Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1617-1626.doi: 10.3864/j.issn.0578-1752.2025.08.012

• HORTICULTURE • Previous Articles     Next Articles

Cloning of CmASMT and Its Role in Thermotolerance of Chrysanthemum

MENG Hui(), LUO BingYu, LU ZhengYu, WANG Peng, KANG DongRu, ZHENG ChengShu, WANG WenLi()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/Chrysanthemum Research Center of China, Japan and Korea in Shandong Province, Tai’an 271018, Shandong
  • Received:2024-10-14 Accepted:2024-12-27 Online:2025-04-16 Published:2025-04-21
  • Contact: WANG WenLi

Abstract:

【Background】 Chrysanthemum is one of the ten Chinese traditional flowers and four most important cut flowers in the world, originating from China and widely cultivated throughout the world. As chrysanthemum thrives in mild and cool climates, the summer high-temperature weather leads to continuous high temperature in protected cultivation environments, which seriously affects the yield and quality of chrysanthemum. 【Objective】Exogenous application of melatonin helps to regulate plant response to various abiotic stresses, including high-temperature stress. N-acetyl-5-hydroxytryptamine methyltransferase (ASMT) is the rate-limiting enzyme for melatonin biosynthesis. This study investigated the function of CmASMT, examined its effect on chrysanthemum growth under high-temperature stress, and explored how endogenous melatonin synthesis influences thermotolerance. This paper provides a theoretical basis for the molecular mechanism of melatonin-regulated thermotolerance in plants and the molecular breeding of chrysanthemum. 【Method】The CmASMT involved in melatonin biosynthesis was cloned from Chrysanthemum morifolium Jinba and analyzed for bioinformatics, subcellular localization, and spatiotemporal expression properties. CmASMT gene-silenced plants were generated by using virus-induced gene silencing (VIGS) technology to investigate the effects of CmASMT on heat tolerance of chrysanthemum through photosynthesis, the stability of the membrane system, and antioxidant system. 【Result】The ORF of CmASMT is 1 059 bp in length, encodes 352 amino acids, and belongs to the O-methyltransferases family. During the vegetative growth stage, CmASMT is expressed in roots, stems, leaves and buds of chrysanthemum, with the highest levels observe in the roots. Expression of CmASMT was induced by high temperature, low temperature, waterlogging, salt and drought stress, and CmASMT was most responsive to high-temperature stress. The CmASMT protein localized to the cell membranes, cytoplasm and nucleus. The content of endogenous melatonin in CmASMT-silenced plants of chrysanthemum was significantly reduced. Under high-temperature stress, CmASMT-silenced plants exhibited inhibition of photosynthesis, reduction of membrane system stability, aggravation of oxidative stress, weakening of antioxidant enzyme activity, and an increase of denatured proteins. CmASMT may enhance the photosynthetic efficiency of chrysanthemum by regulating the synthesis of endogenous melatonin, while improving the activity of antioxidant enzymes, scavenging excess reactive oxygen species, alleviating membrane structure damage and degradation of photosynthetic pigments, thereby improving chrysanthemum thermotolerance. 【Conclusion】CmASMT plays an important role in responding to high-temperature stress in chrysanthemum by regulating endogenous melatonin synthesis.

Key words: chrysanthemum, high temperature stress, melatonin, CmASMT, virus induced gene silencing

Fig. 1

Expression pattern analysis and subcellular localization of CmASMT A: Expression levels of CmASMT in different tissue organs of Chrysanthemum; B: Expression levels of CmASMT in chrysanthemum leaves under different stresses; C: Subcellular localization of CmASMT, Bar=20 μm. CK: Control check; HS: Heat stress; LS: Low temperature stress; WS: Waterlogging stress; SS: Salt stress; DS: Drought stress. Different letters indicate significant differences (P<0.05). The same as below"

Fig. 2

Validation of CmASMT gene silencing efficiency A: Expression levels of CmASMT gene in untreated, control and experimental groups; B: Changes in melatonin content of chrysanthemum by CmASMT silencing. WT: Wild type; TRV: Control group; 1-10: TRV-CmASMT silencing plant"

Fig. 3

Effects of CmASMT silencing on morphology and photosynthesis in chrysanthemum under heat stress A: External form of chrysanthemum; B: Net photosynthetic rate; C: Maximum photochemical efficiency of PSⅡ; D: Chlorophyll content"

Fig. 4

Effects of CmASMT silencing on cell membrane permeability and lipid peroxidation in chrysanthemum under heat stress"

Fig. 5

Effects of CmASMT silencing on ROS content in chrysanthemum under heat stress"

Fig. 6

Effects of CmASMT silencing on antioxidant enzyme activities and related gene expression profiles in chrysanthemum under heat stress A: SOD activity; B: APX activity; C: POD activity; D: CAT activity; E: GR activity; F: The expression level of CmSOD; G: The expression level of CmCAT; H: The expression level of CmPOD"

Fig. 7

Effects of CmASMT silencing on protein content in chrysanthemum under heat stress"

[1]
SETH P, SEBASTIAN J. Plants and global warming: Challenges and strategies for a warming world. Plant Cell Reports, 2024, 43(1): 27.

doi: 10.1007/s00299-023-03083-w pmid: 38163826
[2]
RAY D K, WEST P C, CLARK M, GERBER J S, PRISHCHEPOV A V, CHATTERJEE S. Climate change has likely already affected global food production. PLoS ONE, 2019, 14(5): e0217148.
[3]
MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126.
[4]
SALVUCCI M E, CRAFTS-BRANDNER S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology, 2004, 134(4): 1460-1470.

doi: 10.1104/pp.103.038323 pmid: 15084731
[5]
FAN J B, XIE Y, ZHANG Z C, CHEN L. Melatonin: A multifunctional factor in plants. International Journal of Molecular Sciences, 2018, 19(5): 1528.
[6]
AFREEN F, ZOBAYED S M A, KOZAI T. Melatonin in Glycyrrhiza uralensis: Response of plant roots to spectral quality of light and UV-B radiation. Journal of Pineal Research, 2006, 41(2): 108-115.
[7]
ARNAO M B, HERNÁNDEZ-RUIZ J. Functions of melatonin in plants: A review. Journal of Pineal Research, 2015, 59(2): 133-150.

doi: 10.1111/jpi.12253 pmid: 26094813
[8]
DEY S, BISWAS A, DENG Y, BIRHANIE Z M, CHEN W T, LI D F. Exogenous melatonin enhances low-temperature stress of jute seedlings through modulation of photosynthesis and antioxidant potential. Heliyon, 2023, 9(8): e19125.
[9]
KUPPUSAMY A, ALAGARSWAMY S, KARUPPUSAMI K M, MADURAIMUTHU D, NATESAN S, RAMALINGAM K, MUNIYAPPAN U, SUBRAMANIAN M, KANAGARAJAN S. Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. Plants, 2023, 12(13): 2535.
[10]
JAHAN M S, GUO S R, SUN J, SHU S, WANG Y, ABOU EL- YAZIED A, ALABDALLAH N M, HIKAL M, MOHAMED M H M, IBRAHIM M F M, HASAN M M. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 2021, 167: 309-320.

doi: 10.1016/j.plaphy.2021.08.002 pmid: 34392044
[11]
周永海. 甜瓜种质资源耐热性评价及外源物质对热胁迫的缓解效应[D]. 杨凌: 西北农林科技大学, 2021.
ZHOU Y H. Evaluation of heat tolerance of melon germplasm resources and alleviating effects of exogenous substances on heat stress[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[12]
LI Z G, XU Y, BAI L K, ZHANG S Y, WANG Y. Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems. Protoplasma, 2019, 256(2): 471-490.
[13]
XU W, CAI S Y, ZHANG Y, WANG Y, AHAMMED G J, XIA X J, SHI K, ZHOU Y H, YU J Q, REITER R J, ZHOU J. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61(4): 457-469.

doi: 10.1111/jpi.12359 pmid: 27484733
[14]
齐晓媛, 王文莉, 胡少卿, 刘梦雨, 郑成淑, 孙宪芝. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响. 应用生态学报, 2021, 32(7): 2496-2504.

doi: 10.13287/j.1001-9332.202107.025
QI X Y, WANG W L, HU S Q, LIU M Y, ZHENG C S, SUN X Z. Effects of exogenous melatonin on photosynthesis and physiological characteristics of Chrysanthemum seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2021, 32(7): 2496-2504. (in Chinese)
[15]
PARK S, BYEON Y, BACK K. Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research, 2013, 55(4): 409-415.

doi: 10.1111/jpi.12088 pmid: 24033370
[16]
ZUO B X, ZHENG X D, HE P L, WANG L, LEI Q, FENG C, ZHOU J Z, LI Q T, HAN Z H, KONG J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. Journal of Pineal Research, 2014, 57(4): 408-417.
[17]
ZHOU K, LI Y, HU L Y, ZHANG J Y, YUE H, YANG S L, LIU Y, GONG X Q, MA F W. Overexpression of MdASMT9, an N- acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. Tree Physiology, 2022, 42(5): 1114-1126.
[18]
赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
[19]
SHAH K, KUMAR R G, VERMA S, DUBEY R S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(6): 1135-1144.
[20]
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000. (in Chinese)
[21]
曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007.
CAO J K, JIANG W B, ZHAO Y M. Guidance on Postharvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2007. (in Chinese)
[22]
CHE R M, LIU Y R, YAN S Q, YANG C, SUN Y B, LIU C H, MA F W. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance. The Plant Journal, 2024, 117(4): 1250-1263.

doi: 10.1111/tpj.16561 pmid: 37991990
[23]
LERNER A B, CASE J D, TAKAHASHI Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry, 1960, 235: 1992-1997.

pmid: 14415935
[24]
KOLÁR J, MACHÁCKOVÁ I. Melatonin in higher plants: Occurrence and possible functions. Journal of Pineal Research, 2005, 39(4): 333-341.

doi: 10.1111/j.1600-079X.2005.00276.x pmid: 16207287
[25]
BYEON Y, BACK K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research, 2014, 56(2): 189-195.
[26]
杨永娟. 梅花品种耐旱性差异分析及褪黑素合成基因功能研究[D]. 北京: 北京林业大学, 2021.
YANG Y J. Analysis on the difference of drought tolerance of plum blossom varieties and study on the function of melatonin synthesis gene[D]. Beijing: Beijing Forestry University, 2021. (in Chinese)
[27]
HASANUZZAMAN M, NAHAR K, ALAM M M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.

doi: 10.3390/ijms14059643 pmid: 23644891
[28]
SHARKEY T D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 2005, 28(3): 269-277.
[29]
RAJA V, QADIR S U, ALYEMENI M N, AHMAD P. Impact of drought and heat stress individually and in combination on physio- biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 2020, 10(5): 208.
[30]
CHAKI M, BEGARA-MORALES J C, BARROSO J B. Oxidative stress in plants. Antioxidants, 2020, 9(6): 481.
[31]
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.

doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416
[32]
须文. 褪黑素在调控番茄耐热性中的作用及机制[D]. 杭州: 浙江大学, 2016.
XU W. Role and mechanism of melatonin in regulating heat tolerance of tomato[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[33]
JIA C H, YU X J, ZHANG M, LIU Z G, ZOU P, MA J, XU Y C. Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). Journal of Plant Growth Regulation, 2020, 39(2): 631-640.
[34]
高腾腾. 苹果MdASMT9介导的褪黑素合成对温度和低氮胁迫的调控机制研究[D]. 杨凌: 西北农林科技大学, 2022.
GAO T T. Regulation mechanism of melatonin synthesis mediated by MdASMT9 on temperature and low nitrogen stress in apple[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
[1] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[2] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[3] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[4] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[5] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[6] LI Jie, LIANG ZhiLin, SUN Yan, TAN GenJia, HUAI BaoYu. Functional Analysis of SlSnRK1.2 in Regulating Tomato Resistance to Grey Mould [J]. Scientia Agricultura Sinica, 2024, 57(21): 4238-4247.
[7] SONG Xiang, WANG ZhongMan, ZHANG QiuLing, WEI YuanYuan, ZHAO XiaoGang, LIU Bo, DAI SiLan. Comprehensive Evaluation and Selection of Hybrid Offsprings of Early Flowering Spray Outdoor Chrysanthemum [J]. Scientia Agricultura Sinica, 2024, 57(1): 173-189.
[8] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[9] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[10] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[11] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[12] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[13] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[14] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[15] BI MengMeng,LIU Di,GAO Ge,ZHU PengFang,MAO HongYu. CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!