Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (6): 1083-1101.doi: 10.3864/j.issn.0578-1752.2025.06.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress

TANG Yu(), LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai(), FAN YongHui()   

  1. College of Agriculture, Anhui Agricultural University/Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huanghe-Huaihe Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036
  • Received:2024-08-04 Accepted:2024-10-30 Online:2025-03-25 Published:2025-03-25
  • Contact: HUANG ZhengLai, FAN YongHui

Abstract:

【Objective】 Under the background of global warming, this paper explored the physiological mechanism of anthocyanin content in colored wheat in response to high temperature stress in the middle of grain filling, so as to lay a theoretical basis for further coping with the high-quality cultivation of functional colored wheat varieties under climate warming. 【Method】 The experiment was conducted in Hefei High-tech Agricultural Park in the 2022-2023 and 2023-2024 growing seasons. Six colored wheat varieties with different colors were selected and subjected to high temperature stress treatment (T) for 5 days at the middle stage of filling, with the same materials grown under ambient temperature as the controls (CK). 【Result】 Under high temperature stress after anthesis, the net photosynthetic rate, stomatal conductance, transpiration rate, relative chlorophyll content (SPAD), dry matter partition, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity and phenylalanine ammonia-lyase activity of colored wheat were significantly reduced, and the yield of six varieties of colored wheat decreased by 9.10% to 16.94%, 1000-grain weight decreased by 7.84% to 16.94%, and anthocyanin content decreased by 7.18% to 14.17%. The yield, photosynthetic intensity, SPAD value, dry matter partition, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity, and phenylalanine ammonia-lyase activity of different varieties of colored wheat were: Qinbai 1>Qinlü 3>Qinzi 1>Xinchun 36>Qinhe 2>Qinlan 1, and the anthocyanin content was: Qinhei 2>Xinchun 36>Qinzi 1>Qinlü 3>Qinlan 1>Qinbai 1. The yield of heat-resistant wheat varieties of Qinbai 1, Qinlü 3 and Qinzi 1 decreased significantly less than that of heat-sensitive wheat varieties Qinhei 2, Xinchun 36 and Qinlan 1. The decreases in photosynthetic intensity, SPAD value, dry matter fraction, soluble sugar content, sucrose synthase activity, anthocyanin content, anthocyanidin synthase activity, chalcone synthase activity and phenylalanine ammonia-lyase activity of color wheat varieties Qinhei 2, Xinchun 36 and Qinzi 1 with high anthocyanin content were smaller than those of Qinlü 3, Qinlan 1 and Qinbai 1 with low anthocyanin content. Correlation analysis showed that the yield of each color wheat variety was significantly positively correlated with 1000-grain weight, sucrose content, sucrose synthase activity, flag leaf net photosynthetic rate, stomatal conductance, transpiration rate and SPAD value, anthocyanin content was significantly positively correlated with soluble sugar content, and yield was negatively correlated with anthocyanins, but the correlation was not significant. After high temperature stress after anthesis, the decomposition of sucrose bound to free anthocyanins decreased, and the decomposition of anthocyanins in grains increased, which supplemented the growth and development of wheat.【Conclusion】 The antioxidant activity of anthocyanins helped crops resist external stress, and the decline of various indexes of color wheat varieties with higher anthocyanin content was comparable to that of color wheat varieties with lower anthocyanin content under high temperature stress after anthesis, the anthocyanin content was significantly positively correlated with soluble sugar content. In conclusion, the accumulation of anthocyanin content could respond to high temperature stress, reduce the decrease of soluble sugar content, and increase the heat resistance of colored wheat.

Key words: high temperature stress, colored wheat, anthocyanins, carbon metabolism

Table 1

Nutrient content of the 0 to 20 cm soil before sowing in experimental field"

年份
Year
碱解氮
Alkali hydrolyzed nitrogen (mg·kg-1)
有效磷
Available phosphorous (mg·kg-1)
速效钾
Rapidly available potassium (mg·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorous
(g·kg-1)
全钾
Total potassium
(g·kg-1)
2022—2023 113.63 131.43 210.59 1.28 0.67 17.52
2023—2024 105.34 122.78 201.56 1.43 0.63 17.44

Fig. 1

Average daily temperature during the whole growth period of wheat and temperature during warming period of wheat canopy in the experimental plot (2022 to 2024)"

Table 2

Effects of post-anthesis high temperature stress on yield and its components of different varieties of colored wheat (2022 to 2024)"

年份
Year
品种
Cultivar
处理
Treatment
穗数
Spikes (104·hm-2)
穗粒数
Grain number
千粒重
1000-grain weight (g)
产量
Yield (kg·hm-2)
产量降低幅度
Yield reduction (%)
2022—2023 秦白1号
Qinbai1
CK 460.00±2.89bcd 41.67±0.33bcd 40.40±0.38b 7741.91±21.22a 9.10
T 457.33±2.67cde 41.33±0.33cd 37.23±0.20d 7037.46±27.13c
秦紫1号
Qinzi1
CK 453.67±2.96de 42.57±0.30ab 38.03±0.20c 7342.50±11.27b 12.96
T 450.00±5.77ef 42.00±0.58bc 33.83±0.09f 6390.97±14.62g
新春36
Xinchun36
CK 485.00±3.46a 42.60±0.40ab 33.81±0.06f 6984.55±22.28c 15.88
T 487.33±3.71a 42.00±0.58bc 28.71±0.06h 5875.08±33.59h
秦蓝1号
Qinlan1
CK 468.33±1.67b 43.67±0.33a 32.04±0.17g 6551.71±8.27f 16.02
T 463.33±2.4bc 43.33±0.33a 27.41±0.15i 5502.08±17.50j
秦黑2号
Qinhei2
CK 443.33±1.67fg 40.07±0.35e 37.34±0.12d 6632.20±35.53e 13.10
T 441.67±4.41fg 40.57±0.30de 32.17±0.15g 5763.57±23.41i
秦绿3号
Qinlü3
CK 440.33±0.88g 42.67±0.33ab 41.04±0.15a 7709.28±26.48a 13.00
T 439.87±0.47g 42.00±0.06bc 36.30±0.09e 6706.81±18.29d
F-value F-Cultivar 55.52*** 14.83*** 900.08*** 1146.80***
F-Treatment 0.99 2.20 1934.50*** 5020.30***
F-C×T 0.32 0.62 8.74*** 19.56***
2023—2024 秦白1号
Qinbai1
CK 453.67±1.20c 41.67±0.33cd 41.24±0.41a 7794.34±34.25a 10.48
T 453.33±0.33c 41.33±0.33cde 37.24±0.26b 6977.29±32.02e
秦紫1号
Qinzi1
CK 456.00±1.15c 42.33±0.33bc 37.85±0.12b 7306.06±21.94c 9.32
T 454.00±1.15c 42.67±0.17abc 34.20±0.04d 6625.27±8.18g
新春36
Xinchun36
CK 488.67±0.88a 43.33±0.33ab 33.43±0.04de 7078.72±35.95d 14.11
T 489.33±0.88a 43.33±0.88ab 28.69±0.40g 6079.96±27.72h
秦蓝1号
Qinlan1
CK 469.33±1.76b 44.00±0.58a 33.20±0.13ef 6854.20±41.25f 17.68
T 468.67±1.76b 43.67±0.33ab 27.57±0.13h 5642.39±9.09i
秦黑2号
Qinhei2
CK 443.67±0.88d 40.33±0.88de 37.35±0.64b 6677.99±32.15g 14.75
T 440.00±0.58e 40.00±0.58e 32.36±0.33f 5693.13±31.05 i
秦绿3号
Qinlü3
CK 439.33±1.76e 42.33±0.33bc 41.16±0.41a 7654.45±22.09b 12.48
T 440.33±1.20de 42.67±0.33abc 35.66±0.20c 6699.01±15.68g
F-value F-Cultivar 459.71*** 13.06*** 257.81*** 582.49***
F-Treatment 1.41 0.03 646.33*** 3142.90***
F-C×T 1.03 0.20 3.02* 19.13***

Table 3

Effects of post-anthesis high temperature stress on heat tolerance of different varieties of colored wheat (2022 to 2024)"

年份
Year
品种
Cultivar
千粒重 1000-grain weight (g) 产量 Yield (kg·hm-2) 热感指数 Thermal index 耐热性
Heat tolerance
对照处理
Control treatment
热胁迫处理
High temperature stress treatment
对照处理
Control treatment
热胁迫处理
High temperature stress treatment
千粒重
1000-grain weight
产量
Yield
总计
Total
2022—2023 秦白1号
Qinbai1
40.40 37.23 7741.91 7037.46 0.65 0.69 1.34 抗热型
Heat-resistant
秦紫1号
Qinzi1
38.03 33.83 7342.50 6390.97 0.91 0.96 1.87 抗热型
Heat-resistant
新春36
Xinchun36
33.81 28.71 6984.55 5875.08 1.24 1.21 2.45 热感型
Heat-sensitive
秦蓝1号
Qinlan1
32.04 27.41 6551.71 5502.08 1.19 1.20 2.39 热感型
Heat-sensitive
秦黑2号
Qinhei2
37.34 32.17 6632.20 5763.57 1.14 0.97 2.11 热感型
Heat-sensitive
秦绿3号
Qinlü3
41.04 36.30 7709.28 6706.81 0.95 1.01 1.96 抗热型
Heat-resistant
2023—2024 秦白1号
Qinbai1
41.24 37.24 7794.34 6977.29 0.76 0.80 1.56 抗热型
Heat-resistant
秦紫1号
Qinzi1
37.85 34.20 7306.06 6625.27 0.76 0.70 1.46 抗热型
Heat-resistant
新春36
Xinchun36
33.43 28.69 7078.72 6079.96 1.12 1.08 2.20 热感型
Heat-sensitive
秦蓝1号
Qinlan1
33.20 27.57 6854.20 5642.39 1.33 1.38 2.71 热感型
Heat-sensitive
秦黑2号
Qinhei2
37.35 32.36 6677.99 5693.13 1.05 1.12 2.17 热感型
Heat-sensitive
秦绿3号
Qinlü3
41.16 35.66 7654.45 6699.01 1.05 0.94 2.00 抗热型
Heat-resistant

Table 4

The distribution and proportion of dry matter in wheat organs at maturity stage of different varieties of colored wheat (2022 to 2024)"

年份
Year
品种
Cultivar
处理
Treatment
叶 Leaf 茎鞘 Stem+sheath 穗轴+颖壳 Spike axis+grain husk 籽粒 Grain
干重
DW (kg·hm-2)
比例
Ratio (%)
干重
DW (kg·hm-2)
比例
Ratio (%)
干重
DW (kg·hm-2)
比例
Ratio (%)
干重
DW (kg·hm-2)
比例
Ratio (%)
2022—2023 秦白1号
Qinbai1
CK 1403.03±15.49a 9.01±0.05b 4169.00±8.21a 26.77±0.13bcd 3160.53±71.62a 20.29±0.41a 6842.63±14.59a 43.93±0.17d
T 1317.10±11.23b 8.62±0.12c 4120.77±20.72a 26.98±0.12abcd 3141.87±57.65a 20.57±0.31a 6692.63±17.09b 43.82±0.09d
秦紫1号
Qinzi1
CK 1315.57±6.92b 8.88±0.04b 3875.10±7.62b 26.17±0.11e 3034.32±59.47ab 20.49±0.31a 6581.00±17.12cd 44.45±0.19d
T 1232.53±2.79c 8.60±0.15c 3843.77±3.94b 26.81±0.12bcd 2919.50±56.47b 20.36±0.24a 6341.00±33.22e 44.23±0.25d
新春36
Xinchun36
CK 1301.10±14.54b 9.25±0.11a 3716.17±6.05c 26.41±0.14de 2692.23±20.80c 19.14±0.13b 6358.43±4.31e 45.20±0.05c
T 1149.83±22.76e 8.59±0.18c 3632.07±57.94d 27.12±0.09ab 2442.63±93.96de 18.23±0.61bc 6166.53±22.86f 46.06±0.50b
秦蓝1号
Qinlan1
CK 1206.00±5.66c 8.46±0.15c 3890.80±2.39b 27.30±0.17ab 2531.53±62.08cd 17.76±0.35c 6622.80±8.10c 46.48±0.20b
T 1091.40±9.76f 7.95±0.06d 3716.77±56.03c 27.06±0.43abc 2385.47±67.88de 17.37±0.50c 6538.00±7.86d 47.61±0.00a
秦黑2号
Qinhei2
CK 1199.10±12.21cd 9.47±0.20a 3477.03±2.25e 27.45±0.18a 2176.07±30.76f 17.18±0.18c 5813.57±5.95g 45.90±0.16b
T 1085.07±5.77f 8.94±0.06b 3220.43±43.6f 26.52±0.27cde 2086.67±4.53f 17.19±0.05c 5748.80±3.45h 47.35±0.17a
秦绿3号
Qinlü3
CK 1169.30±14.56de 8.56±0.21c 3731.13±5.32c 27.32±0.20ab 2421.57±73.43de 17.72±0.30c 6339.70±23.05e 46.41±0.22b
T 1001.50±7.32g 7.75±0.12d 3540.80±3.72e 27.41±0.26a 2256.07±88.22ef 17.45±0.47c 6123.43±6.39f 47.39±0.33a
F-value FCultivar 155.71*** 24.72*** 193.70*** 4.49** 71.57*** 33.52*** 1052.60*** 66.27***
F-Treatment 328.90** 32.40*** 70.90*** 0.64 12.15** 1.02 336.69*** 25.14***
F-C×T 4.50 0.76 5.55** 3.97* 0.71 0.88 11.42** 4.23
2023—2024 秦白1号
Qinbai1
CK 1403.75±7.00a 9.87±0.05d 4147.94±11.08a 26.55±0.02d 3166.57±7.96a 26.88±0.68a 6903.51±18.28a 44.19±0.07h
T 1299.09±14.91b 9.35±0.11e 4078.79±11.92b 26.85±0.10bc 3051.54±6.87b 25.14±0.09c 6762.27±9.19b 44.51±0.06g
秦紫1号
Qinzi1
CK 1421.32±12.07a 10.47±0.08b 3928.31±7.60c 26.20±0.03ef 3059.11±9.21b 26.98±0.69a 6581.97±6.32d 43.91±0.08i
T 1315.89±12.02b 9.96±0.10d 3892.01±15.06c 26.80±0.10c 2879.45±8.88c 26.31±8.54ab 6436.75±17.8e 44.32±0.14gh
新春36
Xinchun36
CK 1307.57±5.95b 10.22±0.05c 3734.16±12.55de 26.47±0.10d 2725.13±13.43d 25.48±8.04bc 6340.68±16.54f 44.95±0.10f
T 1147.05±13.48e 9.22±0.10e 3695.02±18.14f 27.20±0.10a 2545.59±12.32e 24.82±1.89cd 6197.29±7.66g 45.62±0.13e
秦蓝1号
Qinlan1
CK 1182.51±9.37d 9.14±0.06ef 3740.46±8.12d 26.49±0.07d 2551.77±17.39e 23.19±0.67efg 6647.80±8.11c 47.07±0.08bc
T 1058.07±7.73f 8.43±0.06g 3699.40±12.92ef 27.18±0.06a 2416.90±18.49g 23.45±1.03ef 6436.93±2.90e 47.29±0.09ab
秦黑2号
Qinhei2
CK 1248.52±9.85c 11.05±0.08a 3315.66±9.97i 26.41±0.06de 2158.29±14.26i 22.48±0.98g 5830.17±14.29i 46.44±0.03d
T 1083.41±13.50f 9.83±0.13d 3279.61±14.36i 27.08±0.13ab 2053.31±14.20j 22.27±1.08g 5694.05±10.73j 47.02±0.09c
秦绿3号
Qinlü3
CK 1218.34±9.48c 9.82±0.08d 3562.61±9.07g 26.14±0.04f 2501.33±13.84f 24.04±0.90de 6348.49±20.19f 46.57±0.09d
T 1053.27±11.66f 8.90±0.10f 3513.67±7.23h 27.26±0.08a 2217.77±22.59h 22.68±1.02fg 6102.67±3.65h 47.35±0.06a
F-value FCultivar 210.29*** 101.62*** 1043.09*** 4.66** 1649.08*** 57.38*** 1555.39*** 432.35***
F-Treatment 506.08*** 283.26*** 39.57*** 217.77*** 480.58*** 20.95*** 511.19*** 85.43***
F-C×T 3.86* 5.65** 0.52 5.55** 12.45*** 1.90 6.28*** 2.69*

Fig. 2

Effect of post-anthesis high temperature stress on photosynthetic parameters of different varieties of colored wheat (2022 to 2024)"

Fig. 3

Effect of post-anthesis high temperature stress on SPAD value of different varieties of colored wheat (2022 to 2024)"

Fig. 4

Effect of post-anthesis high temperature stress on soluble sugar content in grains of different varieties of colored wheat (2022 to 2024)"

Fig. 5

Effect of post-anthesis high temperature stress on sucrose content in grains of different varieties of colored wheat (2022 to 2024)"

Fig. 6

Effect of post-anthesis high temperature stress on sucrose synthase activity in grains of different varieties of colored wheat (2022 to 2023)"

Fig. 7

Effects of post-anthesis high temperature stress on grain pigment accumulation in grains of different varieties of colored wheat (2022—2023)"

Fig. 8

Effects of high temperature stress after anthesis on anthocyanin content in grains of different varieties of colored wheat (2022 to 2024)"

Fig. 9

Effects of post-anthesis high temperature stress on grain anthocyanidin synthase activity in grains of different varieties of colored wheat (2022 to 2023)"

Fig. 10

Effects of post-anthesis high temperature stress on grain chalcone synthase activity in grains of different varieties of colored wheat (2022 to 2023)"

Fig. 11

Effects of post-anthesis high temperature stress on grain phenylalanine ammonia-lyase activity in grains of different varieties of colored wheat (2022 to 2023)"

Fig. 12

Correlation analysis of indices of colored wheat under post-anthesis high temperature stress"

[1]
KARADA M S, SINGH Y, MISHRA R, SINGH B K, AGNIHOTRI D, SINGH D, YADAV N K. Enhancing wheat nitrogen and protein content in agroforestry systems for climate-resilience and food security. International Journal of Plant & Soil Science, 2023, 35(21): 827-834.
[2]
REHMAN A, FAROOQ M, ASIF M, OZTURK L. Supra-optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of Plant Nutrition and Soil Science, 2019, 182(4): 656-666.
[3]
邹修栋. 花后高温对小麦叶片光合特性的影响[D]. 南京: 南京农业大学, 2015.
ZOU X D. Effect of post-anthesis heat stress on photosynthetic characteristics of leaves in wheat (Triticum aestivum L.)[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[4]
YAN Q Y, ZHANG M M, JIA Y Q, DONG F, SHEN Y T, LI F. Identification of crucial metabolites in colored grain wheat (Triticum aestivum L.) regulated by nitrogen application. Food Research International, 2024, 191: 114700.
[5]
LI W, GAO X M, QI G Q, GUO L Y, ZHANG M W, FU Y, WANG Y J, WANG J Y, WANG Y, YANG F T, et al. Research on the effects of the relationship between agronomic traits and dwarfing genes on yield in colored wheat. Genes, 2024, 15(6):649.
[6]
YANG B L, WANG X N, LI W W, LIU G N, LI D D, XIE C, YANG R Q, JIANG D, ZHOU Q, WANG P. Synergistic enhancement of anthocyanin stability and techno-functionality of colored wheat during the steamed bread processing by selectively hydrolyzed soy protein. Food Chemistry, 2024, 456: 139984.
[7]
高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响. 作物学报, 2023, 49(3): 821-832.

doi: 10.3724/SP.J.1006.2023.21016
GAO C H, FENG B, LI G F, LI Z X, LI S D, CAO F, CI W L, ZHAO H J. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis. Acta Agronomica Sinica, 2023, 49(3): 821-832. (in Chinese)
[8]
IPCC. Climate change 2023:Synthesis report. contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change [core writing team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 2023. https://api.semanticscholar.org/CorpusID:260074696.
[9]
白小艳. 氮肥基追比对花后高温胁迫下春小麦籽粒产量及品质的影响[D]. 银川: 宁夏大学, 2023.
BAI X Y. Effects of basal-topdressing ratio of nitrogen fertilizer on grain yield and quality under heat stress post-anthesis in spring wheat[D]. Yinchuan: Ningxia University, 2023. (in Chinese)
[10]
NIWAS R, KHICHAR M L. Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam: Journal of the Meteorological Department of India, 2016, 67(1): 205-222.
[11]
SATBHAI R D, KALE A A, NAIK R M. Protective role of osmolytes and antioxidants during high temperature stress in wheat. International Journal of Bio-Resource and Stress Management, 2015, 6(2): 220.
[12]
赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39(9): 1644-1651.
ZHAO F C, JING L Q, YAN F B, LU D L, WANG G Y, LU W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agronomica Sinica, 2013, 39(9): 1644-1651. (in Chinese)
[13]
侯泽豪, 张迎新, 王欢, 孙坤坤, 方正武, 马东方, 张改生, 王书平. 高温胁迫对小麦花药叶绿素质量分数及RuBP羧化酶基因表达的影响. 西北农业学报, 2018, 27(9): 1280-1286.
HOU Z H, ZHANG Y X, WANG H, SUN K K, FANG Z W, MA D F, ZHANG G S, WANG S P. Effects of high-temperature stress on chlorophyll mass fraction and RuBP carboxylase gene expression in wheat (Triticum aestivum L.). Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(9): 1280-1286. (in Chinese)
[14]
祁楠. 菠菜SpoPH1基因克隆及其高温应答功能分析[D]. 上海: 上海师范大学, 2020.
QI N. Spinach SpoPH1 gene cloning and function analysis of high temperature response[D]. Shanghai: Shanghai Normal University, 2020. (in Chinese)
[15]
王玲平, 戴丹丽, 胡海娇, 包崇来, 毛伟海. 不同基因型茄子果实发育过程中色素与可溶性糖的关系. 中国蔬菜, 2010(22): 41-46.
WANG L P, DAI D L, HU H J, BAO C L, MAO W H. Relationship between contents of pigments and soluble sugars during development of eggplant fruits with different genotypes. China Vegetables, 2010(22): 41-46. (in Chinese)
[16]
柯燚, 高飞, 金韬, 郑丽. 温度对植物花青素苷合成影响研究进展. 中国农学通报, 2015, 31(19): 101-105.

doi: 10.11924/j.issn.1000-6850.casb15020097
KE Y, GAO F, JIN T, ZHENG L. Review of temperature effect on anthocyanin synthesis. Chinese Agricultural Science Bulletin, 2015, 31(19): 101-105. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb15020097
[17]
蒋茂双. 谷子花青素积累与其低温适应性的关系[D]. 太谷: 山西农业大学, 2019.
JIANG M S. The relationship between anthocyanin accumulation and low temperature adaptability in foxtail millet[D]. Taigu: Shanxi Agricultural University, China, 2019. (in Chinese)
[18]
NAING A H, PARK K I, AI T N, CHUNG M Y, HAN J S, KANG Y W, LIM K B, KIM C K. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biology, 2017, 17(1): 65.
[19]
MENG X, WANG J R, WANG G D, LIANG X Q, LI X D, MENG Q W. An R2R3-MYB gene, LeAN2, positively regulated the thermo- tolerance in transgenic tomato. Journal of Plant Physiology, 2015, 175: 1-8.
[20]
张丽. IbAOMT基因对甘薯花青素修饰和抗氧化能力的影响[D]. 南充: 西华师范大学, 2023.
ZHANG L. Effects of IbAOMT gene on anthocyanin modification and antioxidant capacity in sweet potato[D]. Nanchong: China West Normal University, 2023. (in Chinese)
[21]
段丽丽, 李魁印. 茶树ANR基因家族的全基因组鉴定与分析. 贵州大学学报(自然科学版), 2023, 40(2): 47-54.
DUAN L L, LI K Y. Genome-wide identification and analysis of ANR gene family in Camellia sinensis. Journal of Guizhou University (Natural Sciences), 2023, 40(2): 47-54. (in Chinese)
[22]
李东阳, 邹攀, 白雪, 刘翠翠. 紫玉米花青素研究进展. 食品科技, 2024, 49(6): 284-290.
LI D Y, ZOU P, BAI X, LIU C C. Research progress on anthocyanidin in purple corn. Food Science and Technology, 2024, 49(6): 284-290. (in Chinese)
[23]
YAN R, ZHANG T L, WANG Y, WANG W X, SHARIF R, LIU J L, DONG Q L, LUAN H A, ZHANG X M, LI H, GUO S P, QI G H, JIA P. The apple MdGA2ox7 modulates the balance between growth and stress tolerance in an anthocyanin-dependent manner. Plant Physiology and Biochemistry, 2024, 212: 108707.
[24]
西北农林科技大学“彩粒小麦”项目获奖. 科学种养, 2019, (3):64.
Northwest A&F University won the award for the "Colored Grain Wheat" project. Kexue Zhongyang, 2019, (3):64. (in Chinese)
[25]
李甜. 新春36号黑小麦中硒的分布、富硒蛋白的制备及抗氧化活性研究[D]. 石河子: 石河子大学, 2016.
LI T. Distribution of selenium, preparation and antioxidant activity of Se-enriched protein from xinchun No. 36 triticale[D]. Shihezi: Shihezi University, 2016. (in Chinese)
[26]
TIAN Z W, YIN Y Y, LI B W, ZHONG K T, LIU X X, JIANG D, CAO W X, DAI T B. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice-wheat rotation. Journal of Integrative Agriculture, 2024, 12: 2704-2712.
[27]
陈冬梅, 马永安, 刘保华, 苏玉环, 王雪香. 小麦耐热种质资源的鉴定与筛选. 河北农业科学, 2017, 21(4): 64-69.
CHEN D M, MA Y A, LIU B H, SU Y H, WANG X X. Appraisal and screening of heat resistant wheat germplasm resources. Journal of Hebei Agricultural Sciences, 2017, 21(4): 64-69. (in Chinese)
[28]
吴炳权, 柴雨葳, 马建涛, 李亚伟, 杨佳佳, 程宏波, 常磊, 柴守玺. 覆盖对旱地春小麦干物质积累与分配及产量的影响. 生态学杂志, 2023, 42(2): 298-304.
WU B Q, CHAI Y W, MA J T, LI Y W, YANG J J, CHENG H B, CHANG L, CHAI S X. Effect of mulching on the accumulation and distribution of dry matter and yield of spring wheat in dryland. Chinese Journal of Ecology, 2023, 42(2): 298-304. (in Chinese)

doi: DOI: 10.13292/j.1000-4890.202301.019
[29]
由继红, 董春光, 史晓昆. 小麦叶片可溶性糖含量测定方法的研究. 实验室科学, 2021, 24(2): 27-29, 33.
YOU J H, DONG C G, SHI X K. Study on determination method of soluble sugar content in wheat leaves. Laboratory Science, 2021, 24(2): 27-29, 33. (in Chinese)
[30]
HUBER S C, ISRAEL D W. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max merr.) leaves. Plant Physiology, 1982, 69(3): 691-696.
[31]
刘桂玲, 李海霞, 郭宾会, 张鹏. 不同提取方法对甘薯花青素含量测定的影响. 中国农学通报, 2007, 23(4): 91-94.
LIU G L, LI H X, GUO B H, ZHANG P. Effects of different extraction methods on anthocyanin content detection in sweet potato. Chinese Agricultural Science Bulletin, 2007, 23(4): 91-94. (in Chinese)

doi: 10.11924/j.issn.1000-6850.070491
[32]
宋磊, 次仁央金, 王小强, 何燕. 小麦对高温胁迫的响应机制研究进展. 中国农学通报, 2021, 37(36):6-12.

doi: 10.11924/j.issn.1000-6850.casb2021-0681
SONG L, TSERING Y J, WANG X Q, HE Y. Response mechanism of wheat to high temperature stress: A review. Chinese Agricultural Science Bulletin, 2021, 37(36):6-12. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2021-0681
[33]
裴磊, 刘莉, 刘新月, 卫云宗. 气象因素对旱地小麦品种灌浆特性影响的研究. 北方农业学报, 2016, 44(6): 67-72.
PEI L, LIU L, LIU X Y, WEI Y Z. Research on effect meteorological factors on grain filling characteristic of the dry land wheat. Journal of Northern Agriculture, 2016, 44(6): 67-72. (in Chinese)
[34]
吴翠平, 贺明荣, 张宾, 张洪华, 刘永环. 氮肥基追比与灌浆中期高温胁迫对小麦产量和品质的影响. 西北植物学报, 2007, 27(4): 4734-4739.
WU C P, HE M R, ZHANG B, ZHANG H H, LIU Y H. Effects of nitrogen dressing ratios and heat stress during the middle period of grain filling on wheat grain yield and quality. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(4): 4734-4739. (in Chinese)
[35]
陶源, 赵凯敏, 代存虎, 刘明敏, 朱敏, 丁锦峰, 李春燕, 朱新开, 郭文善. 花后短暂高低温胁迫对小麦产量形成的影响及减灾调控. 麦类作物学报, 2022, 42(12): 1557-1566.
TAO Y, ZHAO K M, DAI C H, LIU M M, ZHU M, DING J F, LI C Y, ZHU X K, GUO W S. Effects of short-term low or high temperature stress after anthesis on yield formation and its regulation of disaster mitigation. Journal of Triticeae Crops, 2022, 42(12): 1557-1566. (in Chinese)
[36]
曹彩云, 党红凯, 郑春莲, 郭丽, 李科江, 马俊永. 灌浆期高温胁迫对小麦灌浆的影响及叶面喷剂的缓解作用. 中国生态农业学报, 2016, 24(8): 1103-1113.
CAO C Y, DANG H K, ZHENG C L, GUO L, LI K J, MA J Y. Impact of high temperature stress on grain-filling and the relief effect of foliage sprays during grain-filling stage of wheat. Chinese Journal of Eco-Agriculture, 2016, 24(8): 1103-1113. (in Chinese)
[37]
刘子会, 李国良, 张华宁, 张红梅, 张艳敏, 郭秀林, 柳斌辉. 小麦耐热性状鉴定及相关性状QTL研究进展. 中国农学通报, 2016, 32(21): 51-57.

doi: 10.11924/j.issn.1000-6850.casb16020050
LIU Z H, LI G L, ZHANG H N, ZHANG H M, ZHANG Y M, GUO X L, LIU B H. Identification of heat resistance traits and related QTL in wheat(Triticum aestivum L.). Chinese Agricultural Science Bulletin, 2016, 32(21): 51-57. (in Chinese)
[38]
SINGH T, JAISWAL J P, SHEERA A. Genetic analysis of heat stress tolerance in wheat (Triticum aestivum L.) using line x tester mating design. Journal of Scientific Research and Reports, 2024, 30(7): 1013-1020.
[39]
LI J P, LI Z W, LI X Y, TANG X Q, LIU H L, LI J C, SONG Y H. Effects of spraying KH2PO4 on flag leaf physiological characteristics and grain yield and quality under heat stress during the filling period in winter wheat. Plants, 2023, 12(9): 1801.
[40]
SHAO Y H, LI S Y, GAO L J, SUN C J, HU J L, ULLAH A, GAO J W, LI X X, LIU S X, JIANG D, et al. Magnesium application promotes rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling. Frontiers in Plant Science, 2021, 12:675582.
[41]
SABATER B, MARTÍN M. Chloroplast control of leaf senescence. Plastid Development in Leaves during Growth and Senescence. Dordrecht: Springer Netherlands, 2013: 529-550.
[42]
冯雅楠. 大气CO2浓度和温度升高对小麦叶片碳氮代谢的影响[D]. 太谷: 山西农业大学, 2022.
FENG Y N. Effects of elevated atmospheric CO2 concentration and increased temperature on the metabolism of carbon and nitrogen in wheat leaves[D]. Taigu: Shanxi Agricultural University, 2022. (in Chinese)
[43]
徐洪高, 徐萍, 罗文秀, 陆尤, 涂振华, 张萱, 陈艺春, 郑国伟, 杨颖翠, 陈佳. 热驯化对高温胁迫下灯盏花生理生化特性的影响. 作物杂志, 2024. http://kns.cnki.net/kcms/detail/11.1808.S.20240723.1413.006.html.
XU H G, XU P, LUO W X, LU Y, TU Z H, ZHANG X, CHEN Y C, ZHENG G W, YANG Y C, CHEN J. Effects of heat acclimation on physiological and biochemical characteristics of erigeron breviscapus under heat stress. Crops, 2024. http://kns.cnki.net/kcms/detail/11.1808.S.20240723.1413.006.html. (in Chinese)
[44]
COLAK N, TARKOWSKI P, AYAZ F. Effect of N-acetyl-L-cysteine (NAC) on soluble sugar and polyamine content in wheat seedlings exposed to heavy metal stress (Cd, Hg and Pb). Botanica Serbica, 2020, 44(2): 191-201.
[45]
胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2018, 44(4): 591-600.
HU Y Y, LU H F, LIU W X, KANG J, MA G, LI S S, CHU Y Y, WANG C Y. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat. Acta Agronomica Sinica, 2018, 44(4): 591-600. (in Chinese)
[46]
张楚秋. 彩色小麦粒色形成的分子机制研究[D]. 杨凌: 西北农林科技大学, 2022.
ZHANG C Q. Molecular mechanism of grain color formation in colored wheat[D]. Yangling: Northwest Agriculture and Forestry University, 2022. (in Chinese)
[47]
王海伟, 王振林, 王平, 王树刚, 黄玮, 武玉国, 孙兰珍, 尹燕枰. 灌浆期遮光对不同粒色小麦籽粒花青素积累与相关酶活性的影响. 作物学报, 2011, 37(6): 1093-1100.
WANG H W, WANG Z L, WANG P, WANG S G, HUANG W, WU Y G, SUN L Z, YIN Y P. Effect of shading post anthesis on anthocyanin accumulation and activities of related enzymes in colored-grain wheat. Acta Agronomica Sinica, 2011, 37(6): 1093-1100. (in Chinese)
[48]
李小兰, 张明生, 任明见, 吕享, 吉宁, 王晓红, 徐如宏. 紫粒小麦花青素合成分子调控机制研究进展. 植物生理学报, 2017, 53(4): 521-530.
LI X L, ZHANG M S, REN M J, X, JI N, WANG X H, XU R H. Molecular regulation mechanism of anthocyanin synthesis in purple wheat. Plant Physiology Journal, 2017, 53(4): 521-530. (in Chinese)
[49]
徐楚瑶, 周波. 温度胁迫调控植物花青素的生物合成. 分子植物育种, 2024. http://kns.cnki.net/kcms/detail/46.1068.S.20230314.1201.012.html.
XU C Y, ZHOU B. Temperature stress regulates anthocyanin biosynthesis in plants. Molecular Plant Breeding, 2024. http://kns.cnki.net/kcms/detail/46.1068.S.20230314.1201.012.html. (in Chinese)
[50]
吴雪霞, 张爱冬, 朱宗文, 姚静, 查丁石, 李贤. 高温胁迫对茄子果皮活性氧代谢、花青素及其主要合成酶的影响. 江西农业学报, 2018, 30(6): 1-5.
WU X X, ZHANG A D, ZHU Z W, YAO J, ZHA D S, LI X. Effects of high-temperature stress on active oxygen metabolism, anthocyanin content and its main synthases in eggplant peel. Acta Agriculturae Jiangxi, 2018, 30(6): 1-5. (in Chinese)
[51]
廖君琳. 环境对不同品种紫薯花青素积累、产量和农艺性状的影响[D]. 杭州: 浙江大学, 2023.
LIAO J L. Effects of environment on anthocyanin accumulation, yield, and agronomic traits of different varieties of purple sweet potatoes[D]. Hangzhou: Zhejiang University, 2023. (in Chinese)
[52]
JEONG S W, DAS P K, JEOUNG S C, SONG J Y, LEE H K, KIM Y K, KIM W J, PARK Y I, YOO S D, CHOI S B, CHOI G, PARK Y I. Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiology, 2010, 154(3): 1514-1531.
[53]
王海竹, 徐启江, 闫海芳. 光照、 糖和激素对花青素合成调控的综述. 江西农业学报, 2016, 28(9): 35-41.
WANG H Z, XU Q J, YAN H F. Summary of regulation of anthocyanin synthesis by light, sugar and hormone. Acta Agriculturae Jiangxi, 2016, 28(9): 35-41. (in Chinese)
[54]
张楠, 韩浩章, 张丽华, 李素华, 赵荣, 王芳. 不同叶色猴樟花青素含量与光合特性比较. 中国野生植物资源, 2024, 43(1): 64-69.
ZHANG N, HAN H Z, ZHANG L H, LI S H, ZHAO R, WANG F. Comparison of anthocyanin content and photosynthetic characteristics of cinnamomun bodinieri seedlings with different leaf colors. Chinese Wild Plant Resources, 2024, 43(1): 64-69. (in Chinese)
[55]
WANG L, YANG S L, NI J B, TENG Y W, BAI S L. Advances of anthocyanin synthesis regulated by plant growth regulators in fruit trees. Scientia Horticulturae, 2023, 307: 111476.
[1] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[2] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[3] LUO LiDan, CHEN JiaMing, AN Qi, LIU Lei, SUN QinZhe, LIU Huan, WANG SenShan, SONG LiWen. Effects of Extreme High Temperature on Trehalose Content and Trehalose Transporter Gene in Tetranychus truncatus [J]. Scientia Agricultura Sinica, 2024, 57(6): 1091-1101.
[4] SU XiaoYu, TAN ZhengWei, LI ChunMing, LI Lei, LU DanDan, YU YongLiang, DONG Wei, AN SuFang, YANG Qing, SUN Yao, XU LanJie, YANG HongQi, LIANG HuiZhen. Analysis of Genome-Wide Methylation Differences and Associated Gene Expression of Sesame Varieties Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(24): 4825-4838.
[5] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[6] YIN YuQin, XU HuanHuan, TANG LiPing, WANG XinYa, HU ChunMei, HOU XiLin, LI Ying. Genome-Wide Identification of GST Gene Family and Functional Analysis of the BcGSTF6 Gene Related to Anthocyanin in Pak Choi [J]. Scientia Agricultura Sinica, 2024, 57(16): 3234-3249.
[7] XING YuTong, TENG YongKang, WU TianFan, LIU YuanYuan, CHEN Yuan, CHEN Yuan, CHEN DeHua, ZHANG Xiang. Mepiquat Chloride Increases the Cry1Ac Protein Content Through Regulating Carbon and Amino Acid Metabolism of Bt Cotton Under High Temperature and Drought Stress [J]. Scientia Agricultura Sinica, 2023, 56(8): 1471-1483.
[8] ZHAO WeiSong, GUO QingGang, LI SheZeng, LU XiuYun, GOU JianJun, MA Ping. Effect of Broccoli Residues on Enzyme Activity of Cotton Rhizosphere Soil and Relationships Between Enzyme Activity and Carbon Metabolism Characteristics [J]. Scientia Agricultura Sinica, 2023, 56(11): 2092-2105.
[9] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[10] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[11] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[12] CUI HuLiang,HE Xia,ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages [J]. Scientia Agricultura Sinica, 2021, 54(13): 2858-2869.
[13] WANG Feng,WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai. Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904-4917.
[14] GAO ChunHua,FENG Bo,CAO Fang,LI ShengDong,WANG ZongShuai,ZHANG Bin,WANG Zheng,KONG LingAn,WANG FaHong. Effects of Nitrogen Application Rate on Assimilate Accumulation, Transportation and Grain Yield in Wheat Under High Temperature Stress After Anthesis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4365-4375.
[15] GAO YingBo,ZHANG Hui,SHAN Jing,XUE YanFang,QIAN Xin,DAI HongCui,LIU KaiChang,LI ZongXin. Effects of Pre-Silking High Temperature Stress on Yield and Ear Development Characteristics of Different Heat-Resistant Summer Maize Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(19): 3954-3963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!