Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1223-1238.doi: 10.3864/j.issn.0578-1752.2025.06.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Integration of Intestinal Flora and Small Molecule Metabolite to Analyze the Role of Factors Regulating Feed Conversion in Broiler Chickens

JU XiaoJun1(), ZHANG Ming1, LIU YiFan1, JI GaiGe1, SHAN YanJu1, TU YunJie1, ZOU JianMin1, ZHANG HaiTao2, BIAN LiangYong2, SHU JingTing1()   

  1. 1 Jiangsu Institute of Poultry Science/Jiangsu Key Laboratory of Poultry Genetic Breeding, Yangzhou 225125, Jiangsu
    2 Changzhou Lihua livestock Ltd, Changzhou 213168, Jiangsu
  • Received:2024-12-28 Accepted:2025-01-24 Online:2025-03-25 Published:2025-03-25
  • Contact: SHU JingTing

Abstract:

【Objective】 Feed Conversion Rate (FCR) is an important economic trait index in livestock and poultry production. Through the analysis of intestinal flora and small molecular metabolites, the factors affecting the regulation of FCR in broilers were explored. 【Method】 Good health condition, the same batch of 0-day-old Jatropha curcas chicks were selected, free to feed and drink. At 57 days of age, 500 males with normal development and similar body weight ((2 374.96 ± 214.39) g) were selected and transferred to the assay house, with an acclimatization period of 3 days. The official assay was performed at 60 days of age, with an experimental period of 18 days, and 20 birds with high feed conversion rate (HF) and low feed conversion rate (LF) were selected for slaughtering at the marketable age (78 days of age), respectively, based on the results of the automated feeding system. Twenty birds with HF and LF were selected for slaughter at the market age (78 days old) according to the results of the automatic feeding system. Chicken intestines were isolated for determination of intestinal morphology, while cecal chow was harvested for joint analysis of microbial and small molecule metabolite differences between the HF and LF cecums of broiler chickens and correlation analyses using 16S rRNA sequencing and globally precise non-targeted metabolomics. 【Result】 (1) Compared with the LF group, the daily weight gain in HF group was significantly decreased (P<0.05), while the FCR was significantly increased (P<0.05), the jejunal length was significantly decreased (P<0.05), rectal length was significantly increased(P<0.05), and jejunal villus height/crypt depth ratio was significantly decreased(P<0.05). (2) Compared with the LF group, Chao1, Shannon, Observed_species, and Faith_pd indices were significantly decreased in the HF group (P<0.05). The difference in compositional structure between HF and LF was large (P<0.05). Genera with LDA values greater than 3 in the LF group were Blautia_A, Barnesiella, Massilistercora, Papillibacter, Mitsuokella, Paramuribaculum, and UBA738. The genera with LDA values greater than 3 in the HF group were Desulfovibrio_R, Alloprevotella, and Intestinimonas. (3) Thirty-two differential metabolites were screened, among which Docosahexaenoic acid, beta-carotene, and D-Mannose 6-phosphate were more multiplicative. Among these differential metabolites fatty acyl, benzene and substituted derivatives were more frequent. (4) The microorganisms that showed significant negative correlation with FCR values were Papillibacter, Blautia_A, and Paramuribaculum. The metabolites that showed a significant negative correlation with FCR values were Phenylethylamine, beta-Carotene, Antibiotic JI-20A, trans-Cinnamate, Xanthosine, 3-Methoxyanthranilate, Phthalic acid, Niacinamide, gamma-L-Glutamyl-D-alanine, 5-Nitro-2-(3-phenylpropylamino) benzoic acid, Desaminotyrosine, and 1-palmitoylglycerophosphocholine. The metabolites that showed significant positive correlation with FCR values were Phosphorylcholine. Gamma-L-Glutamyl-D-alanine was significantly positively correlated with Blautia_A, while Phosphorylcholine was significantly positively correlated with Intestinimonas. 【Conclusion】 The broiler feed conversion was associated with intestinal flora and metabolites, while Papillibacter, Blautia_A, Barnesella, and Mitsuokella might be marker microorganisms affecting feed efficiency. Desmethyltyrosine, β-carotene, Xanthosine, gamma-L-Glutamyl-D-alanine, and Phosphorylcholine might be marker metabolites affecting feed efficiency. Intestinal flora could influence FCR directly or through microbial metabolites, and microbe-metabolite associations suggested specific pathways of action that may influence feed conversion.

Key words: broiler, feed conversion, 16S rRNA, gut microbes, metabolites, correlation analysis

Table 1

Composition and nutrient levels of basal diets (air-dry basis)"

原料
Ingredient
含量 Content (%) 营养水平
Nutrient levels2)
1-21日龄
1 to 21 days of age
22-78日龄
22 to 78 days of age
1-21日龄
1 to 21 days of age
22-78日龄
22 to 78 days of age
玉米 Corn 55.00 58.00 代谢能 ME/(MJ·kg-1) 12.32 12.77
豆粕 Soybean meal 34.00 30.00 粗蛋白质 CP (%) 21.56 20.48
玉米蛋白粉 Corn gluten meal 4.80 5.00 赖氨酸 Lys (%) 1.20 1.13
大豆油 Soybean oil 2.40 3.00 蛋氨酸 Met (%) 0.48 0.51
氯化钠 NaCl 0.30 0.30 蛋氨酸+半胱氨酸 Met+Cys (%) 0.88 0.84
石粉 Limestone 1.20 1.50 钙 Ca (%) 1.12 1.02
磷酸氢钙 CaHPO4 1.30 1.20 总磷 TP (%) 0.49 0.64
预混料 Premix1) 1.00 1.00
合计 Total 100.00 100.00

Table 2

Growth performance of chickens with LF and HF"

项目
Item
组别Group P
P value
LF HF
日采食量ADFI (g.d-1) 128.33±8.61 103.28±8.04 P=0.059
日增重ADG (g.d-1) 60.98±4.17a 21.03±0.55b P≤0.001
FCR 2.11±0.02b 4.92±0.37a P≤0.001

Table 3

Intestinal length development in chickens with LF and HF (cm)"

项目
Item
组别Group P
P value
LF HF
十二指肠Duodenum 34±3.81 33.33±2.42 P=0.732
空肠Jejunum 73.5±5.75a 67±4.05b P=0.047
回肠Ileum 69.08±8.13 66.75±7.49 P=0.616
直肠Rectum 10.58±1.11b 12±0.84a P=0.032
盲肠Cecum 43.33±6.89 42.67±6.41 P=0.866

Table 4

Intestinal morphology of chickens with LF and HF"

项目
Item
绒毛高度
Villus height (mm)
隐窝深度
Crypt depth (mm)
绒毛高度/隐窝深度
Villus height/Crypt depth
肠壁厚度
Intestinal thickness (mm)
十二指肠
Duodenum
LF 1919.65±206.42 363.21±53.05 5.08±0.50 608.12±64.75
HF 1937.71±320.27 418.5±61.18 4.45±0.87 634.28±101.47
PP value P=0.924 P=0.142 P=0.236 P=0.616
空肠
Jejunum
LF 1817.54±99.70 380.02±37.13 4.71±0.32 636.03±59.70
HF 1924.00±198.19 394.17±78.02 4.77±0.86 589.17±32.29
PP value P=0.315 P=0.700 P=0.892 P=0.152
回肠
Ileum
LF 1579.28±380.43 376.09±37.55 4.75±0.92a 675.41±41.54
HF 1441.44±219.86 379.97±93.38 3.59±0.59b 622.15±59.22
PP value P=0.460 P=0.933 P=0.039 P=0.114

Fig. 1

Differences in the composition of gut microorganisms (phylum level and genus level)"

Fig. 2

Microbial α diversity index of cecum in chickens with LF and HF"

Fig. 3

Analysis of microbial β-diversity in the cecum"

Fig. 4

Screening for different microorganisms in the cecum of chickens A: Wayne plots of ASV/OTU in chickens of LF and HF; B: Screening for significantly different microorganisms in the cecum of chickens with LF and HF using LEfSe analysis"

Fig. 5

PLS-DA score plots and substitution tests for positive (L) and negative (R) ion patterns of eggs white"

Table 5

Differential metabolites"

名称Name LF HF FC P FDR VIP 分类Classifications
去氨酪氨酸Docosahexaenoic acid 109859745.60 9684848.25 11.34 0.00 0.74 2.46 脂肪酰基 Fatty acyl group
β-胡萝卜素beta-Carotene 1727034.87 234115.24 7.38 0.00 0.14 2.47
D-甘露糖-6-磷酸D-Mannose 6-phosphate 59557243.36 8247867.07 7.22 0.04 0.88 1.96 有机氧化合物 Organic oxygen compound
胆红素Bilirubin 3960199.86 603791.98 6.56 0.04 0.88 1.88 氮杂环化合物 Azacyclic compound
花生四烯酸Arachidonic acid 1108087983 170716250.30 6.49 0.02 0.83 2.07 脂肪酰基 Fatty acyl group
烟酰胺Niacinamide 24731690.15 3861812.29 6.4 0.02 0.65 2.46 吡啶及其衍生物 Pyridine and its derivatives
抗生素JI-20A Antibiotic JI-20A 34903423.53 7504761.19 4.65 0.02 0.63 2.05
苯乙酸酯Phenyl acetate 79999522.65 17505838.39 4.57 0.02 0.81 2.05
溶血磷脂酸LysoPA(16_0_0_0) 33600980.67 7397164.48 4.54 0.01 0.74 2.38
苯乙胺
Phenylethylamine
3453499.23 901232.84 3.83 0.01 0.55 2.30 苯及取代衍生物
Benzene and its substituted derivatives
D-苯丙氨酸D-Phenylalanine 92760286.87 27299352.28 3.4 0.04 0.88 1.90
2-氨基苯甲酸
2-Aminobenzoic acid
15065050.37 4551010.21 3.31 0.04 0.79 1.96 苯及取代衍生物
Benzene and its substituted derivatives
1-棕榈酰甘油磷酸胆碱1-palmitoylglycerophosphocholine 220264082.20 76449187.98 2.88 0.03 0.70 2.12 甘油磷脂Glycerophospholipid
酪醇Tyrosol 31538152.22 11038793.72 2.86 0.04 0.75 1.52 酚 Phenol
3-甲氧基邻氨基苯甲酸酯3-Methoxyanthranilate 8295554.24 3013310.76 2.75 0.03 0.72 2.12 苯及取代衍生物
Benzene and its substituted derivatives
5-硝基-2-(3-苯丙氨基)苯甲酸5-Nitro-2-(3-phenylpropylamino)benzoic acid 18535652.32 6781265.83 2.73 0.01 0.56 1.92
植物鞘氨醇Phytosphingosine 154682127.40 57961693.16 2.67 0.04 0.74 2.01 有机氮化合物 Organic nitrogen compound
二甲基甘氨酸
Dimethylglycine
9649870.37 3739267.29 2.58 0.04 0.88 2.01 羧酸及其衍生物
Carboxylic acid and its derivatives
反式肉桂酸盐trans-Cinnamate 30377892.69 11999622.56 2.53 0.03 0.70 2.00
邻苯二甲酸
Phthalic acid
121830710.50 54830998.99 2.22 0.02 0.81 2.08 苯及取代衍生物
Benzene and its substituted derivatives
4-羟基肉桂酸
4-Hydroxycinnamic acid
42766949.70 19655191.89 2.18 0.02 0.68 2.12 肉桂酸及其衍生物
Cinnamic acid and its derivatives
2-酮己酸
2-Ketohexanoic acid
11226883.12 5283975.25 2.12 0.04 0.75 1.66 酮酸及其衍生物
Ketoacid and its derivatives
γ-L-谷氨酰-D-丙氨酸gamma-L-Glutamyl-D-alanine 18952298.78 9587893.46 1.98 0.02 0.64 1.87 甘油磷脂
Glycerophospholipid
非那西丁Phenacetin 62700130.90 35189233.08 1.78 0.03 0.71 1.81
脱氨基酪氨酸Desaminotyrosine 64704533.84 36995641.20 1.75 0.01 0.78 2.13 苯丙酸 Benzoic acid
黄嘌呤核苷Xanthosine 31147891.16 19885108.84 1.57 0.02 0.84 2.09 嘌呤核苷 Purine nucleoside
山嵛酸Behenic acid 8073074.79 18131360.05 0.45 0.04 0.88 1.91 脂肪酰基 Fatty acyl group
1-羟基-1,2-二氢番茄红素1-Hydroxy-1,2-dihydrolycopene 2977717.56 8415772.56 0.35 0.05 0.83 2.05 有机氧化合物
Organic oxygen compound
邻甲酚o-Cresol 321228.22 939046.97 0.34 0.03 0.88 2.09 酚 Phenol
二十四烷酸Tetracosanoic acid 7493320.23 23641959.60 0.32 0.03 0.85 2.01 脂肪酰基 Fatty acyl group
磷酸胆碱Phosphorylcholine 23734633.96 81867790.22 0.29 0.01 0.47 1.85 有机氮化合物 Organic nitrogen compound
α-胡萝卜素Alpha-Carotene 1140587.13 4556420.00 0.25 0.02 0.67 1.85 戊二烯醇脂质 Pentadienyl lipid

Fig. 6

Bubble diagram (Up) and network diagram (Down) Blue dots indicate pathways and other dots indicate metabolites. The size of the pathway dots indicates that the larger the number of metabolites connected to them, the larger the dot; the metabolite dots indicate the magnitude of the log2 FC value by the gradient color"

Fig. 7

Correlation analysis between cecum microorganisms and growth phenotype Red represents positive correlation,while blue represents negative correlation. *represents P<0.05, **represents P<0.01, and represents P<0.001. The same as below"

Fig. 8

Correlation analysis between cecum microorganisms and growth phenotype"

Fig. 9

Spearman correlation analysis of differential metabolites and intestinal microflora"

[1]
BLANDER J M, LONGMAN R S, ILIEV I D, SONNENBERG G F, ARTIS D. Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 2017, 18: 851-860.

doi: 10.1038/ni.3780 pmid: 28722709
[2]
DITTOE D K, OLSON E G, RICKE S C. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poultry Science, 2022, 101(5): 101786.
[3]
GRICE E A, SEGRE J A. The human microbiome: Our second genome. Annual Review of Genomics and Human Genetics, 2012, 13: 151-170.

doi: 10.1146/annurev-genom-090711-163814 pmid: 22703178
[4]
CHEN L, BAO Y, WANG D D, TIAN Y, ZENG T, GU T T, XU W W, LU L Z. Integrated omics analysis reveals the differentiation of intestinal microbiota and metabolites between Pekin ducks and Shaoxing ducks. Poultry Science, 2024, 103(9): 103976.
[5]
HUANG Y, LV H J, SONG Y C, SUN C J, ZHANG Z F, CHEN S R. Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poultry Science, 2021, 100(4): 100996.
[6]
DU W Y, DENG J X, YANG Z L, ZENG L H, YANG X R. Metagenomic analysis reveals linkages between cecal microbiota and feed efficiency in Xiayan chickens. Poultry Science, 2020, 99(12): 7066-7075.

doi: 10.1016/j.psj.2020.09.076 pmid: 33248623
[7]
MCCORMACK U M, CURIÃO T, METZLER-ZEBELI B U, MAGOWAN E, BERRY D P, REYER H, PRIETO M L, BUZOIANU S G, HARRISON M, REBEIZ N, CRISPIE F, COTTER P D, O’SULLIVAN O, GARDINER G E, LAWLOR P G. Porcine feed efficiency-associated intestinal microbiota and physiological traits: finding consistent cross-locational biomarkers for residual feed intake. mSystems, 2019, 4(4): e00324-18.
[8]
SIEGERSTETTER S C, SCHMITZ-ESSER S, MAGOWAN E, WETZELS S U, ZEBELI Q, LAWLOR P G, O’CONNELL N E, METZLER-ZEBELI B U. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS ONE, 2017, 12(11): e0187766.
[9]
BAE Y, KOO B, LEE S, MO J, OH K, MO I P. Bacterial diversity and its relationship to growth performance of broilers. Korean Journal of Veterinary Research, 2017, 57(3): 159-167.
[10]
STANLEY D, GEIER M S, DENMAN S E, HARING V R, CROWLEY T M, HUGHES R J, MOORE R J. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Veterinary Microbiology, 2013, 164(1/2): 85-92.
[11]
YAN W, SUN C J, YUAN J W, YANG N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Scientific Reports, 2017, 7: 45308.
[12]
TOROK V A, HUGHES R J, MIKKELSEN L L, PEREZ- MALDONADO R, BALDING K, MACALPINE R, PERCY N J, OPHEL-KELLER K. Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Applied and Environmental Microbiology, 2011, 77(17): 5868-5878.

doi: 10.1128/AEM.00165-11 pmid: 21742925
[13]
STANLEY D, DENMAN S E, HUGHES R J, GEIER M S, CROWLEY T M, CHEN H L, HARING V R, MOORE R J. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Applied Microbiology and Biotechnology, 2012, 96(5): 1361-1369.

doi: 10.1007/s00253-011-3847-5 pmid: 22249719
[14]
SINGH K M, SHAH T, DESHPANDE S, JAKHESARA S J, KORINGA P G, RANK D N, JOSHI C G. High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Molecular Biology Reports, 2012, 39(12): 10595-10602.

doi: 10.1007/s11033-012-1947-7 pmid: 23053958
[15]
LEESON S, SUMMERS J J, LEESON S, SUMMERS J D. Scott's nutrition of the chicken. India: CBS Publishers & Distributors Pvt Ltd. 2001.
[16]
CHAMORRO S, ROMERO C, BRENES A, SÁNCHEZ-PATÁN F, BARTOLOMÉ B, VIVEROS A, ARIJA I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food & Function, 2019, 10(3): 1444-1454.
[17]
全耀东, 尚秀国, 陈伟, 郑春田. 谷氨酰胺的生理功能及其对断奶仔猪肠道健康的影响. 动物营养学报, 2024: 1-10. (2024-07- 13). https://kns.cnki.net/kcms/detail/11.5461.S.20240709.2238.017.html
QUAN Y D, SHANG X G, CHEN W, ZHENG C T. Physiological functions of glutamine and its effects on intestinal health of weaned piglets. Chinese Journal of Animal Nutrition, 2024: 1-10. (2024-07- 13). https://kns.cnki.net/kcms/detail/11.5461.S.20240709.2238.017.html. (in Chinese)
[18]
VIGORS S, SWEENEY T, O’SHEA C J, KELLY A K, O’DOHERTY J V. Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity. Animal, 2016, 10(11): 1848-1855.

pmid: 27173889
[19]
HAO Y S, JI Z Q, SHEN Z J, XUE Y J, ZHANG B, YU D X, LIU T, LUO D W, XING G N, TANG J, et al. Increase dietary fiber intake ameliorates cecal morphology and drives cecal species-specific of short-chain fatty acids in white Pekin ducks. Frontiers in Microbiology, 2022, 13: 853797.
[20]
YAN X X, ZHANG H, LIN A L, SU Y. Antagonization of ghrelin suppresses muscle protein deposition by altering gut microbiota and serum amino acid composition in a pig model. Biology, 2022, 11(6): 840.
[21]
YASOOB T B, YU D F, KHALID A R, ZHANG Z, ZHU X F, SAAD H M, HANG S Q. Oral administration of Moringa oleifera leaf powder relieves oxidative stress, modulates mucosal immune response and cecal microbiota after exposure to heat stress in New Zealand White rabbits. Journal of Animal Science and Biotechnology, 2021, 12(1): 66.
[22]
李巧艳. 美沙酮维持治疗与强制隔离戒毒对肠道微生物多样性的影响[D]. 兰州: 兰州大学, 2021.
LI Q Y. Effects of methadone maintenance treatment and compulsory isolation detoxification on gut microbial diversity[D]. Lanzhou: Lanzhou University, 2021. (in Chinese)
[23]
OTTOSSON F, BRUNKWALL L, ERICSON U, NILSSON P M, ALMGREN P, FERNANDEZ C, MELANDER O, ORHO-MELANDER M. Connection between BMI-related plasma metabolite profile and gut microbiota. The Journal of Clinical Endocrinology & Metabolism, 2018, 103(4): 1491-1501.
[24]
袁维维. 多阶段生酮饮食对肥胖人群肠道菌群结构特征的影响[D]. 无锡: 江南大学, 2021.
YUAN W W. Effect of multi-stage ketogenic diet on the structural characteristics of gut microbiota[D]. Wuxi: Jiangnan University, 2021. (in Chinese)
[25]
FLUITMAN K S, DAVIDS M, OLOFSSON L E, WIJDEVELD M, TREMAROLI V, KEIJSER B J F, VISSER M, BÄCKHED F, NIEUWDORP M, IJZERMAN R G. Gut microbial characteristics in poor appetite and undernutrition: A cohort of older adults and microbiota transfer in germ-free mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(4): 2188-2201.
[26]
LUO S H, MAO R, LI Y. Mendelian randomization highlights gut microbiota of short-chain FattyAcids’ producer as protective factor of cerebrovascular disease. Current Neurovascular Research, 2024, 21(1): 32-40.
[27]
EVERARD A, LAZAREVIC V, DERRIEN M, GIRARD M, MUCCIOLI G G, NEYRINCK A M, POSSEMIERS S, VAN HOLLE A, FRANÇOIS P, DE VOS W M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 2011, 60(11): 2775-2786.

doi: 10.2337/db11-0227 pmid: 21933985
[28]
FIELDING R A, REEVES A R, JASUJA R, LIU C, BARRETT B B, LUSTGARTEN M S. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults. Experimental Gerontology, 2019, 127: 110722.
[29]
MAHMUD M R, SALONEN A, PELTONIEMI O, VENHORANTA H, OLIVIERO C. Impact of intestinal microbiota on growth performance of suckling and weaned piglets. Microbiology Spectrum, 2023, 11(3): e03744-22.
[30]
TAN Z, WANG Y, YANG T, AO H, CHEN S K, XING K, ZHANG F X, ZHAO X T, LIU J F, WANG C D. Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios. Antonie Van Leeuwenhoek, 2018, 111(9): 1673-1685.
[31]
BJERRUM L, ENGBERG R M, LESER T D, JENSEN B B, FINSTER K, PEDERSEN K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poultry Science, 2006, 85(7): 1151-1164.

pmid: 16830854
[32]
STANLEY D, HUGHES R J, MOORE R J. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Applied Microbiology and Biotechnology, 2014, 98(10): 4301-4310.

doi: 10.1007/s00253-014-5646-2 pmid: 24643736
[33]
SUN L L, XIE C, WANG G, WU Y, WU Q, WANG X M, LIU J, DENG Y Y, XIA J L, CHEN B, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 2018, 24: 1919-1929.

doi: 10.1038/s41591-018-0222-4 pmid: 30397356
[34]
MICHAEL O S, DIBIA C L, SOETAN O A, ADEYANJU O A, OYEWOLE A L, BADMUS O O, ADETUNJI C O, SOLADOYE A O. Sodium acetate prevents nicotine-induced cardiorenal dysmetabolism through uric acid/creatine kinase-dependent pathway. Life Sciences, 2020, 257: 118127.
[35]
WEI Y X, GAO J, KOU Y B, LIU M N, MENG L Y, ZHENG X P, XU S H, LIANG M, SUN H X, LIU Z Z, WANG Y G. The intestinal microbial metabolite desaminotyrosine is an anti-inflammatory molecule that modulates local and systemic immune homeostasis. The FASEB Journal, 2020, 34(12): 16117-16128.
[36]
SHETE V, QUADRO L. Mammalian metabolism of β-carotene: Gaps in knowledge. Nutrients, 2013, 5(12): 4849-4868.

doi: 10.3390/nu5124849 pmid: 24288025
[37]
REBOUL E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients, 2013, 5(9): 3563-3581.

doi: 10.3390/nu5093563 pmid: 24036530
[38]
AHMED S A, SARMA P, BARGE S R, SWARGIARY D, DEVI G S, BORAH J C. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/FoxO1/AKT/ GSK3β signaling cascade. Chemico-Biological Interactions, 2023, 371: 110347.
[39]
ZHOU J, LIU J, LIN Q Q, SHI L H, ZENG Z G, GUAN L C, MA Y Z, ZENG Y T, ZHONG S L, XU L S. Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia. Frontiers in Pharmacology, 2023, 14: 1279448.
[40]
REN Y L, SHI X Y, MU J, LIU S Y, QIAN X, PEI W L, NI S H, ZHANG Z D, LI L, ZHANG Z. Chronic exposure to parabens promotes non-alcoholic fatty liver disease in association with the changes of the gut microbiota and lipid metabolism. Food & Function, 2024, 15(3): 1562-1574.
[41]
ZHU J X, LIU W B, BIAN Z, MA Y M, KANG Z X, JIN J H, LI X Y, GE S Y, HAO Y L, ZHANG H X, XIE Y H. Lactobacillus plantarum Zhang-LL inhibits colitis-related tumorigenesis by regulating arachidonic acid metabolism and CD22-mediated B-cell receptor regulation. Nutrients, 2023, 15(21): 4512.
[42]
KRAUTKRAMER K A, FAN J, BÄCKHED F. Gut microbial metabolites as multi-Kingdom intermediates. Nature Reviews Microbiology, 2021, 19: 77-94.
[43]
PESSOA J, BELEW G D, BARROSO C, EGAS C, JONES J G. The gut microbiome responds progressively to fat and/or sugar-rich diets and is differentially modified by dietary fat and sugar. Nutrients, 2023, 15(9): 2097.
[1] LUO ChaoDan, FENG ChunMei, LI JianQiang, LI XinRong, WEI Yong, YANG LiYi, LIU XiaoJin, TAN He, REN ErFang, LUO XiaoJie. Analysis of Differential Aroma Volatiles of Tainong No.1 Mango of Different Ripeness by Non-Targeted Metabolomics Based on Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2025, 58(3): 564-581.
[2] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[3] LIU FangQin, CUI MingQuan, ZHANG Lu, CHEN Yu, WANG HeJia, ZHANG ChunPing. Prevalence and Transmission of Salmonella Among Different Broiler Breeding Processes in Beijing-Tianjin-Hebei Region [J]. Scientia Agricultura Sinica, 2025, 58(1): 192-202.
[4] ZHAO WenShuo, ZHANG JinLong, YAO ZhaoRan, SONG YuQi, LÜ Shun, LIU YingXue, YUAN CongCong, SUN YuHang. Effects of Aflatoxin B1 on Influenza Virus Replication, Organ Damages and Intestinal Microbiota Disorder of Swine [J]. Scientia Agricultura Sinica, 2024, 57(20): 4145-4160.
[5] XIE Qian, JIANG Lai, DING MingYue, LIU LingLing, CHEN QingXi. Metabolomic Analysis of Canarium album Fresh Food Quality Differences Based on Sensory Evaluation [J]. Scientia Agricultura Sinica, 2024, 57(2): 363-378.
[6] GUO ChengNuo, HAN MingXia, JIANG TingTing, WANG YuMing, ZHAO Feng, XIE JingJing, SA RenNa. Effects of Different Replacement Ratios of Soybean Meal on Its Metabolizable Energy and Nitrogen Metabolism in Broilers [J]. Scientia Agricultura Sinica, 2024, 57(18): 3695-3703.
[7] QI XiaoYu, KONG XiaoPing, ZHOU HongWei, YAN XiangPing. Crucial Factors Impacting Carrot Flavor Analysis Based on Broad Target Metabolomics [J]. Scientia Agricultura Sinica, 2024, 57(16): 3250-3263.
[8] WU YaNuo, LIU Yuan, KONG JiaTao, HU ZheHui, CHEN MingHua, WU JunChen, ZHANG HongYan, JIANG YouWu, XU Juan, CHEN JiaJing. Basing Fuzzy Modeling to Evaluate Sensory Quality Differences of ‘Orah’ Mandarin Fruits from Various Production Regions [J]. Scientia Agricultura Sinica, 2024, 57(10): 2010-2022.
[9] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[10] WANG ChaoHui, SUN Xi, WANG QiangGang, LIU RuiBing, LI Ni, YANG XiaoJun, LIU YanLi. Fatty Liver Model Construction and Its Effectiveness Evaluation Induced by Dexamethasone in Broilers [J]. Scientia Agricultura Sinica, 2023, 56(20): 4115-4124.
[11] ZHANG KeNan, YIN HaiNing, WANG JiaKui, CAO JianHong, XI ZhuMei. Differences and Genesis of Grape Phenolic Compounds Among Different Altitudes in Yunnan Shangri-la [J]. Scientia Agricultura Sinica, 2023, 56(19): 3879-3893.
[12] FU Shan, LIANG Ye, XU JiuLiang, RUAN YunZe, LUO Jian, LI TingYu. Comprehensive Evaluation of Fruit Texture and Taste Quality of Pineapple Based on Multiple Methods [J]. Scientia Agricultura Sinica, 2023, 56(15): 3006-3019.
[13] YIN Chang, ZHU Mo, CHEN YanRu, TONG ShiFeng, ZHAO GuiPing, LIU Yang. Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data [J]. Scientia Agricultura Sinica, 2023, 56(15): 3032-3039.
[14] HAN Jing, WANG XiaoQi, DUAN ZiYuan. Effects of Caragana korshinskii Kom. on Serum Indexes, Rumen and Colon Microbiota of Tan Sheep [J]. Scientia Agricultura Sinica, 2023, 56(14): 2812-2827.
[15] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!