Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4115-4124.doi: 10.3864/j.issn.0578-1752.2023.20.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Fatty Liver Model Construction and Its Effectiveness Evaluation Induced by Dexamethasone in Broilers

WANG ChaoHui(), SUN Xi, WANG QiangGang, LIU RuiBing, LI Ni, YANG XiaoJun, LIU YanLi()   

  1. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2022-12-20 Accepted:2023-05-30 Online:2023-10-16 Published:2023-10-31
  • Contact: LIU YanLi

Abstract:

【Background】Excessive abdominal fat deposition and fatty liver syndrome are important industrial problems of lipid metabolism disorder in poultry breeding. The liver is the main site of de novo fatty acid synthesis in poultry, which plays a vital function in nutrients metabolism, formation of bile acids and detoxication. Therefore, the mechanism analysis of lipid metabolism disorder will provide reference for the healthy development of poultry industry, but the disease model is necessary for pathogenesis research. 【Objective】This experiment was conducted to evaluate the effect of dexamethasone-induced fatty liver in broilers, aiming to provide the reference for the construction of lipid metabolism disorder model in poultry. 【Method】Sixteen 35-day-old AA broilers with similar body weight were randomly divided into control group and dexamethasone group (DXM), with 8 replicates in each group. The birds in the DXM were injected subcutaneously with dexamethasone sodium phosphate (4.5 mg·kg-1) for 7 days, and the birds in the control group were given the administration of normal saline injection. After 7 days, oil red O staining was used to analyze the histopathological changes of the liver, and serum biochemical and antioxidant indexes were detected. RT-PCR was applied to detect genes expression related to lipid metabolism and inflammatory response in the liver. 【Result】Compared with the control group, the liver index of broilers in the DXM was significantly increased (P<0.05). Oil red O sections showed a large number of red lipid droplets, and the contents of TG and TC in the liver were higher than those in the control group (P<0.05). Serum biochemical results showed that aspartate amino transferase (AST), total bilirubin (TBIL), uric acid (UA), total protein (TP), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), total cholesterol (TC) and triglyceride (TG) levels in the DXM were significantly higher than those in the control group (P<0.05), but there was no significant difference about alanine aminotransferase (ALT) and glucose (GLU) (P>0.05). Dexamethasone injection significantly increased genes expression about lipid synthesis, such as ACC, FAS, SCD1, PPARγ, ChREBP, SREBP-1c, IGF2 and GR in the liver (P<0.05), but ELOVL6 expression was not affected (P>0.05). In addition, genes expression about lipid catabolism such as CPT1, LPL and PPARα were deceased in DXM group (P<0.05). However, the expression of ATGL gene related to lipid hydrolysis, CETP and MTTP gene related to lipid transport were significantly higher in DXM group (P<0.05). On the other hand, DXM injection significantly increased the genes expression of MyD88, NFκB, IL-6, TNF-α in the liver of broilers (P<0.05). Antioxidant analysis showed that there was no significant change in the total antioxidant capacity of liver and serum (P>0.05), but the content of malondialdehyde in serum was significantly higher in DXM group (P<0.05). 【Conclusion】Neck subcutaneous injection of DXM could cause lipid metabolism disorders in broilers, and lead to oxidative stress and liver inflammation, which was similar to the characteristics of fatty liver disease, indicating that this method could be used to establish the fatty liver model in broilers quickly.

Key words: dexamethasone, broiler, fatty liver syndrome

Table 1

The primer sequences"

引物 Primer 登录号 Accession number 引物序列 Primer sequences (5′ - 3′) 产物大小 Product size(bp)
β-actin L_08165 F:ATTGTCCACCGCAAATGCTTC
R:AAATAAAGCCATGCCAATCTCGTC
113
ACC XM_046929960 F:GCTTCCCATTTGCCGTCCTA
R:GCCATTCTCACCACCTGATTACTG
185
FAS NM_205155 F:TTTGGTGGTTCGAGGTGGTA
R:CAAAGGTTGTATTTCGGGAGC
212
SCD1 NM_204890 F:GTTTCCACAACTACCACCATACATT
R:CCATCTCCAGTCCGCATTTT
175
PPARγ NM_001001460 F:CCAAGGCAGCGGCAAAATAA
R:GTGCCCATAAATGATGGCCTAA
188
ELOVL6 XM_046916529 F:GGTGGTCGGCACCTAATGAA
R:TCTGGTCACACACTGACTGC
169
ChREBP EU_152408 F: ATTGACCCGACCCTGACG
R: CATACTGGATGTACCACGCTCT
160
SREBP1c XM_046927256 F: GCCCTCTGTGCCTTTGTCTTC
R: ACTCAGCCATGATGCTTCTTC
130
IGF2 NM_001030342 F: ATTGTCCACCGCAAATGCTTC
R: AAATAAAGCCATGCCAATCTCGTC
131
GR NM_001037826 F: TCCTGTGCTTTGCACCAGAT
R: GATGGCCTTTCCCAGCTCTT
245
ATGL NM_001113291 F: TCCTAGGGGCCTACCACATC
R: CCAGGAACCTCTTTCGTGCT
195
CETP NM_001034814 F: AGTCTCGCCCTTCCTGAGAT
R: GCAGCTTGGATAGTGACCGT
149
CPT1 XM_046918285 F: TAGAGGGCGTGGACCAATAA
R: TGGGATGCGGGAGGTATT
229
LPL NM_205282 F: CCGATCCCGAAGCTGAGATG
R: ACATTCCTGTCACCGTCCAC
186
MTTP NM_001109784 F: GCAGATGGACAGAGTTGGCT
R: ACACCAAAAGTGCAAGGTGC
224
PPARα XM_046906400 F: TTTAACGGAGTTCCAATCGC
R: AACCCTTACAACCTTCACAAGC
224
IL-6 NM_204628 F: CTCGTCCGGAACAACCTCAA
R: GGAGAGCTTCGTCAGGCATT
96
MyD88 NM_001030962 F: CGTGCCAAAGACTTCAGAGC
R: CTGGCAAGACATCCCGATCA
191
NFκB NM_001396038 F: CAGCCCATCTATGACAACCG
R: CAGCCCAGAAACGAACCTC
151
TNFα XM_046927265 F: TGTGTATGTGCAGCAACCCGTAGT
R: GGCATTGCAATTTGGACAGAAGT
229

Fig. 1

Effects of dexamethasone on hepatic histopathology, TG and TC content in broilers"

Table 2

Effects of dexamethasone on serum biochemical indices of broilers"

项目 Item 对照组 Control 地塞米松组Dexamethasone PP-value
谷丙转氨酶ALT(U·L-1 0.86±0.34 2.00±0.53 0.096
谷草转氨酶AST(U·L-1 317.33±14.72 466.43±52.36* 0.029
总胆红素TBIL(µmol·L-1 20.13±1.06 34.14±2.45** <0.001
尿酸UA(µmol·L-1 318.43±37.52 532.86±48.32** 0.004
血清总蛋白TP(g·L-1 30.44±1.42 45.00±1.30** <0.001
血清葡萄糖GLU(mmol·L-1 12.11±0.25 15.04±1.29 0.063
高密度脂蛋白胆固醇HDL-c(mmol·L-1 1.71±0.09 4.42±0.21** <0.001
低密度脂蛋白胆固醇LDL-c(mmol·L-1 0.48±0.26 1.53±0.14** <0.001
总胆固醇TC(mmol·L-1 2.75±0.14 7.93±0.34** <0.001
甘油三酯TG(mmol·L-1 0.65±0.05 1.54±0.28* 0.018

Fig. 2

Effects of dexamethasone on lipid metabolism related gene expression in broilers"

Fig. 3

Effects of dexamethasone on expression of genes related to liver inflammation in broilers"

Fig. 4

Effects of dexamethasone on antioxidant indices in serum and liver of broilers"

[1]
METE A, GIANNITTI F, BARR B, WOODS L, ANDERSON M.Causes of mortality in backyard chickens in northern California: 2007-2011. Avian Diseases, 2013, 57(2): 311-315.

doi: 10.1637/10382-092312-Case.1
[2]
ZHUANG Y, XING C H, CAO H B, ZHANG C Y, LUO J R, GUO X Q, HU G L. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Scientific Reports, 2019, 9: 10141.

doi: 10.1038/s41598-019-46183-y pmid: 31300671
[3]
王译彬, 刘瑞, 刘南南, 杨小军, 刘艳利. 动物脂肪肝模型构建研究进展. 家畜生态学报, 2022, 43(6): 8-16.
WANG Y B, LIU R, LIU N N, YANG X J, LIU Y L. Research progress of fatty liver models in animals. Journal of Domestic Animal Ecology, 2022, 43(6): 8-16. (in Chinese)
[4]
ROZENBOIM I, MAHATO J, COHEN N A, TIROSH O. Low protein and high-energy diet: a possible natural cause of fatty liver hemorrhagic syndrome in caged White Leghorn laying hens. Poultry Science, 2016, 95(3): 612-621.

doi: 10.3382/ps/pev367 pmid: 26755655
[5]
XING C H, WANG Y, DAI X Y, YANG F, LUO J R, LIU P, ZHANG C Y, CAO H B, HU G L. The protective effects of resveratrol on antioxidant function and the mRNA expression of inflammatory cytokines in the ovaries of hens with fatty liver hemorrhagic syndrome. Poultry Science, 2020, 99(2): 1019-1027.

doi: S0032-5791(19)44093-5 pmid: 32036959
[6]
郭小权, 胡国良, 曹华斌, 张彩英, 李浩棠, 王小莺. 高能低蛋白日粮致脂肪肝出血综合征鸡抗氧化能力和肝损伤的研究. 中国兽医学报, 2010, 30(06):829-832.
GUO X Q, HU G L, CAO H B, ZHANG C Y, LI H T, WANG X Y. Study on antioxidant capacity and liver damage in chickens with fatty liver bleeding syndrome induced by high energy and low protein diet. Chinese Journal of Veterinary Science, 2010, 30(06):829-832. (in Chinese)
[7]
JIAN H F, XU Q Q, WANG X M, LIU Y T, MIAO S S, LI Y, MOU T M, DONG X Y, ZOU X T. Amino acid and fatty acid metabolism disorders trigger oxidative stress and inflammatory response in excessive dietary valine-induced NAFLD of laying hens. Frontiers in Nutrition, 2022, 9: 849767.

doi: 10.3389/fnut.2022.849767
[8]
ZHANG Y H, LIU Z, LIU R R, WANG J, ZHENG M Q, LI Q H, CUI H X, ZHAO G P, WEN J. Alteration of hepatic gene expression along with the inherited phenotype of acquired fatty liver in chicken. Genes, 2018, 9(4): 199.

doi: 10.3390/genes9040199
[9]
YAO Y, WANG H H, YANG Y, JIANG Z H, MA H T. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sciences, 2022, 308: 120926.

doi: 10.1016/j.lfs.2022.120926
[10]
LI Y Y, CAO C Y, ZHOU Y L, NIE Y Q, CAO J, ZHOU Y J. The roles and interaction of FXR and PPARs in the pathogenesis of nonalcoholic fatty liver disease. Arab Journal of Gastroenterology: the Official Publication of the Pan-Arab Association of Gastroenterology, 2020, 21(3): 162-168.
[11]
HU X Y, WANG Y F, SHEIKHAHMADI A, LI X L, BUYSE J, LIN H, SONG Z G. Effects of glucocorticoids on lipid metabolism and AMPK in broiler chickens' liver. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2019, 232: 23-30.

doi: 10.1016/j.cbpb.2019.02.001
[12]
胡云. 糖皮质激素诱导的鸡脂肪肝发生机制与甜菜碱的缓解作用[D]. 南京: 南京农业大学, 2019.
HU Y. Mechanism of glucocorticoid-induced fatty liver in chickens and the relieving effects of betaine[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
[13]
XIANG L P, JIAO Y, QIAN Y L, LI Y, MAO F, LU Y. Comparison of hepatic gene expression profiles between three mouse models of Nonalcoholic Fatty Liver Disease. Genes & Diseases, 2021, 9(1): 201-215.
[14]
赵南南. 母源性甜菜碱缓解子代大鼠糖皮质激素诱导的非酒精性脂肪肝的作用及其机制[D]. 南京: 南京农业大学, 2018.
ZHAO N N. Maternal betaine alleviates glucocorticoid-induced nonalcoholic fatty liver disease in offspring rats and its mechanisms[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
[15]
颜妍. 地塞米松诱导大鼠肝脏糖脂代谢紊乱分子机制研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
YAN Y. Study on the molecular mechanism of dexamethasone induced hepatic glucose lipid metabolism disorder in rats[D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese)
[16]
刘艳利, 党燕娜, 段玉兰, 杨小军. 鸡原代肝细胞培养及叶酸对脂质代谢相关基因表达的影响. 中国农业科学, 2017, 50(21): 4205-4211. doi: 10.3864/j.issn.0578-1752.2017.21.005.
LIU Y L, DANG Y N, DUAN Y L, YANG X J. Effect of folic acid on lipid metabolism associated gene expression in primarily cultured chickens hepatocytes. Scientia Agricultura Sinica, 2017, 50(21): 4205-4211. doi: 10.3864/j.issn.0578-1752.2017.21.005. (in Chinese)
[17]
RAHIMI L, RAJPAL A, ISMAIL-BEIGI F. Glucocorticoid-induced fatty liver disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, 13: 1133-1145.
[18]
FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, SANYAL A J. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 2018, 24(7): 908-922.

doi: 10.1038/s41591-018-0104-9 pmid: 29967350
[19]
FENG Z W, PANG L J, CHEN S Y, PANG X H, HUANG Y S, QIAO Q, WANG Y L, VONGLORKHAM S, HUANG Q F, LIN X, WEI J B. Didymin ameliorates dexamethasone-induced non-alcoholic fatty liver disease by inhibiting TLR4/NF-κB and PI3K/Akt pathways in C57BL/6J mice. International Immunopharmacology, 2020, 88: 107003.

doi: 10.1016/j.intimp.2020.107003
[20]
GUPTA A P, SINGH P, GARG R, VALICHERLA G R, RIYAZUDDIN M, SYED A A, HOSSAIN Z, GAYEN J R.Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy, 2019, 116: 108959.
[21]
LIU B B, DENG X L, JIANG Q Q, LI G X, ZHANG J L, ZHANG N, XIN S L, XU K S. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & Pharmacotherapy, 2020, 125: 109895.

doi: 10.1016/j.biopha.2020.109895
[22]
FAN Y B, HE Z W, WANG W, LI J J, HU A M, LI L, YAN L, LI Z J, YIN Q. Tangganjian Decoction ameliorates type 2 diabetes mellitus and nonalcoholic fatty liver disease in rats by activating the IRS/PI3K/AKT signaling pathway. Biomedicine & Pharmacotherapy, 2018, 106: 733-737.

doi: 10.1016/j.biopha.2018.06.089
[23]
LIANG M, HUO M H, GUO Y, ZHANG Y Y, XIAO X, XV J, FANG L X, LI T Q, WANG H, DONG S Y, JIANG X W, YU W H. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Frontiers in Pharmacology, 2022, 13: 1084435.

doi: 10.3389/fphar.2022.1084435
[24]
沈翠萍. 糖尿病患者血清尿酸及血脂检测效果分析. 世界最新医学信息文摘, 2016, 16(97): 155.
SHEN C P. Analysis on the detection effect of serum uric acid and blood lipid in diabetic patients. World Latest Medicine Information, 2016, 16(97): 155. (in Chinese)
[25]
HU M Y, CHEN Y, DENG F, CHANG B, LUO J L, DONG L J, LU X, ZHANG Y, CHEN Z L, ZHOU J. D-mannose regulates hepatocyte lipid metabolism via PI3K/akt/mTOR signaling pathway and ameliorates hepatic steatosis in alcoholic liver disease. Frontiers in Immunology, 2022, 13: 877650.

doi: 10.3389/fimmu.2022.877650
[26]
徐文静, 范江霖. PPARα与FXR通路在非酒精性脂肪肝病中的交互作用. 生命的化学, 2020, 40(9): 1500-1506.
XU W J, FAN J L. Crosstalk between PPARα and FXR in nonalcoholic fatty liver disease. Chemistry of Life, 2020, 40(9): 1500-1506. (in Chinese)
[27]
WANG A Q, ZHANG K X, FU C Y, ZHOU C M, YAN Z G, LIU X L. Alleviation effect of conjugated linoleic acid on estradiol benzoate induced fatty liver hemorrhage syndrome in Hy-line male chickens. Journal of Animal Science, 2023, 101: skad045.

doi: 10.1093/jas/skad045
[28]
KRALISCH S, KLEIN J, LOSSNER U, BLUHER M, PASCHKE R, STUMVOLL M, FASSHAUER M. Isoproterenol, TNFalpha, and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology, 2005, 240(1/2): 43-49.
[29]
WANG L L, JIA Z D, WANG B C, ZHANG B. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway. The Turkish Journal of Gastroenterology: the Official Journal of Turkish Society of Gastroenterology, 2020, 31(12): 902-909.
[30]
YANG J Y, ZHANG Y, YI H F, LIAO Y, SHU L, ZHANG S, LI C Y, AN L, DU N L, SHI Z H, MA W. Fuzi-lizhong decoction alleviates nonalcoholic fatty liver disease by blocking TLR4/MyD88/TRAF6 signaling. Evidence-Based Complementary and Alternative Medicine: ECAM, 2022, 2022: 1637701.
[31]
WU J T, YANG G W, QI C H, ZHOU L, HU J G, WANG M S. Anti-inflammatory activity of platycodin d on alcohol-induced fatty liver rats via tlr4-myd88-nf-κb signal path. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 2016, 13(4): 176-183.
[32]
ZHU M K, LI H Y, BAI L H, WANG L S, ZOU X T. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poultry Science, 2020, 99(6): 3215-3228.

doi: S0032-5791(20)30116-4 pmid: 32475458
[33]
LI Y N, WU S D. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Molecular and Cellular Biochemistry, 2018, 448(1): 175-185.

doi: 10.1007/s11010-018-3324-x
[1] YIN Chang, ZHU Mo, CHEN YanRu, TONG ShiFeng, ZHAO GuiPing, LIU Yang. Assessment of Genomic Selection Accuracy for Slaughter Traits in Broilers Based on Microarray and Imputed Sequencing Data [J]. Scientia Agricultura Sinica, 2023, 56(15): 3032-3039.
[2] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[3] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[4] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[5] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[6] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[7] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[8] Zhen LI,ShiXiong YANG,Sheng NIU,Ning ZHANG,Xin LI,YangYang ZHANG,YunFei JIA,ZhiXiong TIAN,GuanBao NING,Ding ZHANG,WenXia TIAN. Effect of Recombinant GSTA3 Protein on Expression of the Anti-Apoptotic Gene BAG-3 in Thiram-Induced Tibial Chondrodysplasia [J]. Scientia Agricultura Sinica, 2020, 53(9): 1921-1930.
[9] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[10] Shuang XING,JingHai FENG. Effects of Lactobacillus Supplements on Growth Performance of Broilers: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(1): 183-190.
[11] YANG YuYan,WANG XueJie,ZHANG MinHong,FENG JingHai. The Upper Limit Temperature of Thermoneutral Zone Estimated by the Changes of Temperature and Respiration Rate of the Broilers [J]. Scientia Agricultura Sinica, 2019, 52(3): 550-557.
[12] Wei ZHANG,JinJun DAI,XueHai YANG,JinTao WEI,MingXin CHEN,JunPeng HU,ShaoWen HUANG. Evaluation of Apparent Metabolic Energy, Nitrogen Corrected Metabolic Energy, Biological Value of Protein and Ileal Digestibility of Amino Acid of Yeast Hydrolysate for Broilers [J]. Scientia Agricultura Sinica, 2019, 52(20): 3685-3694.
[13] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[14] CHANG ShuangShuang,LI Meng,LI XiuMei,SHI YuXiang,ZHANG MinHong,FENG JingHai. Effects of the Daily Cycle Variation of the Moderate Ambient Temperatures on the Serum Brain Gut Peptide and the Diversity of Caecal Microflora in Broilers [J]. Scientia Agricultura Sinica, 2018, 51(22): 4364-4372.
[15] ZHANG LiLan, CHEN Liang, ZHONG RuQing, ZHANG HongFu. Effect of Exogenous Protease on in vitro Dry Matter Digestibility and Enzymatic Hydrolysate Gross Energy of Diets for Broilers [J]. Scientia Agricultura Sinica, 2017, 50(7): 1326-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!