Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3399-3411.doi: 10.3864/j.issn.0578-1752.2023.17.013

• SOIL&FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY&ENVIRONMENT • Previous Articles     Next Articles

Spatial Distribution of Nitrate in Vineyards Soils in Yongding River Basin, Hebei Province

LI SiQi1, WANG ZhiHui2, CHANG YuYao1, JI YanZhi1, GUO YanJie1, LIU Jun3, ZHANG LiJuan1, WANG YaJing1   

  1. 1College of Resources and Environmental Sciences, Hebei Agricultural University/Key Laboratory of Farmland Eco-Environment of Hebei Province/Innovation Center of Urban Forest Health Technology of Hebei Province, Baoding 071000, Hebei
    2Geological Prospecting Institute, China General Administration of Metallurgical Geology, Baoding 071000, Hebei
    3Hebei Academy of Forestry Sciences, Shijiazhuang 050061
  • Received:2022-08-30 Accepted:2022-12-06 Online:2023-09-01 Published:2023-09-08
  • Contact: ZHANG LiJuan, WANG YaJing

Abstract:

【Objective】 The relationship between nitrogen input, elevation of vineyards and soil nitrate content and accumulation in Yongding River Basin was studied, in order to provide a theoretical basis for rational fertilization and reduction of environmental pollution risks of vineyards in Yongding River Basin. 【Method】 52 typical vineyards in Yongding River Basin of Hebei Province were selected as the research objects. The current situation of nutrient input in the vineyard was analyzed through field investigation. Soil nitrate contents of 0-60 cm (20 cm interval) was measured through indoor analysis, and its accumulation and surplus were calculated. Spatial variability of nitrogen input and surplus, soil nitrate content and accumulation were analyzed by ArcGIS geostatistics. 【Result】 Less than 50% of farmers in Yongding River basin applied organic fertilizer, mainly using inorganic fertilizer. The average nitrogen input in upstream and downstream vineyards was (1 492.79±988.90) and (1 079.31±638.25) kg·hm-2, respectively. The average nitrogen surplus were (1 430.41±993.01) and (1 027.23±637.37) kg·hm-2, respectively. There was a significant positive correlation between nitrogen input and surplus (P<0.01), and the spatial distribution showed a decreasing trend from west to east. The variation and spatial distribution of soil nitrate content and accumulation in different soil layers were consistent. The low value area was mainly distributed in the downstream, while the high value area was mainly distributed in the upstream. The average nitrate content of 0-60 cm soil profile in the upper and lower reaches was 34.96 and 18.76 mg·kg-1, respectively, and the average cumulative amount was 92.44 and 48.12 kg·hm-2, respectively, which showed significant differences among different soil layers. Soil nitrate content and accumulation in the upper reaches were the lowest in the 20-40 cm soil layer, and increased with the increase of soil layer in the lower reaches. Soil nitrate content and accumulation in the upper reaches were the highest at 600-650 m elevation, which were significantly higher than those at other elevations (P<0.05). However, soil nitrate content and accumulation in the lower reaches were not significantly affected by elevation. Correlation analysis showed that the distribution of nitrate accumulation in the surface layer were mainly affected by elevation, while in the bottom layer were mainly affected by nitrogen input. 【Conclusion】 In the Yongding River Basin, the nitrogen surplus of vineyards in the study area was serious, and the nitrate in the vertical soil layer accumulated to the deep layer. The soil nitrate content and accumulation at different elevations (except 450-500 m) were higher in the upstream than in the downstream, but the variation trend of vertical distribution was different, which was jointly affected by the elevation and nitrogen input.

Key words: Yongding River Basin, vineyards, nitrogen input and surplus, elevation, nitrate content, nitrate accumulation, the spatial distribution

Fig. 1

Distribution of vineyard sampling points in Yongding River Basin"

Fig. 2

Nitrogen input structure of vineyards in upstream and downstream of Yongding River Basin Different capital letters on the column represented significant differences in the same index between different regions (P<0.05); Different lowercase letters on the column represented significant differences among different indicators in the same region (P<0.05)"

Fig. 3

Spatial distribution of nitrogen input (a) and surplus (b) in vineyards in Yongding River Basin"

Table 1

Nitrogen input in vineyards of different elevations in Yongding River Basin (kg·hm-2)"

流域
Basin
高程 Elevations (m)
450-500 500-550 550-600 600-650 650-700
上游 Upstream 435.00±254.56 Aa 1 880.51±1 218.94 Aa 1 987.15±1 125.48 Aa 1 223.16±564.52 Aa 1 058.78±436.26 Aa
下游 Downstream 648.04±225.13 Ba 1 170.39±725.95 ABa 966.79±270.05 ABb 971.25±514.42 ABa 1 659.08±968.78 Aa
全流域 Whole basin 587.17±235.36 Ba 1 525.45±1 036.24 Aa 1 476.97±944.92 Aab 1 151.19±521.22 ABa 1 298.9±717.41 ABa

Fig. 4

Spatial distribution of nitrate content in 0-60 cm soil layer of vineyards in Yongding River Basin"

Table 2

Vertical distribution of nitrate content (mg·kg-1) in vineyard soil profiles at different elevations in upstream and downstream of the Yongding River Basin"

流域
Basin
土层
Soil layer (cm)
高程 Elevations (m)
450-500 500-550 550-600 600-650 650-700
上游
Upstream
0-20 2.53±2.11Ba 8.19±5.67Ba 8.03±2.89Ba 29.26±23.92Aa 13.03±8.58Ba
20-40 3.15±1.39Ba 8.40±6.23Ba 7.41±2.74Ba 18.28±5.79Aa 8.22±3.94Ba
40-60 2.92±3.28Aa 13.43±9.32Aa 13.16±17.11Aa 15.11±6.66Aa 12.59±11.16Aa
下游
Downstream
0-20 5.95±3.13Aa 4.52±2.62Aa 5.46±3.93Aa 4.49±1.04Aa 5.93±1.69Aa
20-40 5.61±5.45Aa 4.98±3.94Aa 6.01±3.08Aa 2.69±0.21Aa 6.85±8.85Aa
40-60 3.22±1.52Aa 8.00±8.40Aa 12.13±11.04Aa 3.39±0.69Aa 10.32±13.26Aa

Fig. 5

Spatial distribution of nitrate accumulation in 0-60 cm soil layer of vineyards in Yongding River Basin"

Table 3

Vertical distribution of nitrate accumulation (kg·hm-2) in vineyard soil profiles at different elevations in upstream and downstream of the Yongding River Basin"

流域
Basin
土层
Soil layer (cm)
高程 Elevations (m)
450-500 500-550 550-600 600-650 650-700
上游
Upstream
0-20 7.02±5.87Ba 22.46±15.55Ba 19.53±7.02Ba 74.49±60.90Aa 34.90±23.00Ba
20-40 10.37±6.09Ba 22.31±16.56Ba 18.80±6.95Ba 48.68±15.41Aa 21.78±10.42Ba
40-60 8.66±9.74Aa 37.92±26.32Aa 34.46±44.79Aa 40.95±18.05Aa 32.43±28.75Aa
下游
Downstream
0-20 16.47±8.66Aa 9.64±5.46Aa 13.16±9.48Aa 11.97±2.77Aa 14.80±4.21Aa
20-40 15.15±14.69Aa 11.72±10.79Aa 13.58±6.96Aa 7.22±0.55Aa 18.84±24.37Aa
40-60 9.88±4.66Aa 20.33±22.50Aa 32.24±29.37Aa 8.76±1.79Aa 29.40±37.78Aa

Table 4

Correlations analysis of environmental factors and nitrate accumulation in vineyard soil profiles"

表层硝态氮累积量
Surface nitrate accumulation
中层硝态氮累积量
Middle nitrate accumulation
底层硝态氮累积量
Bottom nitrate accumulation
对应土层硝态氮含量
Corresponding to the nitrate content of soil layer
0.998** 0.997** 0.997**
对应土层含水量 Corresponding soil moisture content 0.132 0.274 0.267
对应土层粉粒含量 Corresponding to soil silt content -0.021 0.036 -0.125
对应土层黏粒含量 Corresponding to soil clay content 0.075 0.133 -0.067
氮素投入 Nitrogen input -0.016 0.220 0.253
高程 Elevation 0.322* 0.263 0.154
[1]
中国统计年鉴. 北京: 中国统计出版社, 2021.
China Statistical Yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[2]
王探魁, 张丽娟, 冯万忠, 吉艳芝, 杨志新, 秦晓杰. 河北省葡萄主产区施肥现状调查分析与研究. 北方园艺, 2011(13): 5-9.
WANG T K, ZHANG L J, FENG W Z, JI Y Z, YANG Z X, QIN X J. Present situation and research of fertilizer application on grape in main production regions of Hebei Province. Northern Horticulture, 2011(13): 5-9. (in Chinese)
[3]
王志慧, 马振朝, 张丽娟, 马文奇, 吉艳芝. 河北葡萄园施肥与土壤养分演变及其对产量的影响. 北方园艺, 2020(7): 106-115.
WANG Z H, MA Z C, ZHANG L J, MA W Q, JI Y Z. Fertilization and soil nutrient evolution of vineyards in Hebei and its impact on yield. Northern Horticulture, 2020(7): 106-115. (in Chinese)
[4]
钱玲, 任建青, 童江云, 陈杉艳, 林峰莹, 梁志妹, 董琼娥. 不同施氮量对草莓生长发育、果实品质及产量的影响. 云南农业大学学报(自然科学), 2020, 35(3): 530-534.
QIAN L, REN J Q, TONG J Y, CHEN S Y, LIN F Y, LIANG Z M, DONG Q E. Effect of different nitrogen levels on the growth and development, fruit quality and yield of strawberry. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3): 530-534. (in Chinese)
[5]
史怀苹. 北京市平谷区地下水水质状况及污染防治措施. 水土保持应用技术, 2022(3): 35-37.
SHI H P. Groundwater quality and pollution control measures in Pinggu District, Beijing. Technology of Soil and Water Conservation, 2022(3): 35-37. (in Chinese)
[6]
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276.

doi: 10.1038/nrmicro.2018.9 pmid: 29398704
[7]
李磊, 王锐, 纪立东, 孙权, 许晓瑞, 蒋鹏. 氮肥施用量对酿酒葡萄初果期生长及产量品质的影响. 北方园艺, 2016(21): 32-36.
LI L, WANG R, JI L D, SUN Q, XU X R, JIANG P. Effects of nitrogen fertilizer application on beginning growth, yield and quality of wine grape. Northern Horticulture, 2016(21): 32-36. (in Chinese)
[8]
李鑫鑫, 刘洪光, 林恩. 基于15N示踪技术的干旱区滴灌葡萄氮素利用分析. 核农学报, 2020, 34(11): 2551-2560.

doi: 10.11869/j.issn.100-8551.2020.11.2551
LI X X, LIU H G, LIN E. Analysis of nitrogen utilization of drip irrigation grapes in arid area based on 15N tracer technology. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2551-2560. (in Chinese)
[9]
王朔, 李帅霖, 曾秀丽, 代安国, 张姗姗, 张凯, 路贵龙, 李元会. 西藏设施葡萄土壤酸化、盐渍化和养分特征. 果树学报, 2018, 35(8): 957-966.
WANG S, LI S L, ZENG X L, DAI A G, ZHANG S S, ZHANG K, LU G L, LI Y H. Soil acidification, salinization and nutrient characteristics in greenhouse vineyards in Tibet. Journal of Fruit Science, 2018, 35(8): 957-966. (in Chinese)
[10]
廖思远, 秦延文, 刘志超, 杨晨晨, 时瑶, 马迎群, 肖克彦, 林颖美. 邛海流域设施葡萄园土壤养分与地下水污染特征研究. 环境工程技术学报, 2022, 12(2): 597-606.
LIAO S Y, QIN Y W, LIU Z C, YANG C C, SHI Y, MA Y Q, XIAO K Y, LIN Y M. Characteristics of soil nutrients and groundwater pollution of greenhouse vineyards in Qionghai Lake Basin. Journal of Environmental Engineering Technology, 2022, 12(2): 597-606. (in Chinese)
[11]
高晶波, 路永莉, 陈竹君, 周建斌. 猕猴桃园氮素投入特点及硝态氮累积和迁移特性研究. 农业环境科学学报, 2016, 35(2): 322-328.
GAO J B, LU Y L, CHEN Z J, ZHOU J B. Nitrogen inputs and nitrate accumulation and movement in soil of kiwifruit orchards. Journal of Agro-Environment Science, 2016, 35(2): 322-328. (in Chinese)
[12]
哈里·阿力腾别克, 孙宗玖, 何盘星, 刘慧霞. 封育对蒿类荒漠草地土壤氮素含量及其组分特征的影响. 水土保持学报, 2022(6): 222-230, 240.
ALITENGBIEKE, SUN Z J, HE P X, LIU H X. Effects of grazing exclusion on soil nitrogen content and its component characteristics in sagebrush desert grassland. Journal of Soil and Water Conservation, 2022(6): 222-230, 240. (in Chinese)
[13]
何飞飞, 任涛, 陈清, 江荣风, 张福锁. 日光温室蔬菜的氮素平衡及施肥调控潜力分析. 植物营养与肥料学报, 2008, 14(4): 692-699.
HE F F, REN T, CHEN Q, JIANG R F, ZHANG F S. Nitrogen balance and optimized potential of integrated nitrogen management in greenhouse vegetable system. Plant Nutrition and Fertilizer Science, 2008, 14(4): 692-699. (in Chinese)
[14]
王秀娟, 韩瑛祚, 何志刚, 刘慧屿, 董环, 娄春荣. 不同种植方式对设施番茄根系及土壤中氮磷分布的影响. 北方园艺, 2020(2): 1-7.
WANG X J, HAN Y Z, HE Z G, LIU H Y, DONG H, LOU C R. Effects of different planting methods on nitrogen and phosphorus distribution in root and soil of protected tomato. Northern Horticulture, 2020(2): 1-7. (in Chinese)
[15]
李若楠, 武雪萍, 张彦才, 王丽英, 陈丽莉, 翟凤芝. 节水减氮对温室土壤硝态氮与氮素平衡的影响. 中国农业科学, 2016, 49(4): 695-704. doi:10.3864/j.issn.0578-1752.2016.04.009.

doi: 10.3864/j.issn.0578-1752.2016.04.009
LI R N, WU X P, ZHANG Y C, WANG L Y, CHEN L L, ZHAI F Z. Effects of reduced application of nitrogen and irrigation on soil nitrate nitrogen content and nitrogen balance in greenhouse production. Scientia Agricultura Sinica, 2016, 49(4): 695-704. doi: 10.3864/j.issn.0578-1752.2016.04.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.04.009
[16]
徐运清, 秦红灵, 全智, 魏文学. 长期蔬菜种植对菜地土壤剖面硝酸盐分布和地下水硝态氮含量的影响. 农业现代化研究, 2015, 36(6): 1080-1085.
XU Y Q, QIN H L, QUAN Z, WEI W X. Effects of long-term vegetable cultivation on the NO3--N contents in soil profile and groundwater. Research of Agricultural Modernization, 2015, 36(6): 1080-1085. (in Chinese)
[17]
李乐, 马巍, 勾蒙蒙, 王娜, 刘常富, 肖文发. 三峡库区典型流域硝态氮输出特征及归因分析. 水土保持学报, 2022, 36(4): 74-84.
LI L, MA W, GOU M M, WANG N, LIU C F, XIAO W F. Export characteristics of nitrate-N and its dominant factors in typical basins of the Three Gorges reservoir area. Journal of Soil and Water Conservation, 2022, 36(4): 74-84. (in Chinese)
[18]
刘占军, 祝慧, 张振兴, 赵家锐, 侯立耀, 翟丙年, 徐新朋, 雷秋良, 朱元骏. 我国苹果园施肥现状、土壤剖面氮磷分布特征及减肥增效技术. 植物营养与肥料学报, 2021, 27(7): 1294-1304.
LIU Z J, ZHU H, ZHANG Z X, ZHAO J R, HOU L Y, ZHAI B N, XU X P, LEI Q L, ZHU Y J. Current status of fertilization, distribution of N and P in soil profiles and techniques for reducing fertilizer application and improving efficiency in China’s apple orchards. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1294-1304. (in Chinese)
[19]
RANA M S, MURTAZA G, HU C X, SUN X C, IMRAN M, AFZAL J, ELYAMINE A M, KHAN Z, RIAZ M, SHAABAN M, WARIS M. Nitrate leaching losses reduction and optimization of N-use efficiency in Triticumaestivum L. and Oryza sativa L. crop rotation for enhancing crop productivity. Pakistan Journal of Agricultural Sciences, 2020, 57(3): 645-653.
[20]
范宏翔, 徐力刚, 赵旭, 胡岳峰. 太湖流域典型稻-麦轮作农田区氮素流失过程研究. 生态环境学报, 2015, 24(2): 255-262.

doi: 10.16258/j.cnki.1674-5906.2015.02.012
FAN H X, XU L G, ZHAO X, HU Y F. Study on nitrogen loss in rice-wheat rotation farmland in Taihu Basin. Ecology and Environmental Sciences, 2015, 24(2): 255-262. (in Chinese)
[21]
马振朝, 王嘉莹, 庞新宇, 李蕊, 谢枫, 孙浩, 吉艳芝. 河北省葡萄施肥现状及节能减排潜力分析. 江苏农业科学, 2018, 46(5): 135-139.
MA Z C, WANG J Y, PANG X Y, LI R, XIE F, SUN H, JI Y Z. Analysis of fertilization status and energy saving and emission reduction potential of grape in Hebei Province. Jiangsu Agricultural Sciences, 2018, 46(5): 135-139. (in Chinese)
[22]
郭路航, 王贺鹏, 李妍, 许傲, 李文超, 孙志梅, 马文奇. 河北太行山山前平原葡萄园土壤硝态氮累积特征及影响因素. 水土保持学报, 2022, 36(3): 280-285.
GUO L H, WANG H P, LI Y, XU A, LI W C, SUN Z M, MA W Q. Accumulation characteristics and influencing factors of soil nitrate nitrogen in vineyard in piedmont plain of Taihang Mountain, Hebei Province. Journal of Soil and Water Conservation, 2022, 36(3): 280-285. (in Chinese)
[23]
车明轩, 吴强, 方浩, 康成芳, 吕宸, 许蔓菁, 宫渊波. 海拔、坡向对川西高山灌丛草甸土壤氮、磷分布的影响. 应用与环境生物学报, 2021, 27(5): 1163-1169.
CHE M X, WU Q, FANG H, KANG C F, C, XU M J, GONG Y B. Effects of elevation and slope aspect on soil nitrogen and phosphorus distribution of western Sichuan Plateau shrub meadow. Chinese Journal of Applied and Environmental Biology, 2021, 27(5): 1163-1169. (in Chinese)
[24]
杨起帆, 熊勇, 余泽平, 刘骏, 刘小玉, 习丹. 江西官山不同海拔常绿阔叶林土壤活性氮组分特征. 中南林业科技大学学报, 2021, 41(9): 138-147.
YANG Q F, XIONG Y, YU Z P, LIU J, LIU X Y, XI D. Characteristics of soil active nitrogen fractions in evergreen broad-leaved forests at different altitudes in Guanshan Mountain of Eastern China. Journal of Central South University of Forestry & Technology, 2021, 41(9): 138-147. (in Chinese)
[25]
ALOTAIBI K D, CAMBOURIS A N, ST LUCE M, ZIADI N, TREMBLAY N. Economic optimum nitrogen fertilizer rate and residual soil nitrate as influenced by soil texture in corn production. Agronomy Journal, 2018, 110(6): 2233-2242.

doi: 10.2134/agronj2017.10.0583
[26]
徐家屯. 基于RZWQM2模型的关中灌区冬小麦/夏玉米灌溉施肥优化及深层土壤水氮运移特征分析[D]. 杨凌: 西北农林科技大学, 2020.
XU J T. Optimized irrigation and fertilization for winter wheat and summer maize and simulated dynamic characteristics of water and nitrogen transport at deep soil depths based on RZWQM2 model in Guanzhong irrigation area[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[27]
汪新颖. 施肥深度对葡萄氮素营养特征及土体硝态氮迁移的影响[D]. 保定: 河北农业大学, 2015.
WANG X Y. Effects of fertilizer application depth on nitrogen nutrition of grapes and nitrate nitrogen transport[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese)
[28]
韩建, 尹兴, 郭景丽, 吉艳芝, 张杰, 张丽娟, 马文奇. 有机肥施用对红地球葡萄产量、品质及土壤环境的影响. 植物营养与肥料学报, 2020, 26(1): 131-142.
HAN J, YIN X, GUO J L, JI Y Z, ZHANG J, ZHANG L J, MA W Q. Effects of manure application on yield and quality of Red Globe grape and soil environment. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 131-142. (in Chinese)
[29]
王探魁, 吉艳芝, 张丽娟, 韩鹏辉, 杨志新. 不同产量水平葡萄园水肥投入特点及其土壤-树体养分特征分析. 水土保持学报, 2011, 25(3): 136-141, 146.
WANG T K, JI Y Z, ZHANG L J, HAN P H, YANG Z X. Characteristics of water and fertilizer inputs in different production levels wineyards and soil-tree nutrient characteristics analyse. Journal of Soil and Water Conservation, 2011, 25(3): 136-141, 146. (in Chinese)
[30]
卢诚, 于海森, 王洪江. 沙城葡萄产区怀涿盆地的形成及地质地貌特性. 中外葡萄与葡萄酒, 2009(7): 49-50.
LU C, YU H S, WANG H J. The formation and geological and geomorphological characteristics of Huaizhuo Basin in Shacheng grape producing area. Sino-Overseas Grapevine & Wine, 2009(7): 49-50. (in Chinese)
[31]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[32]
全国农业技术推广服务中心. 中国有机肥料养分志. 北京: 中国农业出版社, 1999.
National Agricultural Technology Extension Service Center. China Organic Fertilizer Nutrient Record. Beijing: Chinese Agriculture Press, 1999. (in Chinese)
[33]
刘沥阳, 华伟, 张诗雨, 彭启超, 戴健, 韩晓日. 东北棕壤长期不同施肥处理轮作大豆氮素吸收和土壤硝态氮特征. 植物营养与肥料学报, 2020, 26(1): 10-18.
LIU L Y, HUA W, ZHANG S Y, PENG Q C, DAI J, HAN X R. Nitrogen uptake of soybean and soil nitrate nitrogen under long-term rotation and different fertilization in a brown soil of northeast China. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 10-18. (in Chinese)
[34]
孙卓玲. 河北葡萄主产区水肥一体化技术研究[D]. 保定: 河北农业大学, 2014.
SUN Z L. Fertigation research of the main grape planting areas in Hebei Province[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
[35]
高祥照, 申眺, 郑义. 肥料实用手册. 北京: 中国农业出版社, 2002.
GAO X Z. SHEN T, ZHENG Y. Practical Handbook of Fertilizer. Beijing: Chinese Agriculture Press, 2002. (in Chinese)
[36]
中国化工企业管理协会. 中国肥料实用手册. 北京: 中国国际广播音像出版社, 2006: 824-834.
China Chemical Enterprise Management Association. China Fertilizer Practical Manual. Beijing: China International Radio Audiovisual Publishing House, 2006: 824-834. (in Chinese)
[37]
卢树昌, 陈清, 张福锁, 贾文竹. 河北省果园氮素投入特点及其土壤氮素负荷分析. 植物营养与肥料学报, 2008, 14(5): 858-865.
LU S C, CHEN Q, ZHANG F S, JIA W Z. Analysis of nitrogen input and soil nitrogen load in orchards of Hebei Province. Plant Nutrition and Fertilizer Science, 2008, 14(5): 858-865. (in Chinese)
[38]
GONG P, ZHANG Y, LIU H G. Effects of irrigation and N fertilization on 15N fertilizer utilization by Vitis vinifera L. cabernet sauvignon in China. Water, 2022, 14(8): 1205.

doi: 10.3390/w14081205
[39]
吕中伟, 郭战玲, 张柯, 吴文莹, 娄玉穗, 杨占平. 减量施肥对葡萄产量、养分吸收及土壤养分残留的影响. 河南农业科学, 2020, 49(6): 127-131.
Z W, GUO Z L, ZHANG K, WU W Y, LOU Y S, YANG Z P. Effects of reduced fertilization on yield, nutrient uptake and soil nutrient residue of grape. Journal of Henan Agricultural Sciences, 2020, 49(6): 127-131. (in Chinese)
[40]
LIU K L, DU J X, ZHONG Y J, SHEN Z, YU X C. The response of potato tuber yield, nitrogen uptake, soil nitrate nitrogen to different nitrogen rates in red soil. Scientific Reports, 2021, 11: 22506.

doi: 10.1038/s41598-021-02086-5 pmid: 34795355
[41]
薛亮, 马忠明, 杜少平, 冯守疆, 冉生斌. 氮素用量对膜下滴灌甜瓜产量以及氮素平衡、硝态氮累积的影响. 中国农业科学, 2019, 52(4): 690-700. doi: 10.3864/j.issn.0578-1752.2019.04.010.

doi: 10.3864/j.issn.0578-1752.2019.04.010
XUE L, MA Z M, DU S P, FENG S J, RAN S B. Effects of application of nitrogen on melon yield, nitrogen balance and soil nitrogen accumulation under plastic mulching with drip irrigation. Scientia Agricultura Sinica, 2019, 52(4): 690-700. doi: 10.3864/j.issn.0578-1752.2019.04.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.04.010
[42]
王新媛, 赵思达, 郑险峰, 王朝辉, 何刚. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响. 中国农业科学, 2021, 54(23): 5043-5053. doi: 10.3864/j.issn.0578-1752.2021.23.010.

doi: 10.3864/j.issn.0578-1752.2021.23.010
WANG X Y, ZHAO S D, ZHENG X F, WANG Z H, HE G. Effects of straw returning and nitrogen application rate on grain yield and nitrogen utilization of winter wheat. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053. doi: 10.3864/j.issn.0578-1752.2021.23.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.23.010
[43]
李聪, 陆梅, 任玉连, 杜凡, 陶海, 杨罗平, 王东旭. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子. 北京林业大学学报, 2020, 42(12): 63-73.
LI C, LU M, REN Y L, DU F, TAO H, YANG L P, WANG D X. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China. Journal of Beijing Forestry University, 2020, 42(12): 63-73. (in Chinese)
[44]
马和平, 郭其强, 刘合满, 钱登锋. 西藏色季拉山西坡不同海拔梯度表层土壤碳氮变化特性的研究. 林业科学研究, 2013, 26(2): 240-246.
MA H P, GUO Q Q, LIU H M, QIAN D F. Changes of soil organic carbon and total nitrogen at different altitudes in west slope of sejila mountain of Tibet. Forest Research, 2013, 26(2): 240-246. (in Chinese)
[45]
张珊, 李玉, 车克钧, 车宗玺, 王立, 刘贤德. 祁连山东段青海云杉林区土壤氮矿化与土壤因子的相关性. 水土保持学报, 2016, 30(5): 218-223.
ZHANG S, LI Y, CHE K J, CHE Z X, WANG L, LIU X D. Study on the relationship between soil nitrogen mineralization of Picea crassifolia forest and soil factors in the eastern of Qilian mountains. Journal of Soil and Water Conservation, 2016, 30(5): 218-223. (in Chinese)
[46]
李婷, 张世熔, 廖明辉, 孙丹峰, 黄元仿, 李保国. 川中丘陵区涪江流域土壤矿质氮空间分布特征. 农业环境科学学报, 2010, 29(12): 2443-2449.
LI T, ZHANG S R, LIAO M H, SUN D F, HUANG Y F, LI B G. Spatial distribution characteristics of soil mineral nitrogen in Fujiang watershed in the hilly region of the middle Sichuan, China. Journal of Agro-Environment Science, 2010, 29(12): 2443-2449. (in Chinese)
[47]
SHARMA N, KUMAR S. Nitrogen transformation rates in the Himalayan soils at different temperature and elevation conditions. Journal of Soils and Sediments, 2021, 21(1): 13-26.

doi: 10.1007/s11368-020-02722-z
[48]
林俊杰, 张帅, 刘丹, 周斌, 肖晓君, 马慧燕, 于志国. 季节性温度升高对落干期消落带土壤氮矿化影响. 环境科学, 2016, 37(2): 697-702.
LIN J J, ZHANG S, LIU D, ZHOU B, XIAO X J, MA H Y, YU Z G. Effect of seasonal temperature increasing on nitrogen mineralization in soil of the water level fluctuating zone of Three Gorge tributary during the dry period. Environmental Science, 2016, 37(2): 697-702. (in Chinese)
[49]
赵玉峰, 罗专溪, 于亚军, 陈迎辉, 张树刚, 张清华. 京津冀西北典型区域地下水位时空演变及驱动因素. 自然资源学报, 2020, 35(6): 1301-1313.

doi: 10.31497/zrzyxb.20200604
ZHAO Y F, LUO Z X, YU Y J, CHEN Y H, ZHANG S G, ZHANG Q H. Spatio-temporal changes of groundwater level and its driving factors in a typical region of Beijing-Tianjin-Hebei region, China. Journal of Natural Resources, 2020, 35(6): 1301-1313. (in Chinese)

doi: 10.31497/zrzyxb.20200604
[1] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[2] YIN Fei, WANG JunZhong, SUN XiaoMei, LI HongQi, FU GuoZhan, PEI RuiJie, JIAO NianYuan. Response of Spatial Concordance Index Between Maize Root and Soil Nitrate Distribution to Water and Nitrogen Treatments [J]. Scientia Agricultura Sinica, 2017, 50(11): 2166-2178.
[3] LIANG Xin-lan, ZHAO Long-shan, WU Jia, WU Fa-qi. Effects of Different Tillage Treatments and Rainfall Intensities on Soil Surface Roughness Under Simulated Condition [J]. Scientia Agricultura Sinica, 2014, 47(24): 4840-4849.
[4] CHEN Xuan-Yang, ZHANG Zhao-Juan, ZHENG Jia-Wei, LIN Yu-Li. Effects of Hydroponics on Nutrient Components and Nitrate Contents in Tips of Leaf Vegetable Sweet Potato [J]. Scientia Agricultura Sinica, 2013, 46(17): 3736-3742.
[5] YIN Xing, JI Yan-Zhi, NI Yu-Xue, WANG Tan-Kui, ZHANG Li-Juan. Status of Soil Fertility in Vineyard-Producing Areas of Hebei Province [J]. Scientia Agricultura Sinica, 2013, 46(10): 2067-2075.
[6] ZHANG Yong-Li, JU Xiao-Tang. Mining the Accumulated Nitrate from Deep Soil Layers by Rotation with Different Crops [J]. Scientia Agricultura Sinica, 2012, 45(16): 3297-3309.
[7] . Enhancing spatial prediction of soil properties using elevation [J]. Scientia Agricultura Sinica, 2007, 40(12): 2766-2773 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!