Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4904-4917.doi: 10.3864/j.issn.0578-1752.2020.23.015

• HORTICULTURE • Previous Articles     Next Articles

Light Regulation of Anthocyanin Biosynthesis in Horticultural Crops

WANG Feng(),WANG XiuJie,ZHAO ShengNan,YAN JiaRong,BU Xin,ZHANG Ying,LIU YuFeng,XU Tao,QI MingFang,QI HongYan,LI TianLai()   

  1. College of Horticulture, Shenyang Agricultural University/The State Education Ministry and Liaoning Provincial Key Laboratory of Protected Horticulture/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866
  • Received:2020-04-06 Accepted:2020-06-30 Online:2020-12-01 Published:2020-12-09
  • Contact: TianLai LI E-mail:fengwang@syau.edu.cn;tianlaili@126.com

Abstract:

Anthocyanins are among the most important flavonoid compounds in plants, which play significant roles in color formation of plant organ, such as flower and fruits, as well as antioxidant process. Light is one of the most important environmental factors affecting anthocyanin biosynthesis pathway, but it still remains unclear in the mechanism and signaling networks of light regulation of anthocyanin. This review briefly introduced the anthocyanin biosynthesis and transportation pathway, and summarized the molecular mechanism of anthocyanin transcriptional regulation by three kinds of transcription factors, including MYB, bHLH and WDR. In addition, it emphasized on the light signaling regulation of anthocyanin biosynthesis. The researches showed that the light environment (light intensity, light quality, and light duration) regulated the biosynthetic process of anthocyanin mainly through different light receptors (UVR8, CRYs, PHOTs, and PHYs), which affected the ubiquitination ability of COP1, the stability of HY5, and the stability of other light signal transcription factors, such as the phytochrome-interacting factors (PIFs). On the one hand, these light signal factors directly could bind to the promoters of MYB, bHLH and WDR, activate or inhibit these genes expression and then regulate the synthesis of anthocyanin. On the other hand, these light signal factors interacted with proteins of MYB, bHLH and WDR, affecting the stability of the MBW complex formed by them. In addition, these light signaling factors could also regulate anthocyanin synthesis through MBW independent pathways, such as HY5 also affect anthocyanin biosynthesis by regulating miR858. In addition, some unknown light signaling factors might directly or indirectly regulate anthocyanin synthesis genes and interacting with some vacuolar membranes proteins in a MBW independent manner, to change vacuolar acidification and regulate anthocyanin synthesis. At the same time, light signaling factors also affected some factors in the photosynthetic electron transport chain through MBW dependent or MBW independent pathways, then affected anthocyanin synthesis in plants. How these pathways were coordinated and which pathway was preferentially responded by light environments (light intensity, light quality, light duration)? This paper provided a basis to further investigate the molecular mechanism regulating anthocyanin biosynthesis by light signalings. The study explored the effective ways and target molecules for light regulation of anthocyanin accumulation, and created opportunities for the development of anthocyanin-rich horticultural crops through genetic and metabolic engineering, and light environmental management.

Key words: light, anthocyanins, transcription factor, transcriptional regulation, horticultural crops

Fig. 1

Models for anthocyanin biosynthesis and sequestration of anthocyanin into vacuole in horticultural plants CHS:查尔酮合酶 Chalcone synthase;CHI:查尔酮异构酶 Chalcone isomerase;F3H:黄烷酮-3β-羟化酶 Flavanone-3β-hydroxylase;F3′H:二氢黄酮醇-3′-羟化酶 Dihydroflavonoid-3'-hydroxylase;F3′5′H:二氢黄酮醇-3′, 5′-羟化酶 Dihydroflavonoid-3', 5'-hydroxylase;DFR:二氢黄酮醇还原酶 Dihydroflavonol reductase;ANS:花青素合成酶 Anthocyanin synthase;UFGT:尿苷二磷酸-葡萄糖-类黄酮-3-葡糖基转移酶 UDP-glucose flavonoid 3-glucosyltransferase;OMT:甲基转移酶 O-methyltransferases;GST:谷胱甘肽转移酶 Glutathione S-transferase;MRP:多药耐药相关蛋白 Multidrug resistance-associated protein;MATE:多药和有毒化合物排出家族蛋白 Multidrug and toxic compound extrusion;ABC:C型的ATP结合蛋白 C type of ATP-binding cassette;AVIs:花青素苷液泡内涵体 Anthocyanic vacuolar inclusions;Phenylalanine:苯基丙氨酸;3×Malonyl CoA:3×丙二酰辅酶A;4-Coumaroyl CoA:4-香豆酰辅酶A;Chalcone:查尔酮;Flavanones:黄烷酮;Dihydrokaempferol(DHK):二氢黄烷酮;Dihydroquercetin(DHQ):二氢栎精;Dihydromyricetin(DHM):二氢杨梅酮;Leucopelargonidin:无色天竺葵素;Leucocyanidin:无色矢车菊素;Leucodelphinidin:无色飞燕草素;Pelargonidin:天竺葵素;Cyanidin:矢车菊素;Delphinidin:飞燕草素;Pelargonidin 3-glucoside:天竺葵素苷;Cyanidin 3-glucoside:矢车菊素苷;Delphinidin 3-glucoside:飞燕草素苷;Peonidin:芍药花青素苷;Petunidin:牵牛花素苷;Malvidin:锦葵素苷;Anthocyanins:花青素;Cytosolic:细胞质;Endoplasmic reticulum:内质网"

Fig. 2

Models for light signaling regulation of anthocyanin biosynthesis in horticultural plants UVR8: UV resistance locus 8; CRYs: crytochrome; PHYs: phytochromes; MBW: MYB-bHLH-WDR complex; COP1: constitutively photomorphogenic 1; HY5: elongated hypocotyl 5; PIFs: phytochrome interacting factors; AN3: ANGUSTIFOLIA3; PET: photosynthetic electron transport; MRE: MYB-recognizing elements; BRE: bHLH-recognizing elements"

[1] WEI J Y, WU H J, ZHANG H Q, LI F, CHEN S R, HOU B H, SHI Y H, ZHAO L J, DUAN H J . Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. International Journal of Molecular Medicine, 2018,41(3):1608-1618.
doi: 10.3892/ijmm.2018.3378 pmid: 29328429
[2] ISAAK C K, PETKAU J C, BLEWETT H, KARMIN O, SIOW Y L . Lingonberry anthocyanins protect cardiac cells from oxidative-stress- induced apoptosis. Canadian Journal of Physiology and Pharmacology, 2017,95(8):904-910.
doi: 10.1139/cjpp-2016-0667 pmid: 28384410
[3] YOSHIDA K, KONDO T, OKAZAKI Y, KATOU K . Cause of blue petal colour. Nature, 1995,373:291.
doi: 10.1038/373291a0
[4] POUSTKA F, IRANI N G, FELLER A, LU Y, POURCEL L, FRAME K, GROTEWOLD E . A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiology, 2007,145(4):1323-1335.
doi: 10.1104/pp.107.105064 pmid: 17921343
[5] HU D G, SUN C H, MA Q J, YOU C X, CHENG L L, HAO Y J . MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 2016,170(3):1315-1330.
doi: 10.1104/pp.15.01333 pmid: 26637549
[6] SHITAN N, YAZAKI K . New insights into the transport mechanisms in plant vacuoles. International Review of Cell & Molecular Biology, 2013,305:383-433.
doi: 10.1016/B978-0-12-407695-2.00009-3 pmid: 23890387
[7] RAMSAY N A, GLOVER B J . MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 2005,10(2):63-70.
doi: 10.1016/j.tplants.2004.12.011 pmid: 15708343
[8] LIU Y, TIKUNOV Y, SCHOUTEN R E, MARCELIS L F M, VISSER R G F, BOVY A . Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A Review. Frontiers in Chemistry, 2018,6:52.
doi: 10.3389/fchem.2018.00052 pmid: 29594099
[9] GONZALEZ A, ZHAO M, LEAVITT J M, LLOYD A M . Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008,53(5):814-827.
doi: 10.1111/j.1365-313X.2007.03373.x pmid: 18036197
[10] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L . MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581.
doi: 10.1016/j.tplants.2010.06.005
[11] ZHU Z X, WANG H L, WANG Y T, GUAN S, WANG F, TANG J Y, ZHANG R J, XIE L L, LU Y Q . Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. Journal of Experimental Botany, 2015,66(13):3775-3789.
doi: 10.1093/jxb/erv173 pmid: 25911741
[12] PAZ-ARES J, GHOSAL D, WIENAND U, PETERSON P A, SAEDLER H . The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987,6:3553-3558.
pmid: 3428265
[13] QUATTROCCHIO F, WING J F, LEPPEN H, MOL J, KOES R E . Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. The Plant Cell, 1993,5:1497-1512.
doi: 10.1105/tpc.5.11.1497 pmid: 12271045
[14] YAMAGISHI M, SHIMMOYAMADA Y, NAKATSUKA T, MASUDA K . Two R2R3-MTB Genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic Hybrid Lily. Plant and Cell Physiology, 2010,51(3):463-474.
doi: 10.1093/pcp/pcq011 pmid: 20118109
[15] SUN C L, DENG L, DU M M, ZHAO J H, CHEN Q, HUANG T T, JIANG H L, LI C B, LI C Y . A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant, 2020,13(1):42-58.
doi: 10.1016/j.molp.2019.10.010 pmid: 31678614
[16] YAN S S, CHEN N, HUANG Z J, LI D J, ZHI J J, YU B W, LIU X X, CAO B H, QIU Z K . Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist, 2020,225(5):2048-2063.
doi: 10.1111/nph.16272 pmid: 31625612
[17] COLANERO S, TAGLIANI A, PERATA P, GONZALI S . Alternative splicing in the Anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Communications, 2020,1(1):100006.
doi: 10.1016/j.xplc.2019.100006
[18] TOHGE T, NISHIYAMA Y, HIRAI M Y, YANO M, NAKAJIMA J, AWAZUHARA M, INOUE E, TAKAHASHI H, GOODENOWE D B, KITAYAMA M, NOJI M, YAMAZAKI M, SAITO K . Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal, 2005,42:218-235.
doi: 10.1111/j.1365-313X.2005.02371.x pmid: 15807784
[19] PEEL G J, PANG Y, MODOLO L V, DIXON R A . The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. The Plant Journal, 2009,59(1):136-149.
doi: 10.1111/j.1365-313X.2009.03885.x pmid: 19368693
[20] ESPLEY R V, HELLENS R P, PUTTERILL J, STEVESON D E, KUTTY-AMMA S, ALLAN A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 2007,49(3):414-427.
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 17181777
[21] ESPLEY R V, BRENDOLISE C, CHAGNÉ D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C . Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell, 2009,21(1):168-183.
doi: 10.1105/tpc.108.059329 pmid: 19151225
[22] MEDINA-PUCHE L, CUMPLIDO-LASO G, AMIL-RUIZ F, HOFFMANN T, RING L, RODRíGUEZ-FRANCO A, CABALLERO J L, SCHWAB W, MUñOZ-BLANCO J, BLANCO-PORTALES R . MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria×ananassa fruits. Journal of Experimental Botany, 2014,65(2):401-417.
doi: 10.1093/jxb/ert377
[23] STARKEYIČ P, PAUKŠTYTĖ J, KAZANAVIČIŪTĖ V, DENKOVSKIENĖ E, STANYS V, BENDOKAS V, ŠIKŠNIANAS T, RAŽANSKIENĖ A, RAŽANSKAS R . Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE, 2015,10(5):e0126991.
doi: 10.1371/journal.pone.0126991 pmid: 25978735
[24] RAVAGLIA D, ESPLEY R V, HENRY-KIRK R A, ANDREOTTI C, ZIOSI V, HELLENS R P, COSTA G, ALLAN A C . Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013,13:68.
doi: 10.1186/1471-2229-13-68 pmid: 23617716
[25] WANG Z G, MENG D, WANG A D, LI T L, JIANG S L, CONG P H, LI T Z . The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology, 2013,162(2):885-896.
doi: 10.1104/pp.113.214700
[26] NAKATSUKA T, HARUTA K S, PITAKSUTHEEPONG C, ABE Y, KAKIZAKI Y, YAMAMOTO K, SHIMADA N, YAMAMURA S, NISHIHARA M . Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers. Plant & Cell Physiology, 2008,49(12):1818-1829.
doi: 10.1093/pcp/pcn163 pmid: 18974195
[27] LIU X F, XIANG L L, YIN X R, GRIERSON D, LI F, CHEN K S, YIN X R . The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae, 2015a,194:278-285.
doi: 10.1016/j.scienta.2015.08.018
[28] COSTANTINI L, MALACARNE G, LORENZI S, TROGGIO M, MATTIVI F, MOSER C, GRANDO M S . New candidate genes for the fine regulation of the colour of grapes. Journal of Experimental Botany, 2015,66(15):4427-4440.
doi: 10.1093/jxb/erv159 pmid: 26071528
[29] CHAGNÉ D, WANG K L, ESPLEY R V, VOLZ R K, HOW N M, ROUSE S, BRENDOLISE C, CARLISE C M, KUMAR S, DE SILVA N, MICHELETTI D, MCGHIE T, CROWHURST R N, STOREY R D, VELASCO R, HELLENS R P, GARDINER S E, ALLAN A C . An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology, 2013,161:225-239.
doi: 10.1104/pp.112.206771
[30] AN X H, TIAN Y, CHEN K Q, LIU X J, LIIU D D, XIE X B, CHENG C G, CONG P H, HAO Y J . MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant and Cell Physiology, 2014,56(4):650-662.
doi: 10.1093/pcp/pcu205 pmid: 25527830
[31] JIAN W, CAO H H, YUAN S, LIU Y D, LU J F, LU W, LI N, WANG J H, ZOU J, TANG N, XU C, CHENG Y L, GAO Y Q, XI W P, BOUZAYEN M, LI Z G . SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research, 2019,6:22.
doi: 10.1038/s41438-018-0098-y pmid: 30729012
[32] DUBOS C, LE GOURRIEREC J, BAUDRY A, HUEP G, LANET E, DEBEAUJOI I, ROUTABOUL J M, ALBORESI A, WEISSHAAR B, LEPINIEC L . MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal, 2008,55(6):940-953.
doi: 10.1111/j.1365-313X.2008.03564.x pmid: 18532978
[33] PÉREZ-DÍAZ J R, PÉREZ-DÍAZ J, MADRID-ESPINOZA J, GONZÁLEZ-VILLANUEVA E, MORENO Y, RUIZ-LARA S . New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Plant Molecular Biology, 2016,90:63-76.
doi: 10.1007/s11103-015-0394-y pmid: 26497001
[34] GAO J J, SHEN X F, ZHANG Z, PENG R H, XIONG A S, XU J, ZHU B, ZHENG J L, YAO Q H . The MYB transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2011,106(2):235-242.
doi: 10.1007/s11240-010-9912-4
[35] SALVALLINI A, PIMENTEL P, MOYA-LEÓN M A, HERRERA R . Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry, 2013,90:25-36.
doi: 10.1016/j.phytochem.2013.02.016 pmid: 23522932
[36] MATSUI K, UMEMURA Y, OHME-TAKAGI M . AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal, 2008,55(6):954-967.
doi: 10.1111/j.1365-313X.2008.03565.x pmid: 18532977
[37] GOU J Y, FELIPPES F F, LIU C J, WEIGEL D, WANG J W . Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156- targeted SPL transcription factor. The Plant Cell, 2011,23:1512-1522.
doi: 10.1105/tpc.111.084525 pmid: 21487097
[38] CAVALLINI E, MATUS J T, FINEZZO L, ZENONI S, LOYOLA R, GUZZO F, SCHLECHTER R, AGEORGES A, ARCE-JOHNSON P, TORNIELLI G B . The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology, 2015,167(4):1448-1470.
doi: 10.1104/pp.114.256172 pmid: 25659381
[39] ALBERT N W, LEWIS D H, ZHANG H, SCHWINN K E, JAMESON P E, DAVIES K M . Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal, 2011,65(5):771-784.
doi: 10.1111/j.1365-313X.2010.04465.x pmid: 21235651
[40] ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H B, MONTEFIORI M, BRENDOLISE C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E . A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell, 2014,26(3):962-980.
doi: 10.1105/tpc.113.122069 pmid: 24642943
[41] ZHU H F, FITZSIMMONS K, KHANDLWAL A, KRANZ R G . CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant, 2009,2(4):790-802.
doi: 10.1093/mp/ssp030 pmid: 19825656
[42] SPELT C, QUATTROCCHIO F, MOL J N, KOES R . anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000,12(9):1619-1632.
doi: 10.1105/tpc.12.9.1619 pmid: 11006336
[43] CHANDLER V L, RADICELLA J P, ROBBINS T P, CHEN J, TURKS D . Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of B utilizing R genomic sequences. The Plant Cell, 1989,1(12):1175-1183.
doi: 10.1105/tpc.1.12.1175 pmid: 2535537
[44] CONSONNI G, VIOTTI A, DELLAPORTA S L , TONELLI C. cDNA nucleotide sequence of Sn, a regulatory gene in maize. Nucleic Acids Research, 1992,20(2):373.
doi: 10.1093/nar/20.2.373 pmid: 1741268
[45] BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L . TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004,39(3):366-380.
doi: 10.1111/j.1365-313X.2004.02138.x pmid: 15255866
[46] LI P H, CHEN B B, ZHANG G Y, CHEN L X, DONG Q, WEN J Q, MYSORE K S, ZHAO J . Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytologist, 2016,210(3):905-921.
doi: 10.1111/nph.13816 pmid: 26725247
[47] BAI Y, PATTANAIK S, PATRA B, WERKMAN J R, XIE C H, YUAN L . Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b of tobacco have originated from two ancestors and are functionally active. Planta, 2011,234(2):363-375.
doi: 10.1007/s00425-011-1407-y
[48] ELOMMA P, UIMARI A, MEHTO M, ALBERT V A, LAITINEN R A, TEERI T H . Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein- promoter interactions between the anciently diverged monocots and eudicots. Plant Physiology, 2003,133(4):1831-1842.
doi: 10.1104/pp.103.026039 pmid: 14605235
[49] SHIMIZU Y, MAEDA K, KATO M, SHIMOMURA K . Co-expression of GbMYB1 and GbMYC1 induces anthocyanin accumulation in roots of cultured Gynura bicolor DC. plantlet on methyl jasmonate treatment. Plant Physiology and Biochemistry, 2011,49(2):159-167.
doi: 10.1016/j.plaphy.2010.11.006
[50] LAI B, DU L N, LIU R, HU B, SU W B, QIN Y H, ZHAO J T, WANG H C, HU G B . Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Frontiers in Plant Science, 2016,7:166.
doi: 10.3389/fpls.2016.00166 pmid: 26925082
[51] DE VETTEN N, QUATTROCCHIO F, MOL J, KOES R . The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants and animals. Genes & Development, 1997,11(11):1422-1434.
doi: 10.1101/gad.11.11.1422 pmid: 9192870
[52] CAREY C C, STRAHLE J T, SELINGER D A, CHANDLER V L . Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. The Plant Cell, 2004,16(2):450-464.
doi: 10.1105/tpc.018796 pmid: 14742877
[53] LIU X F, YIN X R, ALLAN A C, LIN-WANG K, SHI Y N, HUANG Y J, FERGUSON I B, XU C J, CHEN K S . The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013,115(3):285-298.
doi: 10.1007/s11240-013-0361-8
[54] AN X H, TIAN Y, CHEN K Q, WANG X F, HAO Y J . The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012,169(7):710-717.
doi: 10.1016/j.jplph.2012.01.015
[55] ZHAO M R, LI J, ZHU L, CHANG P, LI L L, ZANG L Y . Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes, 2019,10(7):496.
doi: 10.3390/genes10070496
[56] AGUILAR-BARRAGáN A, OCHOA-ALEJO N . Virus-induced silencing of MYB and WD40 transcription factor genes affects the accumulation of anthocyanins in chilli pepper fruit. Biologia Plantarum, 2014,58(3):567-574.
doi: 10.1007/s10535-014-0427-4
[57] YANG F X, CAI J, YANG Y, LIU Z B . Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis. Plant Cell. Tissue and Organ Culture, 2013,115(2):159-167.
doi: 10.1007/s11240-013-0349-4
[58] JIA X Y, SHEN J J, LIU H, LI F, DING N, GAO C Y, PATTANAIK S, PATRA B, LI R Z, YUAN L . Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015,242(1):283-293.
doi: 10.1007/s00425-015-2305-5 pmid: 25916310
[59] QI T C, SONG S S, REN Q C, WU D W, HUANG H, CHEN Y, FAN M, PENG W, REN C M, XIE D X . The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell, 2011,23(5):1795-1814.
doi: 10.1105/tpc.111.083261 pmid: 21551388
[60] WANG Y L, WANG Y Q, SONG Z Q, ZHANG H Y . Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant, 2016,9:1395-1405.
doi: 10.1016/j.molp.2016.07.003 pmid: 27450422
[61] SHIN D H, CHOI M, KIM K, BANG G, CHO M, CHOI S B, CHOI G, PARK Y I . HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters, 2013,587(10):1543-1547.
doi: 10.1016/j.febslet.2013.03.037
[62] NGUYEN N H, JEONG C Y, KANG G H, YOO S D, HONG S W, LEE H . MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant Journal, 2015,84(6):1192-1205.
doi: 10.1111/tpj.13077 pmid: 26576746
[63] AN J P, QU F J, YAO J F, WANG X N, YOU C X, WANG X F, HAO Y J . The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017,4:17056.
doi: 10.1038/hortres.2017.56 pmid: 29114391
[64] SHIN J, PARK E, CHOI G . PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal, 2007,49(6):981-994.
doi: 10.1111/j.1365-313X.2006.03021.x pmid: 17319847
[65] MAIER A, HOECKER U . COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling & Behavior, 2015,10(1):e970440.
doi: 10.4161/15592316.2014.970440 pmid: 25482806
[66] MAZZUCATO A, WILLEMS D, BERNINI R, PICARELLA M E, SANTANGELO E, RUIU F, TILESI F, SORESSI G P . Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation. Plant Physiology and Biochemistry, 2013,72:125-133.
doi: 10.1016/j.plaphy.2013.05.012
[67] MENG X C, WANG X J . Regulation of flower development and anthocyanin accumulation in Gerbera hybrida. The Journal of Horticultural Science and Biotechnology, 2004,79:131-137.
doi: 10.1080/14620316.2004.11511725
[68] COMINELLI E, GUSMAROLI G, ALLEGRA D, GALBIATIA M, WADEB H K, JENKINSB G I, TONELLIA C . Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. Journal of Plant Physiology, 2008,165(8):886-894.
doi: 10.1016/j.jplph.2007.06.010 pmid: 17766004
[69] QUATTROCCHIO F, VERWEIJ W, KROON A, SPELT C, MOL J, KOES R . PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. The Plant Cell, 2006,18(5):1274-1291.
doi: 10.1105/tpc.105.034041 pmid: 16603655
[70] ALBEA N W, LEWIS D H, ZHANG H B, IRVING L J, JAMESON P E, DAVIES K M . Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 2009,60(7):2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423
[71] 邵婉璐, 李月灵, 高松, 李钧敏, 梁宗锁 . 光照强度对成熟红颜草莓果实着色和花青素生物合成的影响及可能的分子机制. 植物研究, 2018,38(5):661-668.
SHAO W L, LI Y L, GAO S, LI J M, LIANG Z S . Effects of light intensity on the fruit coloration and anthocyanian biosynthesis in Fragaria × ananassa Duch.'Benihoppe' and the possible molecular mechanism. Bulletin of Botanical Research, 2018,38(5):661-668. (in Chinese)
[72] ZHANG Y J, LI Y, LI W P, HU Z L, YU X H, TU Y, ZHANG M, HUANG J Y, CHEN G P . Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. Horticulture Research, 2019,6:56.
doi: 10.1038/s41438-019-0138-2 pmid: 31098031
[73] GU K D, WANG C K, HU D G, HAO Y J . How do anthocyanins paint our horticultural products? Scientia Horticulturae, 2019,249:257-262.
doi: 10.1016/j.scienta.2019.01.034
[74] KLEINE T, KINDGREN P, BENEDICT C, HENDRICKSON L, STRAND A . Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiology, 2007,144(3):1391-1406.
doi: 10.1104/pp.107.098293 pmid: 17478635
[75] DAS P K, BANG G, CHOI S B, YOO S D, PARK Y I . Photosynthesis-dependent anthocyanin pigmentation in Arabidopsis. Plant Signaling & Behavior, 2011,6(1):23-25.
doi: 10.4161/psb.6.1.14082 pmid: 21248473
[76] 胡可, 韩科厅, 戴思兰 . 环境因子调控植物花青素苷合成及呈色机理. 植物学报, 2010,45(3):307-318.
doi: 10.3969/j.issn.1674-3466.2010.03.002
HU K, HAN K T, DAI S H . Regulation of plant anthocyanin synthesis and pigmentation by environmental factors. Bulletin of Botany, 2010,45(3):307-318. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2010.03.002
[77] 袁利 . UV-C处理对紫甘蓝花青素合成的影响以及花青素酰基转移酶的克隆[D]. 北京: 中国农业科学院, 2018.
YUAN L . Study on effect from UV-C treatment on anthocyanin biosynthesis and the cloning of anthocyanin acyltransferase of Purple cabbage[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[78] 喻譞, 姜璐璐, 王焕宇, 金鹏, 郑永华 . UV-C处理对杨梅采后品质及苯丙烷类代谢的影响. 食品科学, 2015,36(12):255-259.
doi: 10.7506/spkx1002-6630-201512048
YU X, JIANG L L, WANG H Y, JIN P, ZHENG Y H . Effects of UV-C treatment on quality and phenylpropanoid metabolism of postharvest Chinese bayberry fruit. Food Science, 2015,36(12):255-259. (in Chinese)
doi: 10.7506/spkx1002-6630-201512048
[79] 杨乐, 杨俊枫, 侯智霞, 宫中志, 王冲, 史文君 . UV-B对不同发育时期离体蓝莓主要果实品质及相关酶活性的影响. 西北植物学报, 2015,35(12):2477-2482.
YANG L, YANG J F, HOU Z X, GONG Z Z, WANG C, SHI W J . Effects of UV-B treatment on the major quality of Blueberry and related enzyme activities in different developmental stages. Acta Botanica Boreali-Occidentalia Sinica, 2015,35(12):2477-2482. (in Chinese)
[80] HUANG X, OUYANG X, YANG P, LAU O S, CHEN L, WEI N, DENG X W . Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(41):16669-16674.
doi: 10.1073/pnas.1316622110
[81] PASSERI V, KOES R, QUATTROCCHIO F M . New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Frontiers in Plant Science, 2016,7:153.
doi: 10.3389/fpls.2016.00153 pmid: 26909096
[82] LI Y Y, MAO K, ZHAO C, ZHAO X Y, ZHANG X L, SHU H R, HAO Y J . MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiology, 2012,160(2):1011-1022.
doi: 10.1104/pp.112.199703 pmid: 22855936
[83] PARK J S, CHOUNG M G, KIM J B, HAHN B S, KIM J B, BAE S C, ROH K H, KIM Y H, CHEON C I, SUNG M K, CHO K J . Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Reports, 2007,26(4):507-516.
doi: 10.1007/s00299-006-0255-x
[84] 齐艳, 邢燕霞, 郑禾, 孙倩倩, 李殿波, 王晋芳, 石锦, 赵冰, 郭仰东 . UV-A和UV-B提高甘蓝幼苗花青素含量以及调控基因表达分析. 中国农业大学学报, 2014,19(2):86-94.
QI Y, XING Y X, ZHENG H, SUN Q Q, LI D B, WANG J F, SHI J, ZHAO B, GUO Y D . UV-A and UV-B involved in induction and regulation of anthocyanin biosynthesis in cabbage. Journal of China Agricultural University, 2014,19(2):86-94. (in Chinese)
[85] QIAN C Z, CHEN Z R, LIU Q, MAO W W, CHEN Y L, TIAN W, LIU Y, HAN J P, OUYANG X H, HUANG X . Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Molecular Plant, 2020. doi: 10.1016/j.molp.2020.02.015.
doi: 10.1016/j.molp.2020.10.009 pmid: 33164768
[86] LIU C C, CHI C, JIN L J, ZHU J H, YU J Q, ZHOU Y H . The bZip transcription factor HY5 mediates CRY1a‐induced anthocyanin biosynthesis in tomato. Plant, Cell and Environment, 2018,41:1762-1775.
[87] MATSUMARU K, KAMIHAMA T, INADA K . Effect of covering materials with different transmission properties on anthocyanin content of eggplant pericarp. Environment Control in Biology, 1971,9:9-15.
doi: 10.2525/ecb1963.9.3-4_9
[88] GUO J, WANG M H . Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regulation. 2010,62(1):1-8.
doi: 10.1007/s10725-010-9472-y
[89] ZHOU B, LI Y H, XU Z R, YAN H F, HOMMA S, KAWABATA S . Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). Journal of Experimental Botany, 2007,58(7):1771-1781.
doi: 10.1093/jxb/erm036 pmid: 17426056
[90] JIAO Y L, LAU O S, DENG X W . Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 2007,8(3):217-230.
doi: 10.1038/nrg2049 pmid: 17304247
[91] LAU O S, DENG X W . The photomorphogenic repressors COP1 and DET1:20 years later. Trends in Plant Science, 2012,17(10):584-593.
doi: 10.1016/j.tplants.2012.05.004
[92] LIU B, ZUO Z C, LIU H T, LIU X M, LIN C T . Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1activity in response to blue light. Genes & Development, 2011,25(10):1029-1034.
doi: 10.1101/gad.2025011 pmid: 21511871
[93] JIANG Z H, CHEN C, WANG J, XIE W Y, WANG M, LI X, ZHANG X Y . Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense. Journal of Natural Medicines, 2016,70(1):45-53.
doi: 10.1007/s11418-015-0935-3 pmid: 26481011
[94] MENG L S . Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic 1. Plant, Cell and Environment, 2015,38:838-851.
doi: 10.1111/pce.12456 pmid: 25256341
[95] HERNáNDEZ R, EGUCHI T, DEVECI M, KUBOTA C . Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 2016,213:270-280.
doi: 10.1016/j.scienta.2016.11.005
[96] SHI L Y, CAO S F, CHEN W, YANG Z F . Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae, 2014,179:98-102.
doi: 10.1016/j.scienta.2014.09.022
[97] KOKALJ D, ZLATIĆ E, CIGIĆ B, VIDRIH R . Postharvest light- emitting diode irradiation of sweet cherries (Prunus avium L.) promotes accumulation of anthocyanins. Postharvest Biology and Technology, 2019,148:192-199.
doi: 10.1016/j.postharvbio.2018.11.011
[98] KADOMURA-ISHIKAWA Y, MIYAWAKI K, NOJI S, TAKAHASHI A . Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. Journal of Plant Research, 2013,126(6):847-857.
doi: 10.1007/s10265-013-0582-2
[99] XU F, CAO S F, SHI L Y, CHEN W, SU X G, YANG Z F . Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural and Food Chemistry, 2014,62(20):4778-4783.
doi: 10.1021/jf501120u
[100] KATZ A, WEISS D . Light regulation of anthocyanin accumulation and chalcone synthase gene expression in Petunia flowers. Israel Journal of Plant Sciences, 1999,47(4):225-229.
doi: 10.1080/07929978.1999.10676777
[101] 陈静, 陈启林, 翁俊, 刘源, 程智慧, 徐春和 . 不同红光/远红光比例(R/FR)的光照影响番茄幼苗叶片中花青素合成的研究. 西北植物学报, 2004,24(10):1773-1778.
CHEN J, CHEN Q L, WENG J, LIU Y, CHENG Z H, XU C H . Effect of illumination with different red/far-red ratios on anthocyanidin synthesis in tomato seedling leaves. Acta Botanica Boreali- Occidentalia Sinica, 2004,24(10):1773-1778. (in Chinese)
[102] LIU Z J, ZHANG Y Q, WANG J F, LI P, ZHAO C Z, CHEN Y D, BI Y R . Phytochromeinteracting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science, 2015,238:64-72.
doi: 10.1016/j.plantsci.2015.06.001 pmid: 26259175
[103] PFEIFFER A, NAGEL M K, POPP C, WÜST F, BINDICS J, VICZIÁN A, HILTBRUNNER A, NAGY F, KUNKEL T, SCHÄFER E . Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(15):5892-5897.
doi: 10.1073/pnas.1120764109
[104] MCNELLIS T W, VON AMIM A G, ARAKI T, KOMEDA Y, MISER S, DENG X W . Genetic and molecular analysis of an allelic series of cop1 mutants suggest functional roles for the multiple protein domains. The Plant Cell, 1994,6(4):487-500.
doi: 10.1105/tpc.6.4.487 pmid: 8205001
[105] 潘晓琴, 宋世威 . 光环境影响植物花青素生物合成研究进展. 植物学研究, 2019,8(2):118-125.
doi: 10.12677/BR.2019.82016
PAN X Q, SONG S W . Research advance on the effects of light environment on anthocyanin biosynthesis in plants. Botanical Research, 2019,8(2):118-125. (in Chinese)
doi: 10.12677/BR.2019.82016
[106] 闫海芳 . 光环境影响花青素合成途径中相关基因表达的机制[D]. 哈尔滨: 东北林业大学, 2003.
YAN H F . Mechanism of light environment influencing the expression of correlated genes in biosynthesis pathway of anthocyanin[D]. Harbin: Northeast Forestry University, 2003. (in Chinese)
[107] 史宝胜 . 紫叶李叶色生理变化及影响因素研究[D]. 哈尔滨: 东北林业大学, 2006.
SHI B S . Research on the physiological characters and the influence factors on leave color of cherry plum[D]. Harbin: Northeast Forestry University, 2006. (in Chinese)
[108] MAIER A, SCHRADER A, KOKKELINK L, FALKE C, WELTER B, INIESTO E, RUBIO V, UHRIG J F, H€ULSKAMP M, HOECKER U . Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. The Plant Journal, 2013,74(4):638-651.
doi: 10.1111/tpj.12153 pmid: 23425305
[109] TAKOS A M, JAFFE F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R . Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006,142:1216-1232.
doi: 10.1104/pp.106.088104 pmid: 17012405
[110] BUTELI E, TITTA L, GIORGIO M, MOCK H P, MATROS A, PETEREK S, SCHIJLEN EGWM, HALL R D, BOVY A G, LUO J, MARTIN C (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 2007,26, 1301-1308.
doi: 10.1038/nbt.1506 pmid: 18953354
[111] KATSUMOTO Y, FUKUCHI-MIZUTANI M, FUKUI Y, BRUGLIERA F, HOLTON T A, KARAN M, NAKAMURA N, YONEKURA- SAKAKIBARA K, TOGAMI J, PIGEAIRE A . Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiology, 2007,48:1589-1600.
doi: 10.1093/pcp/pcm131 pmid: 17925311
[112] BRUGLIERA F, TAO G Q, TEMS U, KALC G, MOURADOVA E, PRICE K, STEVENSON K, NAKAMURA N, STACEY I, KATSUMOTO Y, TANAKA Y, MASON J G . Violet/blue chrysanthemums- metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiology, 2013,54:1696-1710.
doi: 10.1093/pcp/pct110 pmid: 23926066
[113] HE X Z, LI Y, LAWSON D, XIE D Y . Metabolic engineering of anthocyanins in dark tobacco varieties. Physiologia Plantarum, 2017,159:2-12.
doi: 10.1111/ppl.12475 pmid: 27229540
[1] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[2] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[3] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[6] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[7] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[8] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[9] PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development [J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
[10] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[11] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[12] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[13] LIU RuiDa, GE ChangWei, WANG MinXuan, SHEN YanHui, LI PengZhen, CUI ZiQian, LIU RuiHua, SHEN Qian, ZHANG SiPing, LIU ShaoDong, MA HuiJuan, CHEN Jing, ZHANG GuiYin, PANG ChaoYou. Cloning and Drought Resistance Analysis of Transcription Factor GhMYB108 in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2022, 55(10): 1877-1890.
[14] MA ShuanHong, WAN Jiong, LIANG RuiQing, ZHANG XueHai, QIU XiaoQian, MENG ShuJun, XU NingKun, LIN Yuan, DANG KunTai, WANG QiYue, ZHAO JiaWen, DING Dong, TANG JiHua. Candidate Gene Association Analysis of Maize Transcription Factors in Flowering Time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12-25.
[15] XU FangFu,BIAN JinLong,HAN Chao,CHEN ZhiQing,LIU GuoDong,XING ZhiPeng,HU YaJie,WEI HaiYan,ZHANG HongCheng. Temperature and Light Adaptability of High-Quality Japonica Rice and Optimum Seeding Date in Huaibei Region [J]. Scientia Agricultura Sinica, 2021, 54(7): 1365-1381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!