Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1791-1803.doi: 10.3864/j.issn.0578-1752.2025.09.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial Distribution Pattern and Transfer Function Construction of Soil Bulk Density in Nenjiang City, Heilongjiang Province

WANG BingJie1(), QIN ShiHan1, LI DeCheng2, HU WenYou2, JIANG Jun2, CHI FengQin3, ZHANG Chao4, ZHANG JiuMing3, XU YingDe1(), WANG JingKuan1   

  1. 1 College of Land and Environment, Shenyang Agricultural University, Shenyang 110866
    2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    3 Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086
    4 College of Land Science and Technology, China Agricultural University, Beijing 100083
  • Received:2024-07-22 Accepted:2024-09-19 Online:2025-05-01 Published:2025-05-08
  • Contact: XU YingDe

Abstract:

【Objective】 Given the unclear degree of "hardening" of cultivated soil and its spatial distribution in the typical black soil region of Northeast China, this study took Nenjiang City, Heilongjiang Province for example, the spatial distribution pattern of soil bulk density were predicted and analyzed, and the soil bulk density transfer function based on factors such as organic matter content and compaction was established. 【Method】 Pearson correlation analysis and principal component analysis were used to evaluate the importance of various factors on soil bulk density, the random forest model was employed for predictive mapping, and multiple soil bulk density transfer functions were constructed and compared for accuracy. 【Result】 Soil bulk density was significantly negatively correlated with water content and organic matter content, and was affected by multiple factors such as clay, sand, pH, average annual temperature, and average annual precipitation, but the impact of topography was relatively small. Forecast mapping revealed that the soil bulk density showed a gradually increasing trend from the northeast (1.08-1.17 g·cm-3) to the southwest (1.30-1.40 g·cm-3) in Nenjiang City, and the soil bulk density in the subsoil was higher than that in the topsoil. In addition, soil bulk density and soil compaction increased with soil depth, but the soil bulk density changed slowly (1.20-1.44 g·cm-3), while the soil compaction increased rapidly mainly in the topsoil (0-20 cm) (the change amplitude was about 300 kPa). Besides, the binomial model and support vector machine had higher R2 values in the fitting of organic matter-bulk density and compaction-bulk density, respectively, and had better fitting effects. In the subsoil, the prediction accuracy of the soil bulk density transfer function constructed by compaction (R2=0.55, RMSE=0.1) was higher than that of the model constructed by soil organic matter (R2=0.43, RMSE=0.12). 【Conclusion】 The soil bulk density in Nenjiang City showed a distribution trend of being low in the northeast and high in the southwest, and was affected by multiple factors such as soil properties, climate and topography. In addition, the compaction transfer function could be used as a rapid diagnostic method for changes in soil bulk density and the degree of "hardening" of the black soil region in Northeast China.

Key words: Northeast black soil, soil bulk density, soil compaction, soil organic matter, spatial distribution, transfer function, random forest model

Fig. 1

Schematic diagram of the research area"

Table 1

Environmental variables and data sources for spatial prediction of soil bulk density"

变量类型
Variable category
具体指标
Specific indicator
数据来源
Data sources
土壤属性
Soil property
pH、含水量、粉粒、砂粒、黏粒
pH, Water content, Silt, Sand, Clay
SoilGrids250m 2.0
气候变量
Climate variable
年均气温、年均降水量
Annual mean temperature (TEM), Annual mean precipitation (PRE)
中国科学院资源环境科学数据中心(http://www.resdc.cn
Resources and Environmental Science Data Center(http://www.resdc.cn
地形变量
Terrain variable
高程、坡度、坡向、剖面曲率、平面曲率、地形湿地指数、地形位置指数、
多尺度山谷平坦指数、多尺度脊顶平坦指数
DEM, Slope, Aspect, Profile curvature, Plan curvature, Topographic wetness index (TWI), Terrain position index (TPI), Multi-resolution valley bottom flatness (MrVBF), Multi-scale ridge top flatness (MrRTF)

Fig. 2

The correlation between soil bulk density and environmental factors a: pH; b: Soil organic matter; c: Soil water content; d: Clay; e: Sand; f: Silt; g: Annual mean temperature, TEM; h: Annual mean precipitation, PRE; i: Slope; j: Aspect; k: Plan curvature; l: Profile curvature; m: DEM; n: Topographic wetness index, TWI; o: Terrain position index, TPI; p: Multi-resolution valley bottom flatness, MrVBF; q: Multi-scale ridge top flatness, MrRTF. The same as below. Pearson correlation coefficient (r) was used to evaluate the correlation of variables, and P was used to determine significance (* P<0.05, ** P<0.01)"

Fig. 3

Principal component analysis results of soil bulk density (a) and (b) represent the principal component analysis results of soil bulk density in topsoil (0-20 cm) and subsoil (20-40 cm), respectively. Arrows of different colors represent different factors: the red arrow represents soil bulk density, the green arrow represents geographical factors, the blue arrow represents climatic factors, and the pink arrow represents soil properties. The length of the arrow and the angle with the sorting axis represent the impact and correlation strength of the environmental factor, respectively. TWI, TPI, MrRTF and MrVBF represent topographic wetland index, topographic position index, multi-scale ridge top flatness index and multi-scale valley flatness index, respectively"

Fig. 4

Relative importance of environmental variables in soil bulk density random forest model (A) and (B) represent the relative importance of environmental variables in topsoil (0-20 cm) and subsoil (20-40 cm), respectively"

Fig. 5

Prediction of soil bulk density using a random forest model"

Fig. 6

The variation characteristics of soil bulk density, compaction, organic matter content, and water content with depth"

Table 2

Comparison of soil bulk density transfer functions based on soil organic matter content"

方法
Method
表层土壤 Topsoil 亚表层土壤Subsoil
R2 RMSE RSE R2 RMSE RSE
多元线性回归 Multiple linear regression 0.38 0.11 0.11 0.42 0.12 0.12
二项式 Binomial 0.43 0.11 0.11 0.43 0.12 0.12
广义线性 Generalized linear 0.45 0.10 0.12 0.41 0.11 0.14
支持向量机 Support vector machines 0.38 0.11 0.11 0.42 0.12 0.12
岭回归 Ridge regression 0.38 0.11 0.42 0.12
Lasso回归 Least absolute shrinkage and selection operator 0.38 0.11 0.42 0.12

Table 3

Comparison of soil bulk density transfer functions based on soil compaction"

方法
Method
表层土壤 Topsoil 亚表层土壤 Subsoil
R2 RMSE RSE R2 RMSE RSE
最小二乘法 Ordinary least squares 0.16 0.13 0.13 0.55 0.10 0.10
广义线性 Generalized linear 0.16 0.13 0.15 0.07 0.10 0.13
支持向量机 Support vector machines 0.18 0.11 0.15 0.56 0.10 0.10
岭回归 Ridge regression 0.16 0.13 0.10
Lasso回归 Least absolute shrinkage and selection operator 0.11 0.13
[1]
李保国, 刘忠, 黄峰, 杨晓光, 刘志娟, 万炜, 汪景宽, 徐英德, 李子忠, 任图生. 巩固黑土地粮仓保障国家粮食安全. 中国科学院院刊, 2021, 36(10): 1184-1193.
LI B G, LIU Z, HUANG F, YANG X G, LIU Z J, WAN W, WANG J K, XU Y D, LI Z Z, REN T S. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184-1193. (in Chinese)
[2]
杨婧, 宋茜, 陆苗, 查燕, 吴文斌. 我国“黑土粮仓”建设的科技支撑路径. 中国农业资源与区划, 2024, 46(1): 13-21.
YANG J, SONG Q, LU M, CHA Y, WU W B. The supporting path of science and technology to the construction of China’s “black soil granary”. Chinese Journal of Agricultural Resources and Regional Planning, 2024, 46(1): 13-21. (in Chinese)
[3]
刘泽瑾, 焦利民, 连喜红. 1995—2020年气候变化和耕地利用变化对中国耕地气候生产潜力的影响分析. 中国土地科学, 2022, 36(3): 62-73.
LIU Z J, JIAO L M, LIAN X H. Effects of climate change and cultivated land use change on climatic potential productivity of cultivated land in China from 1995 to 2020. China Land Science, 2022, 36(3): 62-73. (in Chinese)
[4]
王瑞, 武威, 刘涛, 孙成明. 耕地土壤容重作用及其调控途径研究进展. 北方园艺, 2020(4): 135-141.
WANG R, WU W, LIU T, SUN C M. Research progress on soil bulk density function and its regulation methods in cultivated land. Northern Horticulture, 2020(4): 135-141. (in Chinese)
[5]
卢宏亮, 赵明松, 刘斌寅, 张平, 陆龙妹. 基于随机森林模型的安徽省土壤属性空间分布预测. 土壤, 2019, 51(3): 602-608.
LU H L, ZHAO M S, LIU B Y, ZHANG P, LU L M. Spatial prediction of soil properties based on random forest model in Anhui Province. Soils, 2019, 51(3): 602-608. (in Chinese)
[6]
BACK M P, JEFFERSON A J, RUHM C T, BLACKWOOD C B. Effects of reclamation and deep ripping on soil bulk density and hydraulic conductivity at legacy surface mines in northeast Ohio, USA. Geoderma, 2024, 442: 116788.
[7]
HU B F, JIA X L, HU J, XU D Y, XIA F, LI Y. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 2017, 14(9): 1042.
[8]
杨之江, 陈效民, 景峰, 郭碧林, 林高哲. 基于GIS和地统计学的稻田土壤养分与重金属空间变异. 应用生态学报, 2018, 29(6): 1893-1901.

doi: 10.13287/j.1001-9332.201806.036
YANG Z J, CHEN X M, JING F, GUO B L, LIN G Z. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and Geostatistics. Chinese Journal of Applied Ecology, 2018, 29(6): 1893-1901. (in Chinese)
[9]
张阳, 屠乃美, 谢会雅, 陈舜尧, 邓浏平, 傅雪平, 王旋, 何伟. 茶陵县烟稻复种区土壤养分时空变异特征. 土壤通报, 2021, 52(2): 297-305.
ZHANG Y, TU N M, XIE H Y, CHEN S Y, DENG L P, FU X P, WANG X, HE W. Spatial and temporal variation of soil nutrients in tobacco-rice multiple-cropping area of Chaling. Chinese Journal of Soil Science, 2021, 52(2): 297-305. (in Chinese)
[10]
刘慧霞, 孙宗玖, 崔雨萱, 董乙强. 新疆北疆荒漠草地土壤容重空间分布格局及其影响因素. 中国草地学报, 2021, 43(2): 82-91.
LIU H X, SUN Z J, CUI Y X, DONG Y Q. Spatial distribution pattern and impact factors of soil bulk density in desert grassland of northern Xinjiang. Chinese Journal of Grassland, 2021, 43(2): 82-91. (in Chinese)
[11]
李晓晓, 刘京, 赵世伟, 李婷, 曾宪芳. 西北干旱区县域农田表层土壤容重空间变异性特征. 水土保持学报, 2013, 27(4): 148-151.
LI X X, LIU J, ZHAO S W, LI T, ZENG X F. Spatial variation of topsoil bulk density of farmland on county level in northwest arid area. Journal of Soil and Water Conservation, 2013, 27(4): 148-151. (in Chinese)
[12]
任丽, 杨联安, 王辉, 杨粉莉, 陈卫军, 张林森, 徐瑾昊. 基于随机森林的苹果区土壤有机质空间预测. 干旱区资源与环境, 2018, 32(8): 141-146.
REN L, YANG L A, WANG H, YANG F L, CHEN W J, ZHANG L S, XU J H. Spatial prediction of soil organic matter in apple region based on random forest. Journal of Arid Land Resources and Environment, 2018, 32(8): 141-146. (in Chinese)
[13]
O’BRIEN R, ISHWARAN H. A random forests quantile classifier for class imbalanced data. Pattern Recognition, 2019, 90: 232-249.

doi: 10.1016/j.patcog.2019.01.036 pmid: 30765897
[14]
POULADI N, MØLLER A B, TABATABAI S, GREVE M H. Mapping soil organic matter contents at field level with Cubist, Random Forest and Kriging. Geoderma, 2019, 342: 85-92.
[15]
VAYSSE K, LAGACHERIE P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, 2017, 291: 55-64.
[16]
QIAO Y X, ZHU H Z, ZHONG H P, LI Y Z. Stratified data reconstruction and spatial pattern analyses of soil bulk density in the northern grasslands of China. ISPRS International Journal of Geo-Information, 2020, 9(11): 682.
[17]
韩光中, 王德彩, 谢贤健. 中国主要土壤类型的土壤容重传递函数研究. 土壤学报, 2016, 53(1): 93-102.
HAN G Z, WANG D C, XIE X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China. Acta Pedologica Sinica, 2016, 53(1): 93-102. (in Chinese)
[18]
任利东, 王丽, 林琳, 张斌. 农田土壤机械压实研究进展与展望. 土壤学报, 2023, 60(3): 610-626.
REN L D, WANG L, LIN L, ZHANG B. The progress and prospect of soil compaction by agricultural machinery in arable land: A review. Acta Pedologica Sinica, 2023, 60(3): 610-626. (in Chinese)
[19]
钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测. 自然资源遥感, 2023, 35(4): 178-185.
ZHONG X Y, LI H Y, GUO D Y, XIE M D, ZHAO W R, HU B F. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model. Remote Sensing for Natural Resources, 2023, 35(4): 178-185. (in Chinese)
[20]
GUO P T, LI M F, LUO W, TANG Q F, LIU Z W, LIN Z M. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals Kriging approach. Geoderma, 2015, 237: 49-59.
[21]
周鑫洋, 黄青, 刘航. 近10年嫩江市大豆种植结构空间演变研究. 中国农业资源与区划, 2023, 44(12): 77-83.
ZHOU X Y, HUANG Q, LIU H. Study on the spatial evolution of soybean planting structure in Nenjiang County in recent 10 years. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(12): 77-83. (in Chinese)
[22]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[23]
张万涛, 吉静怡, 李彬彬, 王菊, 许明祥. 黄土高原不同地貌区农田土壤有机质预测方法研究. 植物营养与肥料学报, 2021, 27(4): 583-594.
ZHANG W T, JI J Y, LI B B, WANG J, XU M X. Spatial prediction of soil organic matter of farmlands under different landforms in the Loess Plateau, China. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 583-594. (in Chinese)
[24]
陈宣强, 赵明松, 卢宏亮, 徐少杰, 邱士其, 胡克宏. 基于3种地理加权回归方法的安徽省土壤pH空间预测制图对比研究. 地理科学, 2023, 43(1): 173-183.

doi: 10.13249/j.cnki.sgs.2023.01.018
CHEN X Q, ZHAO M S, LU H L, XU S J, QIU S Q, HU K H. Comparison and analysis of spatial prediction and variability of soil pH in Anhui Province based on three kinds of geographically weighted regression. Scientia Geographica Sinica, 2023, 43(1): 173-183. (in Chinese)

doi: 10.13249/j.cnki.sgs.2023.01.018
[25]
李顿, 王雪梅, 李坤玉, 安柏耸. 基于变量筛选与机器学习算法的渭-库绿洲土壤有机质含量估测研究. 地球与环境, 2024, 52(3): 375-385.
LI D, WANG X M, LI K Y, AN B S. Estimation of soil organic matter content in Wei-ku oasis based on variables screening and machine learning algorithms. Earth and Environment, 2024, 52(3): 375-385. (in Chinese)
[26]
方匡南, 吴见彬, 朱建平, 谢邦昌. 随机森林方法研究综述. 统计与信息论坛, 2011, 26(3): 32-38.
FANG K N, WU J B, ZHU J P, XIE B C. A review of technologies on random forests. Statistics & Information Forum, 2011, 26(3): 32-38. (in Chinese)
[27]
席承藩. 土壤分类学. 北京: 中国农业出版社, 1994.
XI C F. Soil Taxonomy. Beijing: China Agriculture Press, 1994. (in Chinese)
[28]
柴华, 何念鹏. 中国土壤容重特征及其对区域碳贮量估算的意义. 生态学报, 2016, 36(13): 3903-3910.
CHAI H, HE N P. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale. Acta Ecologica Sinica, 2016, 36(13): 3903-3910. (in Chinese)
[29]
SHI S W, HAN P F. Estimating the soil carbon sequestration potential of China’s Grain for Green Project. Global Biogeochemical Cycles, 2014, 28(11): 1279-1294.
[30]
胡培. 土壤颗粒组成与有机质含量对水稻土容重的影响. 农村经济与科技, 2021, 32(19): 48-51.
HU P. Effects of soil particle composition and organic matter content on bulk density of paddy soil. Rural Economy and Science- Technology, 2021, 32(19): 48-51. (in Chinese)
[31]
刘战东, 张凯, 米兆荣, 秦安振, 黄超, 马岩川, 余轩, 孙景生, 黄世清, 李长有, 张景忙. 不同土壤容重条件下水分亏缺对作物生长和水分利用的影响. 水土保持学报, 2019, 33(2): 115-120.
LIU Z D, ZHANG K, MI Z R, QIN A Z, HUANG C, MA Y C, YU X, SUN J S, HUANG S Q, LI C Y, ZHANG J M. Effects of water deficit on crop growth and water use under different soil bulk densities. Journal of Soil and Water Conservation, 2019, 33(2): 115-120. (in Chinese)
[32]
YANG Q Y, LUO W Q, JIANG Z C, LI W J, YUAN D X. Improve the prediction of soil bulk density by cokriging with predicted soil water content as auxiliary variable. Journal of Soils and Sediments, 2016, 16(1): 77-84.
[33]
于冬雪, 贾小旭, 黄来明, 邵明安, 王娇. 黄土区不同土层土壤容重空间变异与模拟. 土壤学报, 2019, 56(1): 55-64.
YU D X, JIA X X, HUANG L M, SHAO M A, WANG J. Spatial variation of soil bulk density in different soil layers in the loess area and simulation. Acta Pedologica Sinica, 2019, 56(1): 55-64. (in Chinese)
[34]
吴文斌, 杨鹏, 唐华俊, Ongaro Luca, Shibasaki Ryosuke. 土地利用对土壤性质影响的区域差异研究. 中国农业科学, 2007, 40(8): 1697-1702.
WU W B, YANG P, TANG H J, LUCA O, RYOSUKE S. Regional variability of effects of land use system on soil properties. Scientia Agricultura Sinica, 2007, 40(8): 1697-1702. (in Chinese)
[35]
WANG S F, CAO Y G, PIETRZYKOWSKI M, ZHOU W, ZHAO Z Q, BAI Z K. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area. Environmental Monitoring and Assessment, 2020, 192(11): 740.

doi: 10.1007/s10661-020-08692-6 pmid: 33128682
[36]
乔磊, 张吴平, 黄明镜, 王国芳, 任健. 基于MGWRK的土壤有机质制图及驱动因素研究. 中国农业科学, 2020, 53(9): 1830-1844. doi: 10.3864/j.issn.0578-1752.2020.09.011.
QIAO L, ZHANG W P, HUANG M J, WANG G F, REN J. Mapping of soil organic matter and its driving factors study based on MGWRK. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844. doi: 10.3864/j.issn.0578-1752.2020.09.011. (in Chinese)
[37]
汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540.
WANG J K, XU Y D, DING F, GAO X D, LI S Y, SUN L J, AN T T, PEI J B, LI M, WANG Y, ZHANG W J, GE Z. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: A review. Acta Pedologica Sinica, 2019, 56(3): 528-540. (in Chinese)
[38]
HAN G Z, ZHANG G L, GONG Z T, WANG G F. Pedotransfer functions for estimating soil bulk density in China. Soil Science, 2012, 177(3): 158-164.
[39]
邹养军, 马锋旺, 韩明玉, 吴亚维. 土壤紧实胁迫与植物抗胁迫响应机理研究进展. 干旱地区农业研究, 2007, 25(6): 212-215, 236.
ZOU Y J, MA F W, HAN M Y, WU Y W. Advance in Research of effect and mechanism of higher soil compaction on plant growth. Agricultural Research in the Arid Areas, 2007, 25(6): 212-215, 236. (in Chinese)
[40]
王辉, 王全九, 邵明安. 表层土壤容重对黄土坡面养分随径流迁移的影响. 水土保持学报, 2007, 21(3): 10-13, 18.
WANG H, WANG Q J, SHAO M A. Effect of soil bulk density on soil nutrient in runoff from loess slope. Journal of Soil and Water Conservation, 2007, 21(3): 10-13, 18. (in Chinese)
[41]
刘武仁, 郑金玉, 罗洋, 郑洪兵, 李瑞平, 李伟堂. 不同耕层构造对土壤硬度和含水量的影响. 玉米科学, 2013, 21(6): 76-80.
LIU W R, ZHENG J Y, LUO Y, ZHENG H B, LI R P, LI W T. Effects of different tillage layer structures on soil compaction and soil water content. Journal of Maize Sciences, 2013, 21(6): 76-80. (in Chinese)
[42]
郝翔翔, 邹文秀, 韩晓增. 长期不同利用方式对黑土剖面中有机质化学组成的影响. 土壤学报, 2022, 59(5): 1228-1237.
HAO X X, ZOU W X, HAN X Z. Impact of long-term land-use patterns on chemical composition of soil organic matter in mollisol profile. Acta Pedologica Sinica, 2022, 59(5): 1228-1237. (in Chinese)
[43]
FU X L, SHAO M G, WEI X R, HORTON R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 2010, 155(1/2): 31-35.
[44]
熊佰炼, 高扬, 彭韬, 颜雄. 喀斯特坡地浅层岩溶裂隙土壤团聚体稳定性与养分垂向变化特征. 土壤学报, 2021, 58(6): 1472-1485.
XIONG B L, GAO Y, PENG T, YAN X. Characteristics of vertical variation of soil aggregates stability and nutrients in shallow Karst fissures of Karst sloping fields. Acta Pedologica Sinica, 2021, 58(6): 1472-1485. (in Chinese)
[45]
徐爽, 阚雨晨. 不同肥力水平的土壤紧实度与含水量的相关度分析. 中国农学通报, 2022, 38(36): 94-100.

doi: 10.11924/j.issn.1000-6850.casb2021-1223
XU S, KAN Y C. Correlation of soil compactness and water content under different fertility levels. Chinese Agricultural Science Bulletin, 2022, 38(36): 94-100. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-1223
[46]
张鹏飞, 贾小旭, 赵春雷, 邵明安. 初始容重对土壤水分特征曲线的影响. 干旱区研究, 2022, 39(4): 1174-1180.

doi: 10.13866/j.azr.2022.04.18
ZHANG P F, JIA X X, ZHAO C L, SHAO M A. Effects of initial bulk density on soil water characteristic curve. Arid Zone Research, 2022, 39(4): 1174-1180. (in Chinese)

doi: 10.13866/j.azr.2022.04.18
[47]
BISWAS B C, DASGUPTA S K. Estimation of soil moisture at deeper depth from surface layer data. Mausam, 1979, 30(4): 511-516.
[48]
马婧怡, 贾宁凤, 程曼. 黄土丘陵区不同土地利用方式下土壤水分变化特征. 生态学报, 2018, 38(10): 3471-3481.
MA J Y, JIA N F, CHENG M. Water characteristics of soil under different land-use types in the Loess Plateau region. Acta Ecologica Sinica, 2018, 38(10): 3471-3481. (in Chinese)
[49]
杜康, 张北赢. 黄土丘陵区不同土地利用方式土壤水分变化特征. 水土保持研究, 2020, 27(6): 72-76.
DU K, ZHANG B Y. Characteristics of soil moisture variation in different types of land uses in the Loess Hilly Region. Research of Soil and Water Conservation, 2020, 27(6): 72-76. (in Chinese)
[50]
韩晓增, 李娜. 中国东北黑土地研究进展与展望. 地理科学, 2018, 38(7): 1032-1041.

doi: 10.13249/j.cnki.sgs.2018.07.004
HAN X Z, LI N. Research progress of black soil in Northeast China. Scientia Geographica Sinica, 2018, 38(7): 1032-1041. (in Chinese)

doi: 10.13249/j.cnki.sgs.2018.07.004
[1] FENG XiaoLin, ZHANG ChuTian, XU ChenYang, GENG ZengChao, HU FeiNan, DU Wei. Spatiotemporal Distribution Characteristics and Influencing Factors of Soil Inorganic Carbon in Shaanxi Province [J]. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532.
[2] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[3] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[4] HUO RunXia, ZHANG Zhe, LI WenPing, ZHANG YangYang, LIAO ShiPeng, REN Tao, LI XiaoKun, LU ZhiFeng, CONG RiHuan, LU JianWei. 40 Years’ Change Characteristics of Soil Basic Properties in the Main Planting Area of Winter Oilseed Rape [J]. Scientia Agricultura Sinica, 2023, 56(23): 4696-4705.
[5] LI SiQi, WANG ZhiHui, CHANG YuYao, JI YanZhi, GUO YanJie, LIU Jun, ZHANG LiJuan, WANG YaJing. Spatial Distribution of Nitrate in Vineyards Soils in Yongding River Basin, Hebei Province [J]. Scientia Agricultura Sinica, 2023, 56(17): 3399-3411.
[6] LI JiaQi, XUN Mi, SHI JunYuan, SONG JianFei, SHI YuJia, ZHANG WeiWei, YANG HongQiang. Response Characteristics of Rhizosphere and Root Endosphere Bacteria and Rhizosphere Enzyme Activities to Soil Compaction Stress in Young Apple Tree [J]. Scientia Agricultura Sinica, 2023, 56(13): 2563-2573.
[7] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[8] XIONG ShuPing, GAO Ming, ZHANG ZhiYong, QIN BuTan, XU SaiJun, FU XinLu, WANG XiaoChun, MA XinMing. Spatial and Temporal Difference Analysis of Wheat Yield and Yield Components in Henan Province Based on GIS [J]. Scientia Agricultura Sinica, 2022, 55(4): 692-706.
[9] YU WeiBao, LI Nan, KOU YiHong, CAO XinYou, SI JiSheng, HAN ShouWei, LI HaoSheng, ZHANG Bin, WANG FaHong, ZHANG HaiLin, ZHAO Xin, LI HuaWei. Study on the Quality Parameters of Strong Gluten Wheat and Analysis of Its Relationship with Meteorological Factors in Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(22): 4383-4397.
[10] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[11] ZHANG WeiLi, FU BoJie, XU AiGuo, YANG Peng, CHEN Tao, ZHANG RenLian, SHI Zhou, WU WenBin, LI JianBing, JI HongJie, LIU Feng, LEI QiuLiang, LI ZhaoJun, FENG Yao, LI YanLi, XU YongBing, PEI Wei. Geostatistical Characteristics of Soil Data from National Soil Survey Works in China [J]. Scientia Agricultura Sinica, 2022, 55(13): 2572-2583.
[12] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[13] LI ShaoHua,WANG YunPeng,WANG RongCheng,YIN Ping,LI XiangDong,ZHENG FangQiang. Spatial Distribution Pattern and Sampling Technique of Conogethes punctiferalis Larvae in Maize Fields [J]. Scientia Agricultura Sinica, 2022, 55(10): 1961-1970.
[14] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[15] Lei QIAO,WuPing ZHANG,MingJing HUANG,GuoFang WANG,Jian REN. Mapping of Soil Organic Matter and Its Driving Factors Study Based on MGWRK [J]. Scientia Agricultura Sinica, 2020, 53(9): 1830-1844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!