, JIANG X T. Research progress toward and emission reduction measures of ammonia volatilization from farmlands in China. Chinese Journal of Eco-Agriculture, 2022, 30(6): 875-888. (in Chinese)
[14]
SENAPATI M, TIWARI A, SHARMA N, CHANDRA P, BASHYAL B M, ELLUR R K, BHOWMICK P K, BOLLINEDI H, VINOD K K, SINGH A K, KRISHNAN S G. Rhizoctonia solani Kühn pathophysiology: status and prospects of sheath blight disease management in rice. Frontiers in Plant Science, 2022, 13: 881116.

doi: 10.3389/fpls.2022.881116
[15]
TANG L, WU A, LI S, TUERDIMAIMAITI M, ZHANG G. Impacts of climate change on rice grain: a literature review on what is happening, and how should we proceed? Foods, 2023, 12(3): 536.

doi: 10.3390/foods12030536
[16]
ZHAO M, TIAN Y H, MA Y C, ZHANG M, YAO Y L, XIONG Z, YIN B, ZHU Z L. Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap. Agriculture Ecosystems & Environment, 2015, 203: 36-45.

doi: 10.1016/j.agee.2015.01.014
[17]
LI H, LIANG X Q, LIAN Y F, XU L, CHEN Y X. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields. Soil Science Society of America Journal, 2009, 73(6): 1890-1895.

doi: 10.2136/sssaj2008.0230
[18]
KOLLAH B, PATRA A K, MOHANTY S R. Aquatic Microphylla Azolla: A perspective paradigm for sustainable agriculture, environment and global climate change. Environmental Science & Pollution Research, 2016, 23(5): 4358-4369.
[19]
WANG F, WANG S, XU S H, SHEN J Y, CAO L K, SHA Z M, CHU Q N. A non-chemical weed control strategy, introducing duckweed into the paddy field. Pest Management Science, 2022, 78(8): 3654-3663.

doi: 10.1002/ps.v78.8
[20]
WANG Y, CHEN X D, GUO B, LIU C, LIU J L, QIU G Y, FU Q L, LI H. Alleviation of aqueous nitrogen loss from paddy fields by growth and decomposition of duckweed (Lemna minor L.) after fertilization. Chemosphere, 2023, 311(P1): 137073.

doi: 10.1016/j.chemosphere.2022.137073
[21]
LIU Y, XU H, YU, C J, ZHOU G K. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. Global Change Biology Bioenergy, 2021, 13(1): 70-82.

doi: 10.1111/gcbb.v13.1
[22]
ZHOU Y Z, KISHCHENKO O, STEPANENKO A, CHEN G M, WANG W, ZHOU J, PAN C Z, BORISJUK N. The dynamics of NO3- and NH4+ uptake in duckweed are coordinated with the expression of major nitrogen assimilation genes. Plants, 2021, 11(1): 11.

doi: 10.3390/plants11010011
[23]
LU Y F, KRONZUCKER H J, SHI W M. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environmental Pollution, 2021, 287: 117587.

doi: 10.1016/j.envpol.2021.117587
[24]
CHENG J, LANDESMAN L, BERGMANN B A, CLASSEN J J, HOWARD J W, YAMAMOTO Y T. Nutrient removal from swine lagoon liquid by Lemna minor 8627. Transactions of the American Society of Agricultural Engineers, 2002, 45(4): 1003-1010.
[25]
JING L Q, WANG J, SHEN S B,WANG Y X, ZHU J G, WANG Y L, YANG L X. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. Journal of the Science of Food and Agriculture, 2016, 96(11): 3658-3667.

doi: 10.1002/jsfa.2016.96.issue-11
[26]
魏莹, 杨琳, 朱晔荣, 王勇. 新型能源植物浮萍淀粉代谢的研究进展. 植物生理学报, 2020, 56(12): 2543-2549.
WEI Y, YANG L, ZHU Y R, WANG Y. Research advance on starch metabolism of new energy plant duckweeds. Plant Physiology Journal, 2020, 56(12): 2543-2549. (in Chinese)
[27]
王香莲, 高桂青, 刘博, 龚之涵, 罗瑾, 王锴, 徐晨晨, 卢天宇, 胡万聪, 吴代赦, 黄庭. 鄱阳湖流域浮萍种质资源分布及其对水环境因子的响应. 应用与环境生物学报, 2020, 26(4): 999-1008.
WANG X L, GAO G Q, LIU B, GONG Z H, LUO J, WANG K, XU C C, LU T Y, HU W C, WU D S, HUANG T. Distribution of duckweed germplasm resources and its response to water environment factors in Poyang Lake Basin. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 999-1008. (in Chinese)
[28]
杨晶晶, 赵旭耀, 李高洁, 胡诗琦, 陈艳, 孙作亮, 侯宏伟. 浮萍的研究及应用. 科学通报, 2021, 66(9): 1026-1045.
YANG J J, ZHAO X Y, LI G J, HU S Q, CHEN Y, SUN Z L, HOU H W. Research and application in duckweeds: A review. Chinese Science Bulletin, 2021, 66(9): 1026-1045. (in Chinese)
[29]
APPENROTH K J, AUGSTEN H, LIEBERMANN B, FEIST H. Effects of light quality on amino acid composition of proteins in Wolffia arrhiza (L.) wimm. using a specially modified Bradford method. Biochemie Und Physiologie Der Pflanzen, 1982, 177(3): 251-258.

doi: 10.1016/S0015-3796(82)80008-5
[30]
ACOSTA K, XU J, GILBERT S, DENISON E, BRINKMAN T, LEBEIS S, LAM E. Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One, 2020, 15(2): e0228560.

doi: 10.1371/journal.pone.0228560
[31]
MBAGWU I G, ADENIJI H A. The nutritional content of duckweed (Lemna paucicostata hegelm.) in the Kainji Lake area, Nigeria. Aquatic Botany, 1988, 29(4): 357-366.

doi: 10.1016/0304-3770(88)90079-4
[32]
TILLBERG E, HOLMVALL M, ERICSSON T. Growth cycles in Lemna gibba cultures and their effects on growth rate and ultrastructure. Physiologia Plantarum, 1979, 46(1): 5-12.

doi: 10.1111/ppl.1979.46.issue-1
[33]
PAOLACCI S, STEJSKAL V, TONER D, JANSEN M A K. Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species. Environmental Pollution, 2022, 30: 119059.
[34]
PORATH D, HEPHER B, KOTON A. Duckweed as an aquatic crop: evaluation of clones for aquaculture. Aquatic Botany, 1979, 7: 273-278.

doi: 10.1016/0304-3770(79)90028-7
[35]
HILLMAN W S, CULLEY D D. The uses of duckweed: The rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming. American Scientist, 1978, 66: 442-451.
[36]
黄世文, 余柳青, 段桂芳, 李迪, 阮云芳, 余美林, 喻锦秀, 罗宽. 稻糠与浮萍控制稻田杂草和稻纹枯病初步研究. 植物保护, 2003, 29(6): 22-26.
HUANG S W, YU L Q, DUAN G F, LI D, RUAN Y F, YU M L, YU J X, LUO K. Control of weeds and rice sheath blight disease in paddy fields by rice chaff and duckweeds (Lemna spp.). Plant Protection, 2003, 29(6): 22-26. (in Chinese)
[37]
张婷婷. 浮萍(Lemna minor)对重金属汞(Hg)富集的响应[D]. 南京: 南京师范大学, 2017.
ZHANG T T. Response of duckweed (Lemna minor) to the heavy metal mercury (Hg) enrichment: based on physiological and RAPD analysis[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese)
[38]
刘敏杰, 匡传富, 谭琳. 几种生物杀虫剂防治烟青虫的效果. 作物研究, 2015, 29(增刊2): 888-889.
LIU M J, KUANG C F, TAN L. Effect of several biological insecticides on controlling tobacco budworm. Crop Research, 2015, 29(S2): 888-889. (in Chinese)
[39]
宁伟军. 浮萍与稻糠对免耕抛秧稻生、产量及氨挥发影响研究[D]. 南宁: 广西大学, 2008.
NING W J. Studies on the effect of rice chaff and duckweeds on growth and yield of no-tillage cast transplanting rice and ammonia volatilization in paddy soil[D]. Nanning: Guangxi University, 2008. (in Chinese)
[40]
唐娅丽, 于昌江, 刘宇, 王宇, 周功克, 杨军, 马玉彬, 杨在君. 浮萍合成生物学研究进展. 生命科学, 2020, 32(2): 100-109.
TANG Y L, YU C J, LIU Y, WANG Y, ZHOU G K, YANG J, MA Y B, YANG Z J. Advances in synthetic biology of duckweed. Chinese Bulletin of Life Sciences, 2020, 32(2): 100-109. (in Chinese)
[41]
SAEGER A. The growth of duckweeds in mineral nutrient solutions with and without organic extracts. The Journal of General Physiology, 1925, 7(4): 517-526.

doi: 10.1085/jgp.7.4.517
[42]
侍远. 浮萍对氮磷的吸收和能源化利用研究[D]. 合肥: 合肥工业大学, 2013.
SHI Y. The study of duckweed on the absorption of nitrogen and phosphorus along with energy utilization[D]. Hefei: Hefei University of Technology, 2013. (in Chinese)
[43]
朱晔荣, 马荣, 刘清岱, 戎清清, 杨琳, 王勇. 浮萍相关研究的几方面重要进展. 生物学通报, 2010, 45(4): 4-6.
ZHU Y R, MA R, LIU Q D, RONG Q Q, YANG L, WANG Y. Several important advances in duckweed related research. Bulletin of Biology, 2010, 45(4): 4-6. (in Chinese)
[44]
何令令, 孙兆惠, 杨虎. 浮萍对稻田生态中水稻的影响. 南方农机, 2017, 48(11): 46-51.
HE L L, SUN Z H, YANG H. Effects of duckweed on rice in paddy field ecology. China Southern Agricultural Machinery, 2017, 48(11): 46-51. (in Chinese)
[45]
KOLLAH B, PATRA A K, MOHANTY S R. Aquatic microphylla Azolla: A perspective paradigm for sustainable agriculture, environment and global climate change. Environmental Science and Pollution Research, 2016, 23:4358-4369.

doi: 10.1007/s11356-015-5857-9
[46]
DATKO A H, MUDD S H, GIOVANELLI J. Lemna paucicostata hegelm. 6746: development of standardized growth conditions suitable for biochemical experimentation. Plant Physiology, 1980, 65(5): 906-912.

doi: 10.1104/pp.65.5.906
[47]
王清春, 刘玉升. 浮萍生物质资源利用研究进展. 山东农业科学, 2016, 48(6): 152-155, 159.
WANG Q C, LIU Y S. Research progress of duckweed biomass utilizations. Shandong Agricultural Sciences, 2016, 48(6): 152-155, 159. (in Chinese)
[48]
赵新勇, 王友霜, 王健康, 丁成伟, 胡婷婷, 吴玉玲, 李思梦, 赵轶鹏. 浮萍植物的应用价值及综合开发利用. 热带生物学报, 2020, 11(2): 251-256.
ZHAO X Y, WANG Y S, WANG J K, DING C W, HU T T, WU Y L, LI S M, ZHAO Y P. Application value and comprehensive utilization of duckweed. Journal of Tropical Biology, 2020, 11(2): 251-256. (in Chinese)
[49]
PENG J F, WANG B Z, SONG Y H, YUAN P. Modeling N transformation and removal in a duckweed pond: model development and calibration. Ecological Modelling, 2007, 206(1/2): 147-152.

doi: 10.1016/j.ecolmodel.2007.03.029
[50]
HEJNÝ S. Ellias landolt the family of lemnaceae-a monographic study-Vol.1 biosystematic investigations in the family of duckweeds (Lemnaceae) (Vol.2). Folia Geobotanica & Phytotaxonomica, 1993, 28: 50.
[51]
MARVIN E. Transgenic spirodela: a unique, low-risk, plant biotechnology system. Plant Biology, 2003: 25-30.
[52]
于昌江, 朱明, 马玉彬, 于丽, 周功克. 新型能源植物浮萍的研究进展. 生命科学, 2014, 26(5): 458-464.
YU C J, ZHU M, MA Y B, YU L, ZHOU G K. Advances in research on duckweeds—a new energy plant. Chinese Bulletin of Life Sciences, 2014, 26(5): 458-464. (in Chinese)
[53]
MICHAEL T P, ERNST E, HARTWICK N, CHU P, BRYANT D, GILBERT S, ORTLEB S, BAGGS E L, SREE K S, APPENROTH K J, FUCHS J, JUPE F, SANDOVAL J P, KRASILEVA K V, BORISJUK L, MOCKLER T C, ECKER J R, MARTIENSSEN R A, LAM E. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Research, 2020, 31(2): 225-238.

doi: 10.1101/gr.266429.120
[54]
SETH P N, VENKATARAMAN R, MAHESHWARI S C. Studies on the growth and flowering of a short-day plant, Wolffia microscopica. Planta, 1970, 90(4): 349-359.

doi: 10.1007/BF00386387
[55]
CHANG S M, YANG C C, SUNG S C. Cultivation and the nutritional value of lemnaceae. Bull Inst Chem Acad Sin, 1977, 24: 19-30.
[56]
STOMP A M. The duckweeds: a valuable plant for biomanufacturing. Biotechnology Annual Review, 2005, 11: 69-99.
[57]
吕书缨, 陈克增, 沈志豪, 葛世安. 稻田绿肥: 满江红生物学特性的研究. 中国农业科学, 1963(11): 35-40.
S Y, CHEN K Z, SHEN Z H, GE S A. Study on biological characteristics of Manjianghong, a green fertilizer in paddy field. Scientia Agricultura Sinica, 1963(11): 35-40. (in Chinese)
[58]
桑世飞, 曹梦雨, 王亚男, 王君怡, 孙晓涵, 张文玲, 姬生栋. 水稻氮高效相关基因的研究进展. 中国农业科学, 2022, 55(8): 1479-1491. doi: 10.3864/j.issn.0578-1752.2022.08.001.
SANG S F, CAO M Y, WANG Y N, WANG J Y, SUN X H, ZHANG W L, JI S D. Research progress of nitrogen efficiency related genes in rice. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491. doi: 10.3864/j.issn.0578-1752.2022.08.001. (in Chinese)
[59]
刘天奇, 胡权义, 汤计超, 李成芳, 江洋, 刘娟, 曹凑贵. 长江中下游水稻生产固碳减排关键影响因素及技术体系. 中国生态农业学报(中英文), 2022, 30(4): 603-615.
LIU T Q, HU Q Y, TANG J C, LI C F, JIANG Y, LIU J, CAO C G. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603-615. (in Chinese)
[60]
GU B J, ZHANG X M, LAM S K, YU Y L, VAN GRINSVEN H J M, ZHANG S H, WANG X X, BODIRSKY B L, WANG S T, DUAN J K, REN C C, BOUWMAN L, DE VRIES W, XU J M, SUTTON M A, CHEN D L. Cost-effective mitigation of nitrogen pollution from global croplands. Nature, 2023, 613(7942): 77-84.

doi: 10.1038/s41586-022-05481-8
[61]
LEE M J, SHEVLIAKOVA E, STOCK C A, MALYSHEV S, MILLY P C D. Prominence of the tropics in the recent rise of global nitrogen pollution. Nature Communications, 2019, 10: 1437.

doi: 10.1038/s41467-019-09468-4 pmid: 30926807
[62]
SUTTON, M A, BLEEKER A, HOWARD C M, ERISMAN J W, ABROL Y P, BRKUNDA M, DATTA A, DAVIDSON E, VRIES W D, OENEMA O, ZHANG F S. Our Nutrient World:The challenge to produce more food and energy with less pollution (Key messages for Rio+20)[M]. Edinburgh: Centre for Ecology & Hydrology, 2013. https://edepot.wur.nl/249094.
[63]
CAI S Y, ZHAO X, PITTELKOW C M, FAN M S, ZHANG X, YAN X Y. Optimal nitrogen rate strategy for sustainable rice production in China. Nature, 2023, 615(7950): 73-79.

doi: 10.1038/s41586-022-05678-x
[64]
中华人民共和国农业农村部. 我国三大粮食作物化肥农药利用率双双超40%. 2021. http://www.kjs.moa.gov.cn/gzdt/202101/t20210119-6360102.htm.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The utilization rates of fertilizers and pesticides in China's three major grain crops have both exceeded 40%. 2021. http://www.kjs.moa.gov.cn/gzdt/202101/t20210119-6360102.htm. (in Chinese)
[65]
YAN X Y, XIA L L, TI C P. Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environmental Pollution, 2022, 293: 118496.

doi: 10.1016/j.envpol.2021.118496
[66]
GU B J, JU X T, CHANG J, GE Y, VITOUSEK P M. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8792-8797.
[67]
CHAMPNESS M, BALLESTER C, HORNBUCKLE J. Effect of soil moisture deficit on aerobic rice in temperate Australia. Agronomy, 2023, 13(1): 168.

doi: 10.3390/agronomy13010168
[68]
LIU L Y, ZHENG X Q, PENG C F, LI J Y, XU Y. Driving forces and future trends on total nitrogen loss of planting in China. Environmental Pollution, 2020, 267: 115660.

doi: 10.1016/j.envpol.2020.115660
[69]
杨国英, 郭智, 刘红江, 王鑫, 陈留根. 稻田氨挥发影响因素及其减排措施研究进展. 生态环境学报, 2020, 29(9): 1912-1919.

doi: 10.16258/j.cnki.1674-5906.2020.09.025
YANG G Y, GUO Z, LIU H J, WANG X, CHEN L G. Research progress on factors affecting ammonia volatilization and its mitigation measures in paddy fields. Ecology and Environmental Sciences, 2020, 29(9): 1912-1919. (in Chinese)
[70]
HAN H H, CUI Y L, GAO R, HUANG Y, LUO Y F, SHEN S Z. Study on nitrogen removal from rice paddy field drainage by interaction of plant species and hydraulic conditions in eco-ditches. Environmental Science and Pollution Research International, 2019, 26(7): 6492-6502.

doi: 10.1007/s11356-018-04107-9 pmid: 30623327
[71]
HAN H H, GAO R, CUI Y L, GU S X. Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields. Agricultural Water Management, 2021, 255(2): 107024.

doi: 10.1016/j.agwat.2021.107024
[72]
YAO Y L, ZHANG M, TIAN Y H, ZHAO M, ZHANG B W, ZHAO M, ZENG K, YIN B. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production. Field Crops Research, 2017, 214: 273-282.

doi: 10.1016/j.fcr.2017.09.021
[73]
王丰, 赖彦岑, 唐宗翔, 郑敏敏, 史俊, 顾麦云, 沈健英, 曹林奎, 沙之敏. 浮萍覆盖对稻田杂草群落组成及多样性的影响. 中国生态农业学报(中英文), 2021, 29(4): 672-682.
WANG F, LAI Y C, TANG Z X, ZHENG M M, SHI J, GU M Y, SHEN J Y, CAO L K, SHA Z M. Effects of duckweed mulching on composition and diversity of weed communities in paddy fields. Chinese Journal of Eco-Agriculture, 2021, 29(4): 672-682. (in Chinese)
[74]
吴晓磊. 人工湿地废水处理机理. 环境科学, 1995, 16(3): 83-86.
WU X L. Mechanism of wastewater treatment in constructed wetlands. Chinese Journal of Enviromental Science, 1995, 16(3): 83-86. (in Chinese)
[75]
沈根祥, 姚芳, 胡宏, 倪吾钟, 朱荫湄. 浮萍吸收不同形态氮的动力学特性研究. 土壤通报, 2006, 37(3): 505-508.
SHEN G X, YAO F, HU H, NI W Z, ZHU Y M. The kinetics of ammonium and nitrate uptake by duckweed (Spirodela oligorrhiza) plant. Chinese Journal of Soil Science, 2006, 37(3): 505-508. (in Chinese)
[76]
YAO Y L, ZHANG M, TIAN Y H, ZHAO M, ZENG K, ZHANG B W, ZHAO M, YIN B. Azolla biofertilizer for improving low nitrogen use efficiency in an intensive rice cropping system. Field Crops Research, 2018, 216: 158-164.

doi: 10.1016/j.fcr.2017.11.020
[77]
YAO Y L, ZHANG M, TIAN Y H, ZHAO M, ZHANG B W, ZENG K, ZHAO M, YIN B. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Research, 2018, 218: 141-149.

doi: 10.1016/j.fcr.2018.01.015
[78]
彭世彰, 杨士红, 徐俊增. 节水灌溉稻田氨挥发损失及影响因素. 农业工程学报, 2009, 25(8): 35-39.
PENG S Z, YANG S H, XU J Z. Ammonia volatilization and its influence factors of paddy field under water-saving irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 35-39. (in Chinese)
[79]
WANG C, LI S C, LAI D Y F, WANG W Q, MA Y Y. The effect of floating vegetation on CH4 and N2O emissions from subtropical paddy fields in China. Paddy and Water Environment, 2015, 13(4): 425-431.

doi: 10.1007/s10333-014-0459-6
[80]
NG C A, WONG L Y, LO P K, BASHIR M J K, CHIN S J, TAN S P, CHONG C Y, YONG L K. Performance of duckweed and effective microbes in reducing arsenic in paddy and paddy soil. AIP Conference Proceedings, 2017, 1828(1): 020031.
[81]
HUANG W J, GILBERT S, POULEV A, ACOSTA K, LEBEIS S, LONG C L, LAM E. Host-specific and tissue-dependent orchestration of microbiome community structure in traditional rice paddy ecosystems. Plant and Soil, 2020, 452(1): 379-395.

doi: 10.1007/s11104-020-04568-3
[82]
唐萍, 吴国荣, 陆长梅, 顾龚平, 宰学明. 太湖水域几种高等水生植物的克藻效应. 农村生态环境, 2001, 17(3): 42-44, 47.
TANG P, WU G R, LU C M, GU G P, ZAI X M. Allelopathic effects of several higher aquatic plants in Taihu Lake on Scenedesmus arcuatus lemm. Rural Eco-Environment, 2001, 17(3): 42-44, 47. (in Chinese)
[83]
LU Y F, ZHOU Y R, NAKAI S, HOSOMI M, ZHANG H L, KRONZUCKER H J, SHI W M. Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components. Planta, 2014, 239(3): 591-603.

doi: 10.1007/s00425-013-1998-6 pmid: 24271005
[84]
KUMAR S, DESWAL S. Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater. International Journal of Phytoremediation, 2020, 22(11): 1097-1109.

doi: 10.1080/15226514.2020.1731729
[85]
于鲁冀, 李磊, 徐艳红, 郝子垚. 富营养化水体中浮萍控藻机理研究进展. 水处理技术, 2020, 46(10): 1-5, 20.
YU L J, LI L, XU Y H, HAO Z Y. Research progress on algae control mechanism of duckweed in eutrophic water. Technology of Water Treatment, 2020, 46(10): 1-5, 20. (in Chinese)
[86]
邢春玉, 吴运刚, 乔镜澄, 张妍. 水生植物群落对水华藻类的化感抑制研究. 环境科学与技术, 2018, 41(3): 35-41.
XING C Y, WU Y G, QIAO J C, ZHANG Y. Studies on allelopathic inhibition of aquatic plant communities to algal bloom. Environmental Science & Technology, 2018, 41(3): 35-41. (in Chinese)

doi: 10.1021/es061117b
[87]
卿九龄. 敌稗杀灭稻田浮萍试验. 植物保护, 1966(3): 105.
QING J L. Experiment on killing duckweed in rice field with dipyridamole. Plant Protection, 1966(3): 105. (in Chinese)
[88]
纪宝华, 胡童坤, 祁明楣. 辽宁水田稻萍套养技术的探讨. 辽宁农业科学, 1990(3): 15-17.
JI B H, HU T K, QI M M. Discussion on interplanting technology of paddy rice in Liaoning Province. Liaoning Agricultural Sciences, 1990(3): 15-17. (in Chinese)
[89]
ZHAO H, APPENROTH K, LANDESMAN L, SALMEÁN A A, LAM E. Duckweed rising at Chengdu:Summary of the 1st International Conference on Duckweed Application and Research. Plant Molecular Biology, 2012, 78(6): 627-632.
[90]
MINOLI S, JÄGERMEYR J, ASSENG S, URFELS A, MÜLLER C. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nature Communications, 2022, 13: 7079.

doi: 10.1038/s41467-022-34411-5 pmid: 36400762
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[8] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[9] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[10] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[11] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[12] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[13] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[14] HE Jiang, DING Ying, LOU XiangDi, JI DongLing, ZHANG XiangXiang, WANG YongHui, ZHANG WeiYang, WANG ZhiQin, WANG WeiLu, YANG JianChang. Difference in the Comprehensive Response of Dry Matter Accumulation of Rice at Tillering Stage to Rising Atmospheric CO2 Concentration and Nitrogen Nutrition and Its Physiological Mechanism [J]. Scientia Agricultura Sinica, 2023, 56(6): 1045-1060.
[15] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!