Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2812-2827.doi: 10.3864/j.issn.0578-1752.2023.14.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Effects of Caragana korshinskii Kom. on Serum Indexes, Rumen and Colon Microbiota of Tan Sheep

HAN Jing1,2(), WANG XiaoQi2(), DUAN ZiYuan2()   

  1. 1 Agricultural College of Ningxia University, Yinchuan 750000
    2 Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing 100101
  • Received:2022-05-04 Accepted:2022-12-29 Online:2023-07-16 Published:2023-07-21
  • Contact: DUAN ZiYuan

Abstract:

【Objective】 This study aimed to examine the effects of Caragana korshinskii Kom. (CK) at the rate of 10% of the diet on blood lipids, immune indicators, and rumen and colon microbiota of Tan sheep, so as to provide a theoretical basis for CK being partial Tan sheep forage. 【Method】 Twelve Tan sheep (4-month-old) with an initial average weight of 27.5 ± 3.32 kg were randomly divided into 2 groups (6 in each group): NC group was fed with 30% concentrate and 70% alfalfa; CK group, with 30% concentrate, 60% alfalfa and 10% CK, and drinking water ad libitum. The nutrient composition of the two groups were similar, but the fiber content of CK was slightly higher than that of alfalfa. The preparatory experiment was in 10 days and the formal experiment was lasted for 60 days. At the end of the 60 days, jugular vein blood was collected to measure blood biochemical indexes (blood lipids and immune factors) and rumen fluid, and colon content were collected to detect the changes of flora in rumen and colon, respectively, by 16S rRNA sequencing method. Through construction of the recombinant plasmid, such as Selenomona, Prevotella, Blautia, Desulfovibrio, Ruminococcus and Bacteroides, the absolute quantitative of important genera were detected by real-time quantitative PCR (qPCR) comparing to its standard curve, respectively. 【Result】 At the end of the trial period, the end weight and daily average feed intake of Tan sheep were similar between two groups. Compared with NC group, the indexes related to the lipid absorption and digestion in CK group decreased, such as the content of serum triglyceride (TRIG, P<0.05) and very low density lipoprotein (VLDL, P<0.01) decreased markedly, while the concentration of low density lipoprotein (LDL) tended to decrease significantly (0.05<P<0.1). The inflammatory and lipolytic factor, such as interleukin-6 (IL-6), increased significantly (P<0.05) whereas the inflammatory factor, γ-Interferon (IFN-γ) marked decreased tendentiously (P=0.058). By analyzing microflora of rumen fluid and colon contents, adding CK to diet increased community Shannon diversity index of colonic bacteria communities significantly (P<0.01), while tended to decrease the Chao1 index in rumen (0.05<P<0.1). Compared with NC group, the relative abundance of Oscillospira under CK decreased (P=0.07), while that of Akkermansia notable under CK increased (P<0.05) in rumen. The relative abundance of harmful bacteria, like Treponema, and carbohydrate degradation related Bacteroides significantly decreased (P=0.059, P=0.061), but that of Oscillospira, which a butyric acid producing bacteria related to obesity, constipation and immunity, gained markedly (P<0.05) in colon under CK. It was evidently deduced that the bacterial communities in rumen and colon had significant difference on the capacities for lipid metabolism and biosynthesis of other secondary metabolite between two groups (P<0.05). Based on Pearson correlation analysis, it was showed that the level of serum TRIG was positively correlated with rumen and colonic Pseudobutyrivibrio (P<0.05), which was both fiber degrading bacteria and butyric acid producing bacteria. 【Conclusion】 There was no significant effect of CK partial substitution for alfalfa on the growth performance of Tan sheep, but could reduce the concentrations of serum TRIG, LDL and VLDL through affecting the gastrointestinal tract microbiota, and then participate in the lipid metabolism of the host.

Key words: blood lipids, 16S rRNA, rumen microbiota, colon microbiota

Table 1

Composition and nutrient levels of diets (% DM basis)"

项目
Item
组别 Group
NC组
NC group
CK组
CK group
成分 Ingredient
苜蓿 Alfalfa 70.0 60.0
柠条 Caragana korshinskii Kom 10.0
精料 Commercial concentrate 30.0 30.0
合计 Total 100.0 100.0
营养水平 Chemical composition
干物质Dry matter 90.4 90.4
有机物Organic matter 88.4 89.0
粗蛋白质Crude protein 15.5 14.9
粗脂肪Ether extract 2.0 2.0
酸性洗涤纤维Acid detergent fiber 31.1 32.7
中性洗涤纤维Neutral detergent fiber 49.7 51.8
总能Gross energy (MJ·kg-1) 15.8 16.0

Table 2

qPCR primers for bacteria"

菌属
Genus
引物
Primers(5'to3')
扩增长度
Amplicon length (bp)
参考文献
Reference
月形单胞菌属
Selenomonas
F:TGAGTGAAGAAGGGTTTCGGC 511 [21]
R:TTGAGTTTCAGTCTTGCGACCG
瘤胃球菌属
Ruminococcus
F:GAGTGAAGTAGAGGTAAGCGGAATTC 243 [22]
R:GCCGTACTCCCCAGGTGG
脱硫弧菌属
Desulfovibrio
F:CCGTAGATATCTGGAGGAACATCAG 135 [23]
R:ACATCTAGCATCCATCGTTTACAGC
布劳特氏菌属
Blautia
F:TCTGATGTGAAAGGCTGGGGCTTA 250 [24]
R:GGCTTAGCCACCCGACACCTA
拟杆菌属
Bacteroides
F:CTGAACCAGCCAAGTAGCG 226 [25]
R:CCGCAAACTTTCACAACTGACTTA
普雷沃氏菌属
Prevotella
F:GGTTCTGAGAGGAAGGTCCCC 121 [26]
R:TCCTGCACGCTACTTGGCTG

Fig. 1

The inflammatory cytokines concentration of serum on Tan sheep a: IL-1 concentration; b: IL-6 concentration; c: IL-10 concentration; d: IL-12p70 concentration; e: IFN-γ concentration; f: MCP-1 concentration; g: COX-2 concentration; h: TNF-α concentration. * Significant level at P<0.05, ** significant difference at P<0.01. The same as below"

Fig. 2

The blood fat levels of serum on Tan sheep a: Triglyceride concentration; b: Total bile acid concentration; c: Total cholesterol concentration; d: High density lipoprotein concentration; e: Low density lipoprotein concentration; f: Very low density lipoprotein concentration"

Fig. 3

α, β-diversity of ruminal and intestinal microbiota between two groups with/without CK in diets a: α-diversity; b: β- diversity. AG: Colon of NC; BG: Colon of CK; AR: Rumen of NC; BR: Rumen of CK"

Table 3

Comparison of the microbiota phenotypes between NC and CK groups"

项目
Item
瘤胃Rumen 结肠Colon
AR组
AR group
BR组
BR group
P
P value
AG组
AG group
BG组
BG group
P
P value
好氧型Aerobic 0.033±0.015 0.016±0.011 0.041 0.085±0.073 0.075±0.030 0.589
厌氧型Anaerobic 0.842±0.025 0.880±0.034 0.065 0.754±0.087 0.724±0.025 0.394
兼性厌氧型Facultatively anaerobic 0.034±0.025 0.025±0.011 0.818 0.004±0.001 0.003±0.001 0.394
生物膜形成Forms biofilms 0.051±0.013 0.041±0.014 0.240 0.099±0.084 0.067±0.029 0.937
革兰氏阳性Gram positive 0.442±0.071 0.467±0.097 0.818 0.635±0.063 0.705±0.070 0.132
革兰氏阴性Gram negative 0.558±0.071 0.533±0.097 0.818 0.365±0.063 0.295±0.070 0.132
潜在致病性Potentially pathogenic 0.648±0.072 0.638±0.638 0.818 0.450±0.076 0.385±0.050 0.180

Fig. 4

The relative abundance of bacteria (top 10) at phylum level"

Fig. 5

The relative abundance of bacteria (top 25) at genus level"

Table 4

The result of qPCR (copies)"

菌属
Genus
瘤胃Rumen 结肠Colon
AR组
AR group
BR组
BR group
P
P value
AG组
AG group
BG组
BG group
P
P value
脱硫弧菌属 Desulfovibrio 4.75±0.37(×104 4.19±0.21(×104 0.01 3.80±0.20(×103 3.83±0.13(×103 0.83
瘤胃球菌属 Ruminococcus 6.55±0.82(×106 6.77±0.30(×106 0.09 7.85±0.66(×107 7.80±0.38(×107 0.64
拟杆菌属Bacteroides 4.18±0.72(×104 4.45±0.57(×104 0.52 7.00±0.26(×106 6.88±0.10(×106 0.36
普雷沃氏菌属 Prevotella 6.88±0.29(×106 7.17±0.35(×106 0.19 7.22±0.28(×107 6.98±0.04(×107 0.08
月形单胞菌属 Selenomonas 4.86±0.18(×104 5.43±0.42(×104 0.02 5.38±0.22(×105 5.24±0.14(×105) 0.26
布劳特氏菌属 Blautia 4.77±0.22(×104 4.61±0.26(×104 0.29 5.76±0.14(×105 5.49±0.22(×105) 0.09

Fig. 6

The relationship of bacterial genera and blood biochemical factors"

Fig. 7

Metabolic functions with significantly different between groups"

[1]
ZHANG C C, WANG Y Q, JIA X X, SHAO M A, AN Z S. Impacts of shrub introduction on soil properties and implications for dryland revegetation. Science of the Total Environment, 2020, 742: 140498.

doi: 10.1016/j.scitotenv.2020.140498
[2]
牛西午. 柠条生物学特性研究. 华北农学报, 1998, 13(4): 122-129.

doi: 10.3321/j.issn:1000-7091.1998.04.023
NIU X W. Biological characters of cultivars in Caragana. Acta Agriculturae Boreall—Sinica, 1998, 13(4): 122-129. (in Chinese)
[3]
刘国谦, 张俊宝, 刘东庆. 柠条的开发利用及草粉加工饲喂技术. 草业科学, 2003, 20(7): 26-32.
LIU G Q, ZHANG J B, LIU D Q. The technology of Caragana rororshisrii powder processing and feeding. Pratacultural Science, 2003, 20(7): 26-32. (in Chinese)
[4]
王兴蕾, 梁飘飘, 赵敏杰, 冯金朝, 刘颖. 内蒙古阿拉善左旗六种常见沙生植物的营养成分与氨基酸组成分析. 光谱学与光谱分析, 2019, 39(1): 204-209.
WANG X L, LIANG P P, ZHAO M J, FENG J C, LIU Y. Analysis of nutritional compositions and amino acid compositions of 6 common psammophytes in Alxa left banner, Inner Mongolia. Spectroscopy and Spectral Analysis, 2019, 39(1): 204-209. (in Chinese)
[5]
ZHONG C, SUN Z, ZHOU Z, JIN M J, TAN Z L, JIA S R. Chemical characterization and nutritional analysis of protein isolates from Caragana korshinskii kom. Journal of Agricultural and Food Chemistry, 2014, 62(14): 3217-3222.
[6]
任余艳, 王志刚, 张文娟. 柠条作为青贮饲料的饲用价值研究. 饲料工业, 2014, 35(17): 24-26.
REN Y Y, WANG Z G, ZHANG W J. Research on feeding value of pea tree as silage. Feed Industry, 2014, 35(17): 24-26. (in Chinese)
[7]
马吉锋, 杨宇为, 于洋, 王建东, 梁小军. 柠条与玉米芯添加比例对西杂牛增重和血液生化指标的影响研究. 饲料工业, 2020, 41(5): 56-60.
MA J F, YANG Y W, YU Y, WANG J D, LIANG X J. Effects of caragana korshinskii and corncob on weight gain and blood biochemical parameters in Simmental hybrid cattle. Feed Industry, 2020, 41(5): 56-60. (in Chinese)
[8]
方姝骄, 郑琛, 李发弟, 韩向敏, 郝正里, 张鹏坤. 柠条替代部分粗料对泌乳中期奶牛产奶量及乳品质的影响. 甘肃农业大学学报, 2011, 46(1): 18-21.
FANG S J, ZHENG C, LI F D, HAN X M, HAO Z L, ZHANG P K. Effects of different Caragana korshinskii level in milking cow ration on milk yield and quality. Journal of Gansu Agricultural University, 2011, 46(1): 18-21. (in Chinese)
[9]
WEIMER P J. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Frontiers in Microbiology, 2015, 6: 296.

doi: 10.3389/fmicb.2015.00296 pmid: 25914693
[10]
OHLAND C L, JOBIN C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1(1): 28-40.

doi: 10.1016/j.jcmgh.2014.11.004 pmid: 25729763
[11]
ZINÖCKER M K, LINDSETH I A. The western diet-microbiome- host interaction and its role in metabolic disease. Nutrients, 2018, 10(3): 365.

doi: 10.3390/nu10030365
[12]
GOMEZ D E, GALVÃO K N, RODRIGUEZ-LECOMPTE J C, COSTA M C. The cattle microbiota and the immune system. Veterinary Clinics of North America: Food Animal Practice, 2019, 35(3): 485-505.

doi: 10.1016/j.cvfa.2019.08.002
[13]
丽丽, 李大彪, 王敬尧, 解湧芳, 李子南. 饲粮中不同水平单宁对绵羊瘤胃细菌、产甲烷菌数量和古菌多样性的影响. 动物营养学报, 2020, 32(6): 2722-2729.

doi: 10.3969/j.issn.1006-267x.2020.06.031
LI L, LI D B, WANG J Y, XIE Y F, LI Z N. Effects of different levels of tannin in diets on rumen bacteria, methanogens number and rumen Archaea diversity in sheep. Chinese Journal of Animal Nutrition, 2020, 32(6): 2722-2729. (in Chinese)
[14]
马宁, 许迟, 李涛, 叶均安, 孔立洋, 赵元, 李博宁, 赵莉, 吴仙花, 何立荣. 颗粒日粮中添加柠条对滩羊生长性能、血液生化指标、瘤胃发酵及羊肉品质的影响. 畜牧与饲料科学, 2021, 42(3): 14-20, 38.
MA N, XU C, LI T, YE J A, KONG L Y, ZHAO Y, LI B N, ZHAO L, WU X H, HE L R. Effects of adding Caragana korshinskii in pelleted diet on growth performance, blood biochemical indicators, ruminal fermentation and mutton quality of Tan sheep. Animal Husbandry and Feed Science, 2021, 42(3): 14-20, 38. (in Chinese)
[15]
XUE M Y, SUN H Z, WU X H, LIU J X, GUAN L L. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 2020, 8(1): 64.

doi: 10.1186/s40168-020-00819-8
[16]
BORDENSTEIN S R, THEIS K R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biology, 2015, 13(8): e1002226.

doi: 10.1371/journal.pbio.1002226
[17]
MALMUTHUGE N, GRIEBEL P J, GUAN L L. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Applied and Environmental Microbiology, 2014, 80(6): 2021-2028.

doi: 10.1128/AEM.03864-13 pmid: 24441166
[18]
NEWBOLD C J, RAMOS-MORALES E. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal, 2020, 14: s78-s86.

doi: 10.1017/S1751731119003252
[19]
LIU J H, BIAN G R, SUN D M, ZHU W Y, MAO S Y. Starter feeding supplementation alters colonic mucosal bacterial communities and modulates mucosal immune homeostasis in newborn lambs. Frontiers in Microbiology, 2017, 8: 429.

doi: 10.3389/fmicb.2017.00429 pmid: 28382025
[20]
杨金丽, 侯先志, 高爱武. 蒙古绵羊瘤胃固、液相附着微生物的RT-PCR检测. 中国农业科学, 2009, 42(6): 2126-2132. doi:10.3864/j.issn.0578-1752.2009.06.032.

doi: 10.3864/j.issn.0578-1752.2009.06.032
YANG J L, HOU X Z, GAO A W. Quantity of microorganisms associated with solid and liquid phases of rumen contents using RT-PCR. Scientia Agricultura Sinica, 2009, 42(6): 2126-2132. doi:10.3864/j.issn.0578-1752.2009.06.032. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2009.06.032
[21]
于鸿玲. 反刍月形单胞菌及其转座工程菌对羊瘤胃发酵的影响[D]. 哈尔滨: 东北农业大学, 2006.
YU H L. Effect of Selenomonas ruminantium and its gene transpositional engineering bacteria on fermentation of sheep rumen[D]. Harbin:Northeast Agricultural University, 2006. (in Chinese)
[22]
PETRI R M, FORSTER R J, YANG W, MCKINNON J J, MCALLISTER T A. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology, 2012, 112(6): 1152-1162.

doi: 10.1111/j.1365-2672.2012.05295.x pmid: 22533638
[23]
VEIGA P, GALLINI C A, BEAL C, MICHAUD M, DELANEY M L, DUBOIS A, KHLEBNIKOV A, VAN HYLCKAMA VLIEG J E T, PUNIT S, GLICKMAN J N, ONDERDONK A, GLIMCHER L H, GARRETT W S. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(42): 18132-18137.
[24]
BLAKE A B, GUARD B C, HONNEFFER J B, LIDBURY J A, STEINER J M, SUCHODOLSKI J S. Altered microbiota, fecal lactate, and fecal bile acids in dogs with gastrointestinal disease. PLoS ONE, 2019, 14(10): e0224454.

doi: 10.1371/journal.pone.0224454
[25]
蒋曼. 新疆维吾尔族与汉族溃疡性结肠炎患者肠道菌群差异性比较[D]. 乌鲁木齐: 新疆医科大学, 2014.
JIANG M. Analysis of difference in intestinal flora of uygur and Han ethnic Chinese patients with ulcerative colitis[D]. Urumqi: Xinjiang Medical University, 2014. (in Chinese)
[26]
MORENO-INDIAS I, SÁNCHEZ-ALCOHOLADO L, PÉREZ- MARTÍNEZ P, ANDRÉS-LACUEVA C, CARDONA F, TINAHONES F, QUEIPO-ORTUÑO M I. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food & Function, 2016, 7(4): 1775-1787.
[27]
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN F D, COSTELLO E K, FIERER N, PEÑA A G, GOODRICH J K, GORDON J I, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336.

doi: 10.1038/nmeth.f.303 pmid: 20383131
[28]
MA Q T, LI Y Q, LI P F, WANG M, WANG J K, TANG Z Y, WANG T, LUO L L, WANG C G, WANG T, ZHAO B S. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & Pharmacotherapy, 2019, 117: 109138.

doi: 10.1016/j.biopha.2019.109138
[29]
DE OLIVEIRA M N V, JEWELL K A, FREITAS F S, BENJAMIN L A, TÓTOLA M R, BORGES A C, MORAES C A, SUEN G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Veterinary Microbiology, 2013, 164(3/4): 307-314.

doi: 10.1016/j.vetmic.2013.02.013
[30]
FENG J M, JIANG C Q, SUN Z Y, HUA C J, WEN J F, MIAO W, XIONG J. Single-cell transcriptome sequencing of rumen ciliates provides insight into their molecular adaptations to the anaerobic and carbohydrate-rich rumen microenvironment. Molecular Phylogenetics and Evolution, 2020, 143: 106687.

doi: 10.1016/j.ympev.2019.106687
[31]
TURNBAUGH P J, LEY R E, MAHOWALD M A, MAGRINI V, MARDIS E R, GORDON J I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031.

doi: 10.1038/nature05414
[32]
INDIANI C M D S P, RIZZARDI K F, CASTELO P M, FERRAZ L F C, DARRIEUX M, PARISOTTO T M. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Childhood Obesity (Print), 2018, 14(8): 501-509.
[33]
GEBICKI J M, NAUSER T. Fast antioxidant reaction of polyphenols and their metabolites. Antioxidants (Basel, Switzerland), 2021, 10(8): 1297.
[34]
KASPRZAK-DROZD K, ONISZCZUK T, STASIAK M, ONISZCZUK A. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. International Journal of Molecular Sciences, 2021, 22(7): 3715.

doi: 10.3390/ijms22073715
[35]
ZHANG T, LI Q Q, CHENG L, BUCH H, ZHANG F M. Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology, 2019, 12(6): 1109-1125.

doi: 10.1111/mbt2.v12.6
[36]
MACCHIONE I G, LOPETUSO L R, IANIRO G, NAPOLI M, GIBIINO G, RIZZATTI G, PETITO V, GASBARRINI A, SCALDAFERRI F. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. European Review for Medical and Pharmacological Sciences, 2019, 23(18): 8075-8083.

doi: 19024 pmid: 31599433
[37]
JANDHYALA S M, TALUKDAR R, SUBRAMANYAM C, VUYYURU H, SASIKALA M, NAGESHWAR REDDY D. Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21(29): 8787-8803.

doi: 10.3748/wjg.v21.i29.8787 pmid: 26269668
[38]
GRILLI D J, CERÓN M E, PAEZ S, EGEA V, SCHNITTGER L, CRAVERO S, SOSA ESCUDERO M, ALLEGRETTI L, ARENAS G N. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet. Folia Microbiologica, 2013, 58(5): 367-373.

doi: 10.1007/s12223-012-0219-1
[39]
PALEVICH N, MACLEAN P H, KELLY W J, LEAHY S C, RAKONJAC J, ATTWOOD G T. Complete genome sequence of the polysaccharide-degrading rumen bacterium Pseudobutyrivibrio xylanivorans MA3014 reveals an incomplete glycolytic pathway. Genome Biology and Evolution, 2020, 12(9): 1566-1572.

doi: 10.1093/gbe/evaa165
[40]
PAILLARD D, MCKAIN N, CHAUDHARY L C, WALKER N D, PIZETTE F, KOPPOVA I, MCEWAN N R, KOPEČNÝ J, VERCOE P E, LOUIS P. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek, 2007, 91(4): 417-422.

doi: 10.1007/s10482-006-9121-7
[41]
MCCABE M S, CORMICAN P, KEOGH K, O'CONNOR A, O'HARA E, PALLADINO R A, KENNY D A, WATERS S M. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS One, 2015, 10(7): e0133234.

doi: 10.1371/journal.pone.0133234
[42]
VAN GYLSWYK N O, HIPPE H, RAINEY F A. Schwartzia succinivorans Gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source. International Journal of Systematic Bacteriology, 1997, 47(1): 155-159.

doi: 10.1099/00207713-47-1-155
[43]
LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 2017, 19(1): 29-41.

doi: 10.1111/1462-2920.13589 pmid: 27928878
[44]
CHEN Y R, ZHENG H M, ZHANG G X, CHEN F L, CHEN L D, YANG Z C. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Scientific Reports, 2020, 10: 9364.

doi: 10.1038/s41598-020-66369-z
[45]
SHAPIRO J M, DE ZOETE M R, PALM N W, LAENEN Y, BRIGHT R, MALLETTE M, BU K, BIELECKA A A, XU F, HURTADO- LORENZO A, et al. Immunoglobulin A targets a unique subset of the microbiota in inflammatory bowel disease. Cell Host & Microbe, 2021, 29(1): 83-93.e3.
[46]
GOPHNA U, KONIKOFF T, NIELSEN H B. Oscillospira and related bacteria-From metagenomic species to metabolic features. Environmental Microbiology, 2017, 19(3): 835-841.

doi: 10.1111/1462-2920.13658
[47]
DEWHIRST F E, TAMER M A, ERICSON R E, LAU C N, LEVANOS V A, BOCHES S K, GALVIN J L, PASTER B J. The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiology and Immunology, 2000, 15(3): 196-202.

pmid: 11154403
[48]
CHOI B K, NATTERMANN H, GRUND S, HAIDER W, GOBEL U B. Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. International Journal of Systematic Bacteriology, 1997, 47(1): 175-181.

pmid: 9019153
[49]
CUI X X, WANG Z F, TAN Y H, CHANG S H, ZHENG H R, WANG H Y, YAN T H, GURU T, HOU F J. Selenium yeast dietary supplement affects rumen bacterial population dynamics and fermentation parameters of Tibetan sheep (Ovis aries) in alpine meadow. Frontiers in Microbiology, 2021, 12: 663945.

doi: 10.3389/fmicb.2021.663945
[50]
MOLINARI R, MERENDINO N, COSTANTINI L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: state-of- the-art. BioFactors (Oxford, England), 2022, 48(2): 255-273.

doi: 10.1002/biof.v48.2
[51]
VACCA M, CELANO G, CALABRESE F M, PORTINCASA P, GOBBETTI M, DE ANGELIS M. The controversial role of human gut Lachnospiraceae. Microorganisms, 2020, 8(4): 573.

doi: 10.3390/microorganisms8040573
[52]
LI M, WANG J, WANG F F, STRAPPE P, LIU W T, ZHENG J X, ZHOU Z K, ZHANG Y. Microbiota fermentation characteristics of acylated starches and the regulation mechanism of short-chain fatty acids on hepatic steatosis. Food & Function, 2021, 12(18): 8659-8668.
[53]
JUST S, MONDOT S, ECKER J, WEGNER K, RATH E, GAU L, STREIDL T, HERY-ARNAUD G, SCHMIDT S, LESKER T R, et al. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome, 2018, 6(1): 134.

doi: 10.1186/s40168-018-0510-8 pmid: 30071904
[54]
DANIEL H, GHOLAMI A M, BERRY D, DESMARCHELIER C, HAHNE H, LOH G, MONDOT S, LEPAGE P, ROTHBALLER M, WALKER A, et al. High-fat diet alters gut microbiota physiology in mice. The ISME Journal, 2014, 8(2): 295-308.

doi: 10.1038/ismej.2013.155
[55]
ANGERT E R, CLEMENTS K D. Initiation of intracellular offspring in Epulopiscium. Molecular Microbiology, 2004, 51(3): 827-835.

doi: 10.1046/j.1365-2958.2003.03869.x
[56]
RUSSELL J A, MOREAU C S, GOLDMAN-HUERTAS B, FUJIWARA M, LOHMAN D J, PIERCE N E. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21236-21241.
[57]
TIAN Y, ZUO L, GUO Q, LI J, HU Z Y, ZHAO K, LI C, LI X H, ZHOU J G, ZHOU Y, LI X A. Potential role of fecal microbiota in patients with constipation. Therapeutic Advances in Gastroenterology, 2020, 13: 756284820968423.
[58]
ZHANG C Y, SHAO H Q, LI D D, XIAO N Q, TAN Z J. Role of tryptophan-metabolizing microbiota in mice diarrhea caused by Folium sennae extracts. BMC Microbiology, 2020, 20(1): 185.

doi: 10.1186/s12866-020-01864-x
[59]
SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 2019, 20(4): 461-472.

doi: 10.1007/s11154-019-09512-0
[60]
AN R, WEN S, LI D L, LI Q H, LAI X F, ZHANG W J, CHEN R H, CAO J X, LI Z G, HUANG Q S, SUN L L, SUN S L. Mixtures of tea and Citrus maxima (pomelo) alleviate lipid deposition in HepG2 cells through the AMPK/ACC signaling pathway. Journal of Medicinal Food, 2020, 23(9): 943-951.

doi: 10.1089/jmf.2020.4706
[61]
LUAN G X, TIE F F, YUAN Z Z, LI G, HE J, WANG Z H, WANG H L. Hypaphorine, an indole alkaloid isolated from Caragana korshinskii Kom.,inhibites 3T3-L1 adipocyte differentiation and improves insulin sensitivity in vitro. Chemistry & Biodiversity, 2017, 14(7): 10.1002/cbdv.201700038.
[62]
MIYAKE M, IDE K, SASAKI K, MATSUKURA Y, SHIJIMA K, FUJIWARA D. Oral administration of highly oligomeric procyanidins of jatoba reduces the severity of collagen-induced arthritis. Bioscience, Biotechnology, and Biochemistry, 2008, 72(7): 1781-1788.

doi: 10.1271/bbb.80074
[63]
ZHANG M, HAO X N, AZIZ T, ZHANG J, YANG Z N. Exopolysaccharides from Lactobacillus plantarum YW11 improve immune response and ameliorate inflammatory bowel disease symptoms. Acta Biochimica Polonica, 2020, 67(4): 485-493.
[64]
MARTINEZ-MICAELO N, GONZÁLEZ-ABUÍN N, ARDÈVOL A, PINENT M, BLAY M T. Procyanidins and inflammation: molecular targets and health implications. BioFactors (Oxford, England), 2012, 38(4): 257-265.

doi: 10.1002/biof.v38.4
[65]
MISHRA K P, CHANDA S, KARAN D, GANJU L, SAWHNEY R C. Effect of Seabuckthorn (Hippophae rhamnoides) flavone on immune system: an in-vitro approach. Phytotherapy Research: PTR, 2008, 22(11): 1490-1495.

doi: 10.1002/ptr.v22:11
[66]
WANG X Y, YU N X, WANG Z L, QIU T T, JIANG L, ZHU X M, SUN Y, XIONG H. Akebia trifoliata pericarp extract ameliorates inflammation through NF-κB/MAPK signaling pathways and modifies gut microbiota. Food & Function, 2020, 11(5): 4682-4696.
[67]
TANAKA T, NARAZAKI M, KISHIMOTO T. IL-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 2014, 6(10): a016295.

doi: 10.1101/cshperspect.a016295
[68]
张伟洁, 郑宏. IL-6介导免疫炎性反应作用及其与疾病关系的研究进展. 细胞与分子免疫学杂志, 2017, 33(5): 699-703.
ZHANG W J, ZHENG H. Research progress of IL-6-mediated immune inflammatory response and its relationship with diseases. Chinese Journal of Cellular and Molecular Immunology, 2017, 33(5): 699-703. (in Chinese)
[69]
KHAN M A, MUJAHID M. Recent advances in electrochemical and optical biosensors designed for detection of interleukin 6. Sensors (Basel, Switzerland), 2020, 20(3): 646.

doi: 10.3390/s20030646
[70]
WALLENIUS V, WALLENIUS K, AHRÉN B, RUDLING M, CARLSTEN H, DICKSON S L, OHLSSON C, JANSSON J O. Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine, 2002, 8(1): 75-79.

pmid: 11786910
[71]
ROTTER V, NAGAEV I, SMITH U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. Journal of Biological Chemistry, 2003, 278(46): 45777-45784.

doi: 10.1074/jbc.M301977200
[1] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[2] ZHAO Sheng-guo,WANG Jia-qi,BU Deng-pan,LIU Kai-lang,ZHU Ya-xin,ZHOU Ling-yun
. Screening and Bioinformatics Analysis of ACCase from a BAC Library of Dairy Cow Rumen Microbiota
[J]. Scientia Agricultura Sinica, 2011, 44(5): 1015-1021 .
[3] WANG Jie,TIAN Guo-zhong,XU Qi-cong,LIU Yong-guang,GAO Rui,LI Xiang-dong,ZHU Xiao-ping
. Molecular Detection of Phytoplasma Strains From Several Plants Around Diseased Paulownia Infected with Paulownia Witches’-broom Phytoplasma
[J]. Scientia Agricultura Sinica, 2010, 43(2): 304-312 .
[4]

. Genetic Diversity and Phylogeny of Siderophore Producing Bacteria Isolated from Cotton Rhizosphere in China’s Xinjiang
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1568-1574 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!