Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 564-581.doi: 10.3864/j.issn.0578-1752.2025.03.012

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Differential Aroma Volatiles of Tainong No.1 Mango of Different Ripeness by Non-Targeted Metabolomics Based on Gas Chromatography-Mass Spectrometry

LUO ChaoDan1,2(), FENG ChunMei1,2,3, LI JianQiang1,2(), LI XinRong1,2, WEI Yong4, YANG LiYi5, LIU XiaoJin6, TAN He7, REN ErFang1,2, LUO XiaoJie1,2   

  1. 1 Guangxi Subtropical Crops Research Institute, Nanning 530001
    2 Guangxi Subtropical Fruits Processing Research Center of Engineering Technology, Nanning 530001
    3 Guangxi Engineering Research Center of Green and Efficient Development for Mango Industry, Nanning 530001
    4 Guangxi Guofeng Food Co., Ltd. Nanning 530001
    5 Guangzhou Daqiao Food Facility Co., Ltd. Guangzhou 510641
    6 Guangxi Renrenxiang Biotechnology Development Co., Ltd. Nanning 530200
    7 Guangxi Dingguagua Food Co., Ltd. Lingshan 535499, Guangxi
  • Received:2024-06-30 Accepted:2024-12-06 Online:2025-02-01 Published:2025-02-11
  • Contact: LI JianQiang

Abstract:

【Objective】This study aimed to investigate the differences and variation patterns of volatile metabolites in Tainong No.1 mango at different maturities, and to identify the characteristic aroma components at each maturity stage of mangoes. 【Method】 The samples of Tainong No.1 mango at 6 ripeness stages, including raw fruits (less than 60%-ripened), insufficiently ripe fruits (60%-, 70%-, 80%-ripened), fully ripened fruits (90%-ripened), and overripe fruits (100%-ripened), were used as the research objects. The volatile metabolites during the ripening process of mango were identified by gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics. The metabolic differences between samples in different groups were analyzed by multivariate statistical analysis methods, and the differential metabolites were determined by variable importance in projection (VIP) and fold change (FC). The metabolic pathway enrichment analysis was carried out according to the Kyoto Encyclopedia of Genes and Gnomes (KEGG). 【Result】 A total of 220 volatile metabolites were identified in Tainong No.1 mango pulp. The content of volatile metabolites was the lowest in 60% ripened mangoes. In terms of 70%- to 90%-ripened mangoes, the content of volatile metabolites showed an increasing trend, and decreased when the fruits were 100%-ripened. Compared with mangoes ripened less than 60%, there were 5 differential metabolites in 60% ripened mangoes, and 67, 77, 81, and 82 differential metabolites in 70%-, 80%-, 90%-, and 100%- ripened mangoes, respectively, among which 63, 73, 71, and 71 were up-regulated differential metabolites. In 70%- to 100%-ripened fruits, the content of 11 terpenoids (phellandrene, 3-carene, limonene, α-pinene, β-pinene, and β-ocimene), 6 kinds of ester (ethyl hexanoate and propyl butyrate), as well as 2 kinds of ketones, 2 kinds of alcohol, and 1 hydrocarbon compound, all showed a significant increasing trend, which could be regarded as the characteristic aroma components when Tainong No.1 mangoes just start to ripen. (E, E)-3,5-Octadien-2-one was significantly up-regulated only in 70%-ripened fruits and could be used as the characteristic aroma component of 70%-ripened Tainong No.1 mangoes; (+)-delta cadinene and cis-calamenene could be used as the characteristic aroma components at 90% ripeness; terpinolene, germacrene D, longifolene, L(-)-borneol, and lavandulol could be used as the characteristic aroma components at 100% ripeness. The KEGG pathway analysis showed that the differential metabolites were mainly enriched in 4 pathways, including the biosynthesis of sesquiterpenes and triterpenes, the biosynthesis of monoterpenes, metabolic pathways, and the biosynthesis of secondary metabolites, and the overall of the these differential metabolites showed an upward trend. 【Conclusion】 The content of volatile metabolites in the pulp of 90%-ripened Tainong No.1 mango was the highest. There were significant differences in the volatile components, especially the metabolism of terpene substances, in mangoes at different ripeness. Using specific differential metabolites as potential markers to distinguish mangoes of specific maturities provided a basis for identifying ripeness of Tainong No.1 mango.

Key words: Mango, ripeness, non-targeted metabolomics, differential metabolites, metabolic pathways

Table 1

Sampling standards in Tainong No.1 mango of different ripeness"

成熟度 Ripening stages 组别Group 分组标准 Grouping standard
生果
Raw fruit
6成熟以下
Ripened less than 60%
A 果实未成熟,果肉硬,果皮青色,无香气
The fruit is unripe, which has the hard flesh, green skin and no aroma
青熟
Insufficiently ripe
6成熟
60%-ripened
B 果实发育成熟,果肉硬,果皮呈青色,果肉开始变黄,无香气
The fruit has ripened, which has the hard flesh, green skin and no aroma, the flesh begins to turn yellow
7成熟
70%-ripened
C 果实发育成熟,果肉硬,果肉开始变黄,果皮转黄率<50%
The fruit has ripened, the flesh is hard and begins to turn yellow, the fruit has a small area of yellow skin (<50%)
8成熟
80%-ripened
D 果实发育成熟,果肉硬,果肉开始变黄,果皮转黄率>50%
The fruit has ripened, the flesh is hard and begins to turn yellow, the fruit has an amount of intensive of yellow skin (>50%)
完熟
Fully ripe
9成熟
90%-ripened
E 果实发育充分,具有芒果固有的色香味,肉质较硬实,果皮黄色至深黄色
The fruit is fully ripened, with the intrinsic color and flavor of mango, the flesh is firm and the color of peel is yellow to dark yellow
过熟
Overripe
10成熟
100%-ripened
F 果实成熟过度,开始软化,果皮橘黄色,出现黑斑
The fruit is overripe, the flesh begins to soften, the peel is orange with the dark spots

Fig. 1

Correlational analysis of samples a: Correlation analysis of QC samples; b: Correlation analysis of test samples"

Fig. 2

Classification and proportion of metabolites in mangoes of different ripeness"

Fig. 3

PCA scatter plot of mango samples of different ripeness A: Ripeness below 60%; B: 60%-ripened; C: 70%-ripened; D: 80%- ripened; E: 90%- ripened; F: 100%- ripened. The same as below"

Fig. 4

Volcano plot of significantly different metabolites between mangoes of different ripeness and mangoes ripened less than 60% a: B vs A; b: C vs A; c: D vs A; d: E vs A; e: F vs A"

Fig. 5

Heat map of mango samples metabolites classification of different ripeness"

Fig. 6

Venn diagram of mango of different ripeness"

Table 2

Significantly different flavor compounds between mangoes of different ripeness and mangoes ripened less than 60%"

物质名称
Compound name
B vs A C vs A D vs A E vs A F vs A
表达水平
Expression
level
FC值
FC value
VIP值
VIP
value
表达水平
Expression level
FC值
FC value
VIP值
VIP
value
表达水平
Expression level
FC值
FC value
VIP值
VIP
value
表达水平
Expression level
FC值
FC value
VIP值
VIP
value
表达水平
Expression level
FC值
FC value
VIP值
VIP
value
萜类
Terpenoids
(+)-长叶环烯 (+)-Longicycline 下调Down 0.43 1.43 上调Up 2.59 1.09 上调Up 3.94 1.24
(-)-α-荜澄茄油烯 (-)-alpha-Cubebene 下调Down 0.41 1.43 上调Up 2.07 1.01 上调Up 2.94 1.22
水芹烯 Phellandrene 上调Up 2.46 1.14 上调Up 2.28 1.18 上调Up 2.46 1.21 上调Up 2.46 1.14
β-水芹烯 beta-Phellandrene 上调Up 3.03 1.15 上调Up 2.77 1.21 上调Up 2.64 1.22 上调Up 2.42 1.14
3-蒈烯 3-Carene 上调Up 3.53 1.17 上调Up 3.11 1.22 上调Up 3.34 1.23 上调Up 3.49 1.16
柠檬烯 D-Limonene 上调Up 2.48 1.14 上调Up 2.26 1.20 上调Up 2.48 1.22 上调Up 2.43 1.15
α-蒎烯 alpha-Pinene 上调Up 3.00 1.14 上调Up 2.54 1.18 上调Up 3.04 1.21 上调Up 2.89 1.13
β-蒎烯 beta-Pinene 上调Up 2.87 1.14 上调Up 2.54 1.20 上调Up 2.93 1.22 上调Up 2.78 1.14
β-罗勒烯 beta-Ocimene 上调Up 3.22 1.15 上调Up 2.97 1.20 上调Up 2.79 1.22 上调Up 2.52 1.14
γ-松油烯 gamma-Terpinene 上调Up 2.77 1.15 上调Up 2.44 1.21 上调Up 2.69 1.23
月桂烯 beta-Myrcene 上调Up 2.20 1.14 上调Up 2.07 1.20 上调Up 2.27 1.22 上调Up 2.27 1.15
(Z)-3,7-二甲基-1,3,6十八烷三烯
(Z)3,7-dimethyl-1,3,6-octatriene
上调Up 3.22 1.15 上调Up 2.97 1.20 上调Up 2.79 1.22 上调Up 2.52 1.14
2-甲基-6-亚甲基-1,7-辛二烯
2-methyl-6-methylene-1,7-Octadiene
上调Up 2.51 1.13 上调Up 2.23 1.19 上调Up 2.58 1.21 上调Up 2.45 1.14
α-衣兰油烯 alpha-Muurolene 上调Up 2.53 1.01 上调Up 2.04 1.04 上调Up 2.35 1.18 上调Up 2.30 1.05
γ-衣兰油烯 gamma-Muurolene 上调Up 2.80 1.01 上调Up 2.32 1.18 上调Up 2.41 1.05
α-石竹烯 Humulene 上调Up 3.30 1.21 上调Up 4.57 1.24
反式石竹烯 Caryophyllene 上调Up 3.42 1.21 上调Up 4.58 1.24
(+)-β-柏木烯 (+)-β-Cedrene 上调Up 3.06 1.19 上调Up 3.92 1.24
α-柏木烯 alpha-Cedrene 上调Up 2.69 1.12 上调Up 2.15 1.18 上调Up 2.24 1.08
雪松烯 Cedrene 上调Up 3.46 1.21 上调Up 4.59 1.24
δ-杜松烯 delta-Cadinene 上调Up 2.33 1.18
(1S,2E,6E,10R)-3,7,11,11-四甲基双环[8.1.0]十一碳-2,6-二烯
(1S,2E,6E,10R)-3,7,11,11-Tetramethyl bicycle [8.1.0] undeca-2,6-diene
上调Up 2.45 1.08 上调Up 2.29 1.14 上调Up 2.65 1.05
顺-菖蒲烯 cis-Calamenene 上调Up 2.03 1.17
(-)-α-古芸烯 (-)-alpha-gurjunene 上调Up 2.40 1.19 上调Up 2.53 1.09
异松油烯 Terpinolene 上调Up 2.57 1.15
大根香叶烯D Germacrene D 上调Up 2.43 1.01
长叶烯 Longifolene 上调Up 2.43 1.10
左旋龙脑 (+)-bornrol 下调Down 0.43 1.22 上调Up 0.27 1.17
薰衣草醇 Lavandulol 下调Down 0.44 1.21 上调Up 0.27 1.17
酯类
Esters
己酸乙酯 Hexanoic acid ethyl ester 上调Up 5.33 1.11 上调Up 4.05 1.11 上调Up 5.82 1.18 上调Up 6.28 1.10
丁酸丙酯 Butanoic acid propyl ester 上调Up 4.01 1.20 上调Up 4.05 1.24 上调Up 4.25 1.23 上调Up 4.01 1.22
苯甲酸甲酯 Benzoic acid methyl ester 上调Up 2.02 1.15 上调Up 2.18 1.18
2-甲基丁酸苯甲酯
2-methyl- Butanoic acid, phenylmethyl ester
上调Up 2.77 1.04 上调Up 3.30 1.10 上调Up 2.22 1.07 上调Up 2.61 1.05
3-己烯基乙酸酯 3-Hexen-1-ol, acetate 上调Up 2.48 1.15 上调Up 2.33 1.19 上调Up 2.50 1.21 上调Up 2.49 1.14
2-氯乙基甲基丙烯酸酯
2-chloroethyl methacrylate
上调Up 2.74 1.74 上调Up 2.46 1.20 上调Up 2.80 1.21 上调Up 2.66 1.14
戊酸苯甲基酯
Pentanoic acid, phenylmethyl ester
上调Up 3.13 1.06 上调Up 3.76 1.11 上调Up 2.56 1.12 上调Up 3.00 1.07
丁酸芳樟酯 Linalyl butyrate 上调Up 3.42 1.21 上调Up 4.58 1.24
扁桃酸乙酯 Ethyl mandelate 上调Up 3.44 1.21 上调Up 4.61 1.24
酮类
Ketone
2-甲基-3-(1-甲基乙基)-环戊酮
2-methyl-3-(1-methylethyl)-Cyclopentanone
上调Up 2.46 1.15 上调Up 2.26 1.20 上调Up 2.48 1.21 上调Up 2.47 1.15
4-(2,6,6-三甲基-1,3-环己二烯-1-基)-2-丁酮
4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-
2-Butanone
上调Up 2.03 1.02 上调Up 3.42 1.21 上调Up 4.48 1.25
2-甲基-4,6-辛二炔-3-酮
2-methyl-4,6-Octadiyn-3-one
上调Up 2.49 1.15 上调Up 2.16 1.20 上调Up 2.44 1.22 上调Up 2.48 1.15
α-紫罗兰酮 alpha-Lonone 上调Up 3.24 1.21 上调Up 4.33 1.24
(E,E)-3,5-辛二烯-2-酮
(E, E)-3,5-Octadien-2-one
上调Up 2.01 1.16
4-(2,6,6-三甲基-1-环己烯-1-基)-2-丁酮
4-(2,6,6-trimethyl-cyclohexen-1-yl)-2-Butanone
上调Up 2.03 1.06 上调Up 2.25 1.17
1,1-(1,4-亚苯基)双-乙酮
1,1'-(1,4-phenylene) bis-Ethanone
上调Up 3.14 1.21 上调Up 4.42 1.25
苄基甲基酮 Benzyl methyl ketone 上调Up 2.01 1.22 上调Up 2.17 1.16
2,2,3-三甲基环丁酮
2,2,3-trimethyl-Cyclobutanone
下调Down 0 1.20 下调Down 0 1.24 下调Down 0.32 1.24 下调Down 0 1.18
醛类
Aldehydes
(E)-2-己烯醛 (E)-2-Hexenal 下调Down 0.40 1.53 下调Down 0 1.20 下调Down 0 1.24 下调Down 0 1.25 下调Down 0 1.22
2,4-二甲基苯甲醛
2,4-Dimethyl-benzaldehyde
上调Up 2.08 1.22
醇类
Alcohol
(E)-3-己烯醇 (E)-3-Hexen-1-ol 下调Down 0.48 1.44 下调Down 0 1.20 下调Down 0 1.24 下调Down 0 1.25 下调Down 0 1.12
2-环戊基乙醇 2-Cyclopentylethanol 上调Up 2.44 1.14 上调Up 2.25 1.19 上调Up 2.44 1.21 上调Up 2.43 1.14
4-羟基苯甲醇
4-hydroxy-Benzene methanol
上调Up 2.01 1.03 上调Up 3.47 1.20 上调Up 4.60 1.24
(E,E)-2,4-庚二烯-1-醇(E,E)-2,4-Heptadien-1-ol 上调Up 2.44 1.14 上调Up 2.26 1.19 上调Up 2.45 1.21 上调Up 2.44 1.14
(R)-2-己醇 (R)-2-Hexanol 上调Up 2.25 1.25 上调Up 3.22 1.17
反-2,顺6-壬二烯醇
trans-2, cis 6-Nonadien-1-ol
下调Down 0.46 1.20 下调Down 0.30 1.17
烃类
Hydrocarbons
1-辛烯 1-Octene 下调Down 0 1.55 下调Down 0 1.20 下调Down 0 1.24 下调Down 0 1.25 下调Down 0 1.18
双环戊二烯 Dicyclopentadiene 上调Up 2.44 1.14 上调Up 2.25 1.19 上调Up 2.44 1.21 上调Up 2.44 1.14
正丁基苯 n-butyl-Benzene 上调Up 2.71 1.15 上调Up 2.41 1.21 上调Up 2.63 1.23
2-乙基-1,4-二甲基-苯
ethyl-1,4-dimethyl-Benzene
上调Up 2.05 1.16 上调Up 2.04 1.15

Fig. 7

KEGG classification of differential metabolites a: C vs A; b: D vs A; c: E vs A; d: F vs A"

Fig. 8

KEGG enrichment map of differential metabolites a: C vs A; b: D vs A; c: E vs A; d: F vs A"

Fig. 9

Differential abundance scores a: C vs A; b: D vs A; c: E vs A; d: F vs A"

[1]
胡隆孝, 曹琳彩, 王凯, 赵雷. 采后催熟对‘台农一号’芒果理化品质及营养特性的影响. 食品工业科技, 2023, 44(2): 369-375.
HU L X, CAO L C, WANG K, ZHAO L. Effects of postharvest ripening on the physicochemical and nutraceutical properties of mango (Mangifera indica L. cv Tainung No.1). Science and Technology of Food Industry, 2023, 44(2): 369-375. (in Chinese)
[2]
LEBAKA V R, WEE Y J, YE W B, KORIVI M. Nutritional composition and bioactive compounds in three different parts of mango fruit. International Journal of Environmental Research and Public Health, 2021, 18(2): 741.
[3]
钟轲, 丁燕, 汤晓宏, 李志宇, 韩晓梅, 孙玉霞, 谭祥, 肖建. 不同海拔高度和品种对脐橙酒香气组成及感官品质的影响. 中国酿造, 2023, 42(10): 100-107.

doi: 10.11882/j.issn.0254-5071.2023.10.016
ZHONG K, DING Y, TANG X H, LI Z Y, HAN X M, SUN Y X, TAN X, XIAO J. Effects of different altitudes and varieties on the aroma composition and sensory quality of navel orange wine. China Brewing, 2023, 42(10): 100-107. (in Chinese)

doi: 10.11882/j.issn.0254-5071.2023.10.016
[4]
孔方南, 黎新荣, 赵静, 周之珞, 周彩霞, 颜桢灵, 罗培四, 卓福昌, 黄丽君, 韦优. 不同成熟度对红果参果实品质及香气成分的影响. 食品工业科技, 2024, 45(1): 63-71.
KONG F N, LI X R, ZHAO J, ZHOU Z L, ZHOU C X, YAN Z L, LUO P S, ZHUO F C, HUANG L J, WEI Y. Effect of different maturity on quality and aroma composition of C.lancifolius fruit. Science and Technology of Food Industry, 2024, 45(1): 63-71. (in Chinese)
[5]
WHITE I R, BLAKE R S, TAYLOR A J, MONKS P S. Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds. Metabolomics, 2016, 12(3): 57.
[6]
张上隆, 陈昆松. 果实品质形成与调控的分子生理. 北京: 中国农业出版社, 2007: 184.
ZHANG S L, CHEN K S. Molecular Physiology of Fruit Quality Development and Regulation. Beijing: China Agriculture Press, 2007: 184. (in Chinese)
[7]
XIE H W, MENG L H, GUO Y, XIAO H M, JIANG L B, ZHANG Z K, SONG H C, SHI X Q. Effects of volatile flavour compound variations on the varying aroma of mangoes ‘Tainong’ and ‘Hongyu’ during storage. Molecules, 2023, 28(9): 3693.
[8]
唐会周, 明建, 程月皎, 曾凯芳. 成熟度对芒果果实挥发物的影响. 食品科学, 2010, 31(16): 247-252.

doi: 10.7506/spkx1002-6630-201016055
TANG H Z, MING J, CHENG Y J, ZENG K F. Effect of degree of maturity on the volatile composition of mango fruits. Food Science, 2010, 31(16): 247-252. (in Chinese)
[9]
黄豆, 曹烙文, 岑延相, 区梓峰, 胡韩, 谭国斌, 麦泽彬, 黄正旭, 李雪, 吴曼曼. 顶空固相微萃取-全二维气相色谱/飞行时间质谱测定三种芒果香气成分. 食品工业科技, 2021, 42(15): 218-226.
HUANG D, CAO L W, CEN Y X, OU Z F, HU H, TAN G B, MAI Z B, HUANG Z X, LI X, WU M M. Detection of aroma components in three cultivars of mango with headspace solid phase microextraction- comprehensive two-dimensional gas chromatograph/time of flight mass spectrometer. Science and Technology of Food Industry, 2021, 42(15): 218-226. (in Chinese)
[10]
SAKHO M, CHASSAGNE D, CROUZET J. African mango glycosidically bound volatile compounds. Journal of Agricultural and Food Chemistry, 1997, 45(3): 883-888.
[11]
SUGIMOTO K, NOMURA K, NISHIURA H, OHDAN K, OHDAN K, HAYASHI H, KURIKI T. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. Journal of Bioscience and Bioengineering, 2007, 104(1): 22-29.

pmid: 17697979
[12]
PAYYAVULA R S, BABST B A, NELSEN M P, HARDING S A, TSAI C J. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures. BMC Plant Biology, 2009, 9(1): 151.
[13]
LEHNER T B, SIEGMUND B. The impact of ventilation during postharvest ripening on the development of flavour compounds and sensory quality of mangoes (Mangifera indica L.) cv. Kent. Food Chemistry, 2020, 320: 126608.
[14]
MUNAFO J P Jr, DIDZBALIS J, SCHNELL R J, SCHIEBERLE P, STEINHAUS M. Characterization of the major aroma-active compounds in mango (Mangifera indica L.) cultivars haden, white Alfonso, Praya sowoy, royal special, and malindi by application of a comparative aroma extract dilution analysis. Journal of Agricultural and Food Chemistry, 2014, 62(20): 4544-4551.
[15]
XIA Z Q, HUANG D M, ZHANG S K, WANG W Q, MA F N, WU B, XU Y, XU B Q, CHEN D, ZOU M L, XU H Y, ZHOU X C, ZHAN R L, SONG S. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Horticulture Research, 2021, 8: 14.
[16]
RAFFO A, NARDO N, TABILIO M R, PAOLETTI F. Effects of cold storage on aroma compounds of white- and yellow-fleshed peaches. European Food Research and Technology, 2008, 226(6): 1503-1512.
[17]
ZOU S C, WU J C, SHAHID M Q, HE Y H, LIN S Q, LIU Z H, YANG X H. Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry, 2020, 323: 126822.
[18]
高文科, 李明海, 赵兴东, 吴兴恩, 彭磊, 王梓然. 代谢组解析商品成熟与生理成熟芒果内在品质和类胡萝卜素合成差异. 中国农业大学学报, 2022, 27(4): 95-104.
GAO W K, LI M H, ZHAO X D, WU X E, PENG L, WANG Z R. Differences in intrinsic quality and carotenoid biosynthesis between commodity maturity and physiological maturity mango fruits by metabolome ananlsys. Journal of China Agricultural University, 2022, 27(4): 95-104. (in Chinese)
[19]
李沅达, 吴婷, 黄刚骅, 任玲, 马晨阳, 周小慧, 李亚莉, 周红杰. SPME-GC-MS技术结合rOAV分析不同加工工艺紫娟白茶的关键香气物质. 食品工业科技, 2023, 44(9): 324-332.
LI Y D, WU T, HUANG G H, REN L, MA C Y, ZHOU X H, LI Y L, ZHOU H J. SPME-GC-MS technique combined with rOAV for the analysis of key aroma substances of zijuan white tea with different processing processes. Science and Technology of Food Industry, 2023, 44(9): 324-332. (in Chinese)
[20]
OGATA H, GOTO S, SATO K, FUJIBUCHI W, BONO H, KANEHISA M. KEGG Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 1999, 27(1): 29-34.
[21]
DANG K T H, SINGH Z, SWINNY E E. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. Journal of Agricultural and Food Chemistry, 2008, 56(4): 1361-1370.

doi: 10.1021/jf072208a pmid: 18247535
[22]
LI D T, DAI T T, CHEN M S, LIANG R H, LIU W, LIU C M, SUN J, CHEN J, DENG L Z. Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. Food Bioscience, 2023, 52: 102497.
[23]
MAARSE H. Volatile Compounds in Foods and Beverages. USA: Food Science and Technology, 1991.
[24]
PANDIT S S, CHIDLEY H G, KULKARNI R S, PUJARI K H, GIRI A P, GUPTA V S. Cultivar relationships in mango based on fruit volatile profiles. Food Chemistry, 2009, 114(1): 363-372.
[25]
檀业维, 刘帅民, 冯春梅, 李建强, 姜宗伯, 王淋靓, 黎新荣. 不同成熟度‘桂热82号’芒果加工成原味果干前后关键香气成分变化. 食品工业科技, 2023, 44(01): 316-322.
TAN Y W, LIU S M, FENG C M, LI J Q, JIANG Z B, WANG L L, LI X R. Changes in key aroma compounds of ‘Guire 82’ mangoes with different ripening stages before and after processing into dehydrated mangoes. Science and Technology of Food Industry, 2023, 44(1): 316-322. (in Chinese)
[26]
PINO J A, MESA J, MUÑOZ Y, MARTÍ M P, MARBOT R. Volatile components from mango (Mangifera indica L.) cultivars. Journal of Agricultural and Food Chemistry, 2005, 53(6): 2213-2223.
[27]
ANSARI S H, ALI M, VELASCO-NEGUERUELA A, PEREZ- ALONSO M J. Characterization of volatile constituents of mango ‘Qalmi’ (Mangifera indica L.) fruit. Journal of Essential Oil Research, 2004, 16(5): 417-419.
[28]
TANDEL J, TANDEL Y, KAPADIA C, SINGH S, GANDHI K, DATTA R, SINGH S, YIRGU A. Nontargeted metabolite profiling of the most prominent Indian mango (Mangifera indica L.) cultivars using different extraction methods. ACS Omega, 2023, 8(43): 40184-40205.
[29]
PANDIT S S, KULKARNI R S, CHIDLEY H G, GIRI A P, PUJARI K H, KÖLLNER T G, DEGENHARDT J, GERSHENZON J, GUPTA V S. Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. Journal of the Science of Food and Agriculture, 2009, 89(12): 2071-2081.
[30]
BARTLEY J P, SCHWEDE A. Volatile flavor components in the headspace of the Australian or “Bowen” mango. Journal of Food Science, 1987, 52(2): 353-355.
[31]
QUIJANO C E, SALAMANCA G, PINO J A. Aroma volatile constituents of Colombian varieties of mango (Mangifera indica L.). Flavour and Fragrance Journal, 2007, 22(5): 401-406.
[32]
SHIVASHANKARA K S, ISOBE S, HORITA H, TAKENAKA M. Volatile aromatic constituents of tree ripened and mature green ‘Irwin’ mango fruits during low temperature storage. Journal of the Japanese Society for Horticultural Science, 2006, 75(3): 209-212.
[33]
YUNCHALAD M, YVES L, CLAUDIE D M. Comparison of aroma components in Thai mango (cv. Kaew) from different extraction methods. Agricultural and Food Sciences, 2005.
[34]
余炼, 滕建文, 左俊, 韦保耀. 广西百色地区不同品种芒果香气成分分析. 现代食品科技, 2008, 24(3): 276-280, 284.
YU L, TENG J W, ZUO J, WEI B Y. Analysis of aroma components in different mango varieties in beise region of Guangxi Province. Modern Food Science and Technology, 2008, 24(3): 276-280, 284. (in Chinese)
[35]
谢若男, 马晨, 张群, 刘春华, 阳辛凤. 海南省芒果主产区主栽品种果实挥发性成分的对比. 热带作物学报, 2019, 40(3): 558-566.

doi: 10.3969/j.issn.1000-2561.2019.03.021
XIE R N, MA C, ZHANG Q, LIU C H, YANG X F. Comparative study on volatile components of mango fruit (Mangifera indica L.) from main producing regions of Hainan Province. Chinese Journal of Tropical Crops, 2019, 40(3): 558-566. (in Chinese)
[36]
CANUTO, KIRLEY, MARQUES, SOUZA, NETO, MANOEL. Volatile chemical composition of mango fruit ‘Tommy Atkins’, cultivated in São Francisco Valley, at different stages of maturity. Química Nova, 2009, 32(9): 2377-2381.
[37]
LALEL H J D, SINGH Z, TAN S C. Aroma volatiles production during fruit ripening of ‘Kensington Pride’ mango. Postharvest Biology and Technology, 2003, 27(3): 323-336.
[1] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[2] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
[3] . Physiological effects of exogenous oxalic acid associated with delaying ripening of mango fruit during storage [J]. Scientia Agricultura Sinica, 2007, 40(8): 1767-1773 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!