Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 460-477.doi: 10.3864/j.issn.0578-1752.2025.03.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize

WANG JiaXin1(), HU JingYi1, ZHANG Wei2, WEI Qian1, WANG Tao1, WANG XiaoLin1, ZHANG Xiong1(), ZHANG PanPan1()   

  1. 1 College of Life Sciences, Yulin University, Yulin 719000, Shaanxi
    2 Yulin Agricultural Technology Service Center, Yulin 719000, Shaanxi
  • Received:2024-05-31 Accepted:2024-10-10 Online:2025-02-01 Published:2025-02-11
  • Contact: ZHANG Xiong, ZHANG PanPan

Abstract:

【Objective】This study explored the effects of different mulching methods on the production of photosynthetic substances and water use of maize under the intercropping mode of maize and soybean, aiming to determine the suitable mulching method for maize and soybean plantation in dryland agriculture in northern Shaanxi, so as to provide a basis for high-yield and efficient production of maize and soybean and ecological environment protection. 【Method】This study was conducted in irrigated land and nonirrigated land in 2022, using 'Zhonghuang 30' soybean and 'Xianyu 335' maize as materials. The two-factor complete randomized design was carried out, and the control group combined single crop (maize “M”, soybean “S”) and film mulching (bare land, interbrane “J”), and the test group combined intercropping crop (maize “M”, soybean “S”) and film mulching (bare land, interbrane “J” and whole film “Q”), with a total of 13 treatment groups. The characteristics changes of growth, photosynthesis, and water use efficiency of intercropped maize under different mulching methods were studied. 【Result】 (1) From jointing to silking stage, the growth space of intercropped maize was limited, resulting in a disadvantage in aboveground biomass of intercropped maize compared with monoculture. The biomass during the jointing stage of S/MQ, SQ/MJ, and SQ/MQ was 5.1%, 6.3%, and 1.7% higher than that of monoculture M, respectively; under intercropping, SJ/MJ maize plants had the fastest growth rate and a sharp increase in growth. SQ/MQ S/M, S/MJ, SQ/MJ, and SJ/M in dry land had a better promoting effect on the photosynthetic products of maize during the silking stage, and the aboveground biomass was 0.6%-105.9% higher than that of monoculture M. (2) To some extent, intercropping and mulching treatments improved the photosynthetic characteristics of maize, and the net photosynthetic rate (Pn) content of paddy maize. There was a certain degree of positive relationship between stomatal conductance (Gs), cellular CO2 concentration (Ci) and transpiration rate (Tr). The photosynthetic parameters of SQ/MJ and SJ/MQ were relatively high, while SJ/M and SQ/MQ were lower than non film coated S/M; there was a weak negative correlation between Pn and Ci in dryland maize, and the effect of maize mulching was not significant among different treatments. The Gs of intercropping treatment was 5.7% -38.1% lower than that of monoculture M, and Tr was also reduced by 5.6% -25.6%. Only the Pn of SJ/M and SQ/M, as well as the Ci of SQ/MJ and S/M, were higher than monoculture M. (3) The intercropping film mulching had a significant impact on water use efficiency (WUE). The WUE of the intercropping treatment was 41.1% -74.0% higher than that of monoculture M, among which SJ/M, S/M and S/MJ were relatively high; among all treatments in arid land, SQ/MJ had the highest WUE (19.04 kg∙mm-1∙hm-2), followed by SJ/MJ (17.07 kg∙mm-1∙hm-2), and the WUE of SJ/M and SQ/M was significantly lower than that of monoculture M by 26.7% and 20.6%, respectively. (4) Compared with monoculture M, intercropping S/MJ between irrigated land and dry land SJ/M and SJ/MJ maize increased yields by 76.8%, 73.0%, and 72.3%, respectively, while soybean yield reduction was relatively less among all intercropping treatments, demonstrating higher economic benefits; dry land intercropping SJ/MJ and SJ/MQ maize increased production by 17.1% and 23.5%, respectively, while economic benefits decreased by 17.5% and 22.8%, respectively. 【Conclusion】Compared with single cropping M, SJ/MJ model improved the photosynthetic performance, biomass, and yield of maize in irrigated land, and improved system economic benefit and promoted water use efficiency. In dry land, through the complementary effect and resource allocation in the intercropping system, it maintained maize yield and improved water use efficiency, but the increase of total input in agricultural materials reduced the economic feasibility. Therefore, in the dryland agriculture of Northern Shaanxi, the intercropping planting pattern of maize with degradable film and soybeans with degradable film was recommended for both irrigated land and moderately irrigated dry farm, aiming to enhance water use efficiency, increase production and profitability, and promote sustainable ecological agriculture development.

Key words: coating method, intercropping, maize, yield, photosynthetic characteristics, water use efficiency

Fig. 1

Average daily precipitation and temperature in growth period of the experiment station"

Fig. 2

Planting pattern diagram"

Table 1

Effects of different film covering patterns on yield and components of maize"

地点
Location
处理
Treatment
有效穗数
Effective ear number (No./hm2)
单穗粒数
Grains per ear
单株粒重
Grain weight per plant (g/plant)
百粒重
100-grain weight
(g)
产量
Grain yield
(kg·hm-2)
水地
Irrigated farmland
CK M 45833±5069d 717.8±23.5a 280.7±21.3a 31.9±1.3bcd 6956.8±62.9d
MJ 46667±1667d 703.8±46.3abc 261.2±7.9ab 30.2±1.1cd 8144.2±267.6d
S M 60667±2404bc 581.9±33.9d 203.1±17.8c 33.4±1.3abc 11687.9±402.8ab
MJ 55333±667bcd 692.0±20.5abc 227.9±13.6bc 36.0±0.8a 12299.6±203.5a
MQ 53333±667cd 720.3±31.2a 240.4±9.5abc 33.7±2.2abc 9839.3±251.3c
SJ M 58000±4163bc 639.5±26.2abcd 212.0±12.9bc 32.5±0.7abcd 12034.5±416.5a
MJ 65333±4055b 639.5±22.6abcd 226.0±21.3bc 32.4±0.4abcd 11987.3±623.4ab
MQ 78667±3712a 612.9±29.0bcd 222.8±8.8bc 28.9±0.1d 10837.0±675.8abc
SQ M 59333±4667bc 602.6±51.9cd 216.6±23.7bc 33.1±1.7abc 10489.9±685.0bc
MJ 52667±3712cd 637.8±24.9abcd 218.6±3.5bc 32.9±0.9abc 11154.2±537.6abc
MQ 56667±2906bcd 710.0±24.9ab 234.4±20.2abc 34.6±1.0ab 11249.8±428.9abc
旱地
Nonirrigated farmland
CK M 39167±1667a 668.0±34.2ab 213.2±8.7b 32.8±1.1abc 6748.6±119.4bc
MJ 38333±2205a 513.3±32.9d 166.0±11.7c 30.8±0.7bc 6791.3±166.5bc
S M 41333±1764a 724.5±24.3a 223.4±11.1ab 36.8±2.0a 6445.0±205.7bcd
MJ 37333±1764a 381.0±25.4e 156.3±4.2cd 33.3±1.9abc 6624.2±298.9bcd
MQ 38667±667a 525.0±27.1cd 155.6±6.3cd 32.8±1.1abc 6844.0±878.5bc
SJ M 38000±1155a 408.0±18.6e 131.1±10.2de 30.5±0.4bc 5209.4±156.1d
MJ 39333±1764a 614.5±19.3bc 154.7±8.4cd 29.8±0.7c 7901.0±838.2ab
MQ 36667±2906a 515.5±50.0d 120.1±9.9e 31.3±1.8bc 7115.8±428.7abc
SQ M 39333±667a 512.5±19.0d 154.5±4.7cd 29.7±1.4c 5609.4±564.4cd
MJ 40667±1764a 581.5±36.0bcd 195.1±15.9b 31.7±2.8bc 8335.8±327.6a
MQ 36667±1333a 713.0±26.5a 247.9±11.3a 35.1±1.9ab 6883.8±89.7bc
变异来源 Variation source
地点 Location ** ** ** NS **
处理 Treatment ** ** ** ** **
地点×处理 Location ×Treatment ** ** ** NS **

Table 2

Effects of mulching techniques on intercropped soybean yield and its yield components"

地点
Location
处理
Treatment
单株荚数
Pods number per plant (No./plant)
单株粒数
Seeds number per plant (No./plant)
单株粒重
Grain weight per plant (g/plant)
百粒重
100-grain weight
(g)
产量
Grain yield (kg·hm-2)
水地
Irrigated farmland
CK S 54.0±8.3a 141.5±21.5a 38.2±6.2a 23.3±1.1a 1600.6±34.4b
SJ 34.8±4.9bc 93.4±16.5b 32.5±6.1ab 25.2±0.4a 1933.5±73.4a
S M 24.8±2.8cde 65.8±8.4bcd 14.4±1.4cd 24.4±0.8a 691.0±48.6cd
MJ 22.4±2.0cde 61.4±7.9bcd 19.3±4.6cd 22.8±0.5a 623.7±26.7d
MQ 14.4±2.5e 36.3±6.6d 9.4±1.9d 23.5±1.1a 747.9±39.4cd
SJ M 24.7±3.9cde 56.3±8.7cd 12.3±0.8d 22.7±0.4a 808.8±39.7c
MJ 38.5±4.7b 90.9±13.5bc 23.2±2.2bc 22.6±0.7a 753.0±62.7cd
MQ 17.4±2.7de 41.0±7.7d 10.5±1.5d 22.0±0.7b 650.1±52.9cd
SQ M 16.4±1.9e 38.6±5.9d 8.9±1.3d 23.2±0.7a 705.3±70.3cd
MJ 30.4±4.5bcd 71.6±7.2bcd 17.9±2.5cd 24.2±1.0ab 754.9±57.1cd
MQ 18.6±2.8de 48.9±6.4d 13.8±2.0cd 24.2±0.7a 744.4±57.6cd
旱地
Nonirrigated farmland
CK M 22.5±2.0bcd 43.1±2.9bc 7.7±1.3cd 23.7±0.8a 1485.8±72.0b
MJ 25.5±2.6ab 58.1±10.5ab 14.4±3.4a 23.6±1.0ab 1653.9±32.6a
S M 20.8±1.6bcd 42.5±1.8bc 10.9±1.9abcd 22.0±0.4cd 523.6±24.0de
MJ 31.5±4.9a 64.6±10.8a 13.8±2.5ab 21.3±0.5c 609.0±13.2cd
MQ 23.6±2.2bc 51.1±5.8abc 8.2±0.8cd 20.1±0.7d 510.1±32.2e
SJ M 18.0±1.8bcd 43.9±5.1bc 8.8±0.9cd 21.1±0.3d 595.4±20.9de
MJ 16.5±0.7cd 36.5±2.6c 7.4±0.6d 22.5±0.1b 594.6±31.1de
MQ 20.4±1.9bcd 51.1±4.4abc 9.4±0.7bcd 22.0±0.9d 585.6±19.9de
SQ M 17.8±2.7bcd 35.5±3.5c 8.4±0.5cd 21.9±0.6d 584.6±34.1de
MJ 15.0±2.8d 37.3±3.6c 8.3±1.0cd 21.8±0.5c 592.6±31.0de
MQ 24.3±2.3abc 58.9±5.8ab 12.4±1.3abc 22.8±1.0cd 689.1±15.0c
变异来源 Variation source
地点 Location ** ** ** ** **
处理 Treatment ** ** ** * **
地点×处理 Location ×Treatment ** ** ** NS NS

Table 3

Effects of different intercropping patterns on crop economic benefits and LER"

年份
Year
处理
Treatment
经济效益 Economic benefits (Yuan/hm2) 土地当量比
Land equivalent ratio
农资总投入
Total material input
总收入
General income
经济效益
Economic benefit
产投比
Input-output ratio
水地
Irrigated farmland
CK M 8475.0 27753±137f 19278±137c 3.27±0.02b
MJ 9039.0 32814±1088e 23775±1088ab 3.63±0.12a
S M 12367.5 38777±912abc 26409±912a 3.13±0.07b 1.31±0.02cde
MJ 13252.5 40088±406ab 26835±406a 3.03±0.03b 1.39±0.05bcde
MQ 14341.5 34021±863de 19679±863c 2.37±0.06c 1.36±0.13bcde
SJ M 12952.5 40366±895a 27414±895a 3.12±0.07b 1.17±0.01e
MJ 13117.5 39934±1631ab 26816±1631a 3.04±0.13b 1.57±0.11ab
MQ 14026.5 36223±1989bcde 22197±1989bc 2.58±0.14c 1.45±0.05abcd
SQ M 15315.0 35572±1744cde 20257±1744bc 2.32±0.11c 1.23±0.08de
MJ 15300.0 37662±1498abcd 22362±1498bc 2.46±0.10c 1.63±0.03a
MQ 16389.0 37867±810abcd 21478±810bc 2.31±0.05c 1.48±0.01abc
旱地
Nonirrigated farmland
CK M 7575.0 26559±396abc 18984±396a 3.51±0.05a
MJ 8139.0 27589±570ab 19450±570a 3.39±0.07a
S M 11467.5 23502±408cde 12035±408bcd 2.05±0.04bc 2.11±0.04ab
MJ 12352.5 24457±869bcd 12105±869bcd 1.98±0.07cd 2.16±0.01ab
MQ 13441.5 24523±2379bcd 11081±2379cde 1.82±0.18cde 1.88±0.06c
SJ M 12052.5 20507±298e 8455±298ef 1.70±0.03def 2.23±0.03a
MJ 12217.5 27877±2174ab 15660±2174b 2.28±0.18b 2.19±0.08a
MQ 13126.5 25677±1063abc 12551±1063bcd 1.96±0.08cd 1.97±0.11bc
SQ M 14415.0 21544±1534de 7129±1534f 1.49±0.11f 1.95±0.09bc
MJ 14400.0 29058±735a 14658±735bc 2.02±0.05bc 2.08±0.08abc
MQ 15489.0 25603±210abc 10114±210def 1.65±0.01ef 2.08±0.03abc

Fig. 3

Effects of different mulching methods on maize aboveground biomass"

Fig. 4

Effect of different mulching methods on the photosynthetic characteristics of maize leaves"

Fig. 5

Vertical distribution map of soil moisture content from 0-100 cm for maize"

Fig. 6

Effect of different mulching methods on soil moisture content in maize 0-100 cm soil layer"

Fig. 7

Effect of different mulching methods on soil water consumption and water use efficiency of maize"

Fig. 8

Correlation analysis between maize photosynthetic production, water use efficiency and yield"

[1]
钱玉平, 田慧慧, 程宏波, 马建涛, 柴雨葳, 李亚伟, 柴守玺. 秸秆覆盖及播种方式对马铃薯耗水特性和产量的影响. 中国生态农业学报(中英文), 2020, 28(6): 826-834.
QIAN Y P, TIAN H H, CHENG H B, MA J T, CHAI Y W, LI Y W, CHAI S X. Effects of straw mulching and sowing methods on water consumption characteristics and yield of potato in arid region of Northwest China. Chinese Journal of Eco-Agriculture, 2020, 28(6): 826-834. (in Chinese)
[2]
张晓芳, 贾志宽, 朱翠林, 张鹏, 康乐. 水分胁迫对大豆结荚期光合生理及生物量的影响. 干旱地区农业研究, 2012, 30(4): 97-104.
ZHANG X F, JIA Z K, ZHU C L, ZHANG P, KANG L. Effect of water stress on photosynthesis and biomass of soybean during its pod filling stage. Agricultural Research in the Arid Areas, 2012, 30(4): 97-104. (in Chinese)
[3]
李宗善, 杨磊, 王国梁, 侯建, 信忠保, 刘国华, 傅伯杰. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409.
LI Z S, YANG L, WANG G L, HOU J, XIN Z B, LIU G H, FU B J. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecologica Sinica, 2019, 39(20): 7398-7409. (in Chinese)
[4]
隋鹏祥, 有德宝, 安俊朋, 张文可, 田平, 梅楠, 王美佳, 王沣, 苏思慧, 齐华. 秸秆还田方式与施氮量对春玉米产量及干物质和氮素积累、转运的影响. 植物营养与肥料学报, 2018, 24(2): 316-324.
SUI P X, YOU D B, AN J P, ZHANG W K, TIAN P, MEI N, WANG M J, WANG F, SU S H, QI H. Effects of straw management and nitrogen application on spring maize yield, dry matter and nitrogen accumulation and transfer. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 316-324. (in Chinese)
[5]
梁福琴, 张明君, 张强, 李得孝, 党蓓蕾, 李霞. 覆盖降解渗水地膜对陕北春大豆生长发育和产量的影响. 大豆科学, 2018, 37(5): 723-729.
LIANG F Q, ZHANG M J, ZHANG Q, LI D X, DANG B L, LI X. Effect of soil surface covered by degradable water-permeability film on growth and yield of spring soybean in northern Shaanxi Province. Soybean Science, 2018, 37(5): 723-729. (in Chinese)
[6]
赵鸿, 蔡迪花, 王鹤龄, 杨阳, 王润元, 张凯, 齐月, 赵福年, 陈斐, 岳平, 王兴, 姚玉璧, 雷俊, 魏星星. 干旱灾害对粮食安全的影响及其应对技术研究进展与展望. 干旱气象, 2023, 41(2): 187-206.

doi: 10.11755/j.issn.1006-7639(2023)-02-0187
ZHAO H, CAI D H, WANG H L, YANG Y, WANG R Y, ZHANG K, QI Y, ZHAO F N, CHEN F, YUE P, WANG X, YAO Y B, LEI J, WEI X X. Progress and prospect on impact of drought disaster on food security and its countermeasures. Journal of Arid Meteorology, 2023, 41(2): 187-206. (in Chinese)
[7]
魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响. 植物营养与肥料学报, 2020, 26(8): 1384-1394.
WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1384-1394. (in Chinese)
[8]
WANG X L, REN Y Y, ZHANG S Q, CHEN Y L, WANG N. Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region. Agricultural Water Management, 2017, 187: 88-98.
[9]
钱锐, 刘洋, 郭茹, 杨玲, 梁霞, 张鹏, 任小龙, 贾志宽. 覆膜秸秆还田对旱作农田土壤水温及春玉米产量的影响. 西北农业学报, 2021, 30(4): 532-544.
QIAN R, LIU Y, GUO R, YANG L, LIANG X, ZHANG P, REN X L, JIA Z K. Effects of straw returning to field and plastic film mulching on soil water, temperature and maize yield in upland fields. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(4): 532-544. (in Chinese)
[10]
姜文洋, 陈俊南, 昝志曼, 汪江涛, 郑宾, 刘领, 刘娟, 焦念元. 单粒播种与施磷对间作花生种间竞争和生长的调控效应. 中国农业科学, 2023, 56(23): 4660-4670. doi: 10.3864/j.issn.0578-1752.2023.23.008.
JIANG W Y, CHEN J N, ZAN Z M, WANG J T, ZHENG B, LIU L, LIU J, JIAO N Y. Regulation of single-seed sowing and phosphorus application on interspecific competition and growth of intercropping peanut. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670. doi: 10.3864/j.issn.0578-1752.2023.23.008. (in Chinese)
[11]
D’ALPOIM GUEDES J, BUTLER E E. Modeling constraints on the spread of agriculture to Southwest China with thermal niche models. Quaternary International, 2014, 349: 29-41.
[12]
欧阳子龙, 贾湘璐, 石景忠, 韦妙琴, 滕维超. 间作对作物、土壤及微生物影响的研究进展. 江苏农业科学, 2024, 52(2): 18-30.
OUYANG Z L, JIA X L, SHI J Z, WEI M Q, TENG W C. Research progress on effects of intercropping on crops, soils and microorganisms. Jiangsu Agricultural Sciences, 2024, 52(2): 18-30. (in Chinese)
[13]
雷雲翔, 应晓成, 沈新平, 刘斌, 蒋敏. 玉米-大豆间作经济与环境效应研究进展. 灌溉排水学报, 2023, 42(S1): 56-60.
LEI Y X, YING X C, SHEN X P, LIU B, JIANG M. Research progress on economic and environmental effects of corn-soybean intercropping. Journal of Irrigation and Drainage, 2023, 42(S1): 56-60. (in Chinese)
[14]
SCARASCIA-MUGNOZZA G, SCHETTINI E, VOX G, MALINCONICO M, IMMIRZI B, PAGLIARA S. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment. Polymer Degradation and Stability, 2006, 91(11): 2801-2808.
[15]
李小刚, 李凤民. 旱作地膜覆盖农田土壤有机碳平衡及氮循环特征. 中国农业科学, 2015, 48(23): 4630-4638. doi: 10.3864/j.issn.0578-1752.2015.23.004.
LI X G, LI F M. Soil organic carbon balance and nitrogen cycling in plastic film mulched croplands in rainfed farming systems. Scientia Agricultura Sinica, 2015, 48(23): 4630-4638. doi: 10.3864/j.issn.0578-1752.2015.23.004. (in Chinese)
[16]
刘广才, 李隆, 黄高宝, 孙建好, 郭天文, 张福锁. 大麦/玉米间作优势及地上部和地下部因素的相对贡献研究. 中国农业科学, 2005, 38(9): 1787-1795.
LIU G C, LI L, HUANG G B, SUN J H, GUO T W, ZHANG F S. Intercropping advantage and contribution of above-ground and below-ground interactions in the barley-maize intercropping. Scientia Agricultura Sinica, 2005, 38(9): 1787-1795. (in Chinese)
[17]
李伟绮, 孙建好, 赵建华. 覆膜对玉米间作豌豆干物质积累与分配的影响. 中国土壤与肥料, 2016(5): 118-123.
LI W Q, SUN J H, ZHAO J H. Effects of mulching on dry matter accumulation and distribution in maize-pea intercrop. Soil and Fertilizer Sciences in China, 2016(5): 118-123. (in Chinese)
[18]
龙大勇, 王小利, 段建军, 何进, 杨宏伟, 徐彬. 覆膜和施肥对玉米大豆间作体系作物氮素吸收和产量的影响. 中国农学通报, 2023, 39(12): 13-20.

doi: 10.11924/j.issn.1000-6850.casb2022-0352
LONG D Y, WANG X L, DUAN J J, HE J, YANG H W, XU B. Effects of plastic film mulching and fertilization on crop nitrogen uptake and yield in maize-soybean intercropping system. Chinese Agricultural Science Bulletin, 2023, 39(12): 13-20. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0352
[19]
任金虎, 谢军红, 李玲玲, Lamptey Shirley, Stephen Yeboah, 张明君, 高海强. 种植模式对旱地玉米光合特性和产量的影响. 干旱地区农业研究, 2017, 35(5): 8-13.
REN J H, XIE J H, LI L L, SHIRLEY L, YEBOAH S, ZHANG M J, GAO H Q. Effects of planting patterns on photosynthetic characteristics and grain yield of maize in dryland. Agricultural Research in the Arid Areas, 2017, 35(5): 8-13. (in Chinese)
[20]
张绪成, 王红丽, 于显枫, 侯慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016, 49(3): 468-481. doi: 10.3864/j.issn.0578-1752.2016.03.006.
ZHANG X C, WANG H L, YU X F, HOU H Z, FANG Y J, MA Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area. Scientia Agricultura Sinica, 2016, 49(3): 468-481. doi: 10.3864/j.issn.0578-1752.2016.03.006. (in Chinese)
[21]
侯慧芝, 张绪成, 汤瑛芳, 王红丽, 于显枫, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟种植马铃薯/蚕豆间作的产量和水分效应. 草业学报, 2016, 25(6): 71-80.

doi: 10.11686/cyxb2015382
HOU H Z, ZHANG X C, TANG Y F, WANG H L, YU X F, FANG Y J, MA Y F. Effects of potato-fababean intercropping on crop productivity and soil water under a plastic mulch and ridge-furrow planting system in a semiarid area. Acta Prataculturae Sinica, 2016, 25(6): 71-80. (in Chinese)
[22]
LI Q, LI H B, ZHANG S Q. Yield and water use efficiency of dryland potato in response to plastic film mulching on the Loess Plateau. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68(2): 175-188.
[23]
WANG L F, CHEN J, SHANGGUAN Z P. Yield responses of wheat to mulching practices in dryland farming on the Loess Plateau. PLoS ONE, 2015, 10(5): e0127402.
[24]
覃丽华. 榆林市干旱特征与旱灾风险分析[D]. 杨凌: 西北农林科技大学, 2020.
QIN L H. Drought characteristics and drought disaster risk analysis in Yulin[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
[25]
WANG Z K, WU P T, ZHAO X N, GAO Y, CHEN X L. Water use and crop coefficient of the wheat-maize strip intercropping system for an arid region in northwestern China. Agricultural Water Management, 2015, 161: 77-85.
[26]
宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019, 52(22): 4139-4153. doi: 10.3864/j.issn.0578-1752.2019.22.018.
GONG X W, DANG K, LI J, LUO Y, ZHAO G, YANG P, GAO X L, GAO J F, WANG P K, FENG B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Scientia Agricultura Sinica, 2019, 52(22): 4139-4153. doi: 10.3864/j.issn.0578-1752.2019.22.018. (in Chinese)
[27]
ZHANG D S, ZHANG L Z, LIU J G, HAN S, WANG Q, EVERS J, LIU J, VAN DER WERF W, LI L. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Research, 2014, 169: 132-139.
[28]
陈启航, 李佳奇, 史建国, 常风云, 段义忠, 贾磊, 陈涛, 宋平戈. 陕北风沙草滩区覆膜对土壤理化性质和春玉米产量的影响. 饲料研究, 2024, 47(2): 96-100.
CHEN Q H, LI J Q, SHI J G, CHANG F Y, DUAN Y Z, JIA L, CHEN T, SONG P G. Effects of plastic film mulching on soil physicochemical properties and spring maize yield in wind and sand erosion area of northern Shaanxi. Feed Research, 2024, 47(2): 96-100. (in Chinese)
[29]
王小英, 王斌, 王孟, 强羽竹, 李海录, 李振姣, 郭爱琴. 不同覆膜栽培模式对绿豆主要农艺性状及产量的影响. 农业科技通讯, 2023(9): 79-82, 91.
WANG X Y, WANG B, WANG M, QIANG Y Z, LI H L, LI Z J, GUO A Q. Effects of different film mulching cultivation models on main agronomic traits and yield of mung beans. Bulletin of Agricultural Science and Technology, 2023(9): 79-82, 91. (in Chinese)
[30]
徐佳星, 封涌涛, 叶玉莲, 张润泽, 胡昌录, 雷同, 张树兰. 地膜覆盖条件下黄土高原玉米产量及水分利用效应分析. 中国农业科学, 2020, 53(12): 2349-2359. doi: 10.3864/j.issn.0578-1752.2020.12.004.
XU J X, FENG Y T, YE Y L, ZHANG R Z, HU C L, LEI T, ZHANG S L. Effects of plastic film mulching on yield and water use of maize in the Loess Plateau. Scientia Agricultura Sinica, 2020, 53(12): 2349-2359. doi: 10.3864/j.issn.0578-1752.2020.12.004. (in Chinese)
[31]
蔡莉娟, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 一膜覆二年和灌水量对玉米间作豌豆水分利用效率的影响. 甘肃农业大学学报, 2018, 53(1): 29-34, 41.
CAI L J, ZHAO C, FENG F X, YU A Z, LIU C, CHAI Q. Effects of plastic film mulching for two years and irrigation amount on water use efficiency of maize-pea intercropping system. Journal of Gansu Agricultural University, 2018, 53(1): 29-34, 41. (in Chinese)
[32]
方旭飞, 张钟莉莉, 王丽学, 栾策. 不同覆盖方式和种植模式对土壤水热与玉米产量的影响. 节水灌溉, 2017(12): 39-43.
FANG X F, ZHANG Z L L, WANG L X, LUAN C. Effects of different mulching method and planting patterns on soil moisture, temperature and maize yield. Water Saving Irrigation, 2017(12): 39-43. (in Chinese)
[33]
梁晓阳, 沈欣, 王传娟, 张彦群, 王东博, 王建东, 郭清华. 覆膜类型对春玉米农田盐热变化及产量的影响. 排灌机械工程学报, 2023, 41(11): 1179-1188.
LIANG X Y, SHEN X, WANG C J, ZHANG Y Q, WANG D B, WANG J D, GUO Q H. Effects of different films mulching on salt and heat changes and yield of spring maize farmland. Journal of Drainage and Irrigation Machinery Engineering, 2023, 41(11): 1179-1188. (in Chinese)
[34]
张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报(中英文), 2019, 27(8): 1183-1194.
ZHANG X N, CHEN P, DU Q, ZHOU Y, REN J R, JIN F, YANG W Y, YONG T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1183-1194. (in Chinese)
[35]
张雷昌, 汤利, 董艳, 郑毅. 根系互作影响玉米大豆间作作物氮吸收. 云南农业大学学报 (自然科学), 2016, 31(6): 1111-1119.
ZHANG L C, TANG L, DONG Y, ZHENG Y. Nitrogen absorption of crops affected by root interaction in maize and soybean intercropping. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(6):1111-1119. (in Chinese)
[36]
LIAKATAS A, CLARK J A, MONTEITH J L. Measurements of the heat balance under plastic mulches. Part I. Radiation balance and soil heat flux. Agricultural and Forest Meteorology, 1986, 36(3): 227-239.
[37]
秦德志, 崔文芳, 陈静, 刘剑, 秦丽, 王利平, 赵永来, 王利鹤. 玉米大豆间作干物质积累和氮磷吸收利用的边际效应. 西南农业学报, 2024, 37(3): 552-560.
QIN D Z, CUI W F, CHEN J, LIU J, QIN L, WANG L P, ZHAO Y L, WANG L H. Marginal effect of dry matter accumulation and nitrogen and phosphorus uptake and utilization in maize and soybean intercropping. Southwest China Journal of Agricultural Sciences, 2024, 37(3): 552-560. (in Chinese)
[38]
赵建华, 孙建好, 李伟绮. 覆膜对玉米‖豌豆作物生产力及种间互作的影响. 干旱地区农业研究, 2020, 38(2): 164-169.
ZHAO J H, SUN J H, LI W Q. Effect of film mulching on productivity and interspecific interaction in maize-pea intercropping system. Agricultural Research in the Arid Areas, 2020, 38(2): 164-169. (in Chinese)
[39]
吕晴晴, 何宁, 张永江, 迟宝杰, 张艳军, 张冬梅, 董合忠. 间作和轮作通过根冠互作调控作物产量形成的生理生态机制. 植物生理学报, 2023, 59(7): 1277-1290.
Q Q, HE N, ZHANG Y J, CHI B J, ZHANG Y J, ZHANG D M, DONG H Z. Eco-physiological mechanism of crop yield formation regulated by intercropping and rotation through root-shoot interaction. Plant Physiology Journal, 2023, 59(7): 1277-1290. (in Chinese)
[40]
高梦钒, 王鑫鑫, 陈任强, 高惠嫣, 柴春岭, 刘宏权. 禾本-豆科间作水分高效利用研究进展. 节水灌溉, 2024(6): 77-86.

doi: 10.12396/jsgg.2023505
GAO M F, WANG X X, CHEN R Q, GAO H Y, CHAI C L, LIU H Q. Research progress of water efficient use in graminus-legume intercropping. Water Saving Irrigation, 2024(6): 77-86. (in Chinese)
[41]
郑皓远, 陈喜凤, 郭丹阳, 陈蕊, 玛丽亚穆·吾斯曼, 刘颖, 谷岩. 条带间作对玉米大豆光能利用特征、产量及经济收入的影响. 东北农业科学, 2023, 48(6): 1-5.
ZHENG H Y, CHEN X F, GUO D Y, CHEN R, MARIAMU U, LIU Y, GU Y. Effects of light energy utilization characteristics, yield and economic output of maize-soybean strip intercropping. Journal of Northeast Agricultural Sciences, 2023, 48(6): 1-5. (in Chinese)
[42]
殷民兴, 赵财, 葛丽丽, 程宝钰. 间作及减量灌溉对农田土壤温室气体排放的互作效应. 干旱地区农业研究, 2024, 42(1): 214-225.
YIN M X, ZHAO C, GE L L, CHENG B Y. Interaction effect of intercropping and reduced irrigation on greenhouse gas emissions from farmland soil. Agricultural Research in the Arid Areas, 2024, 42(1): 214-225. (in Chinese)
[43]
王科捷, 杨乔乔, 王佳, 卢圆明, 王晓苹, 康建宏. 水氮协同对玉米光合特性及产量的影响. 中国土壤与肥料, 2023(7): 48-55.
WANG K J, YANG Q Q, WANG J, LU Y M, WANG X P, KANG J H. Synergistic effects of water and nitrogen on photosynthetic characteristics and yield of maize. Soil and Fertilizer Sciences in China, 2023(7): 48-55. (in Chinese)
[44]
张建军, 樊廷录, 党翼, 赵刚, 王磊, 李尚中. 揭膜时期和施氮量对陇东旱塬春玉米群体生理指标及产量的影响. 中国土壤与肥料, 2016(4): 90-96.
ZHANG J J, FAN T L, DANG Y, ZHAO G, WANG L, LI S Z. Effects of uncovering plastic film period and nitrogen amount on the growth indexes and yield of spring maize in Loess Plateau of East Gansu. Soil and Fertilizer Sciences in China, 2016(4): 90-96. (in Chinese)
[45]
屈俊成, 蒋傲楠, 闫静琦, 卢海博, 赵海超, 黄智鸿. 寒旱区不同覆膜方式对春玉米土壤含水量及产量的影响. 河北北方学院学报(自然科学版), 2019, 35(3): 42-47.
QU J C, JIANG A N, YAN J Q, LU H B, ZHAO H C, HUANG Z H. Effects of mulching methods on soil water condition and yield of spring maize in cold and dry region. Journal of Hebei North University (Natural Science Edition), 2019, 35(3): 42-47. (in Chinese)
[46]
CHEN X L, WU P T, ZHAO X N, PERSAUD N. Effect of different mulches on harvested rainfall use efficiency for corn (Zea mays L.) in semi-arid regions of northwest China. Arid Land Research and Management, 2013, 27(3): 272-285.
[47]
LI S X, WANG Z H, MALHI S S, LI S Q, GAO Y J, TIAN X H. Chapter 7 nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Advances in Agronomy. Amsterdam: Elsevier, 2009: 223-265.
[48]
杨清山, 孙敏, 高志强, 张慧芋, 张娟, 梁艳妃, 李念念. 黄土高原休闲期深松后覆盖播种对旱地小麦产量的影响. 干旱地区农业研究, 2019, 37(2): 158-166.
YANG Q S, SUN M, GAO Z Q, ZHANG H Y, ZHANG J, LIANG Y F, LI N N. Effect of sowing-mulching following subsoiling in fallow period on wheat yield in arid area on the Loess Plateau. Agricultural Research in the Arid Areas, 2019, 37(2): 158-166. (in Chinese)
[1] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[2] ZHOU GuangFei, MA Liang, MA Lu, ZHANG ShuYu, ZHANG HuiMin, SONG XuDong, ZHANG ZhenLiang, LU HuHua, HAO DeRong, MAO YuXiang, XUE Lin, CHEN GuoQing. Genome-Wide Association Study of Husk Traits in Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 431-442.
[3] QIU HaiLong, LI Pan, ZHANG DianKai, FAN ZhiLong, HU FaLong, CHEN GuiPing, FAN Hong, HE Wei, YIN Wen, ZHAO LianHao. Compensatory Effects of Multiple Cropping Green Manure on Growth and Yield Loss of Nitrogen-Reduced Spring Wheat in Oasis Irrigation Areas of Northwest China [J]. Scientia Agricultura Sinica, 2025, 58(3): 443-459.
[4] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[5] CAO ShiLiang, ZHANG JianGuo, YU Tao, YANG GengBin, LI WenYue, MA XueNa, SUN YanJie, HAN WeiBo, TANG Gui, SHAN DaPeng. Heterosis Groups Research in Maize Inbred Lines Based on Machine Learning [J]. Scientia Agricultura Sinica, 2025, 58(2): 203-213.
[6] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[7] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[8] CAO YanYong, CHENG ZeQiang, MA Juan, YANG WenBo, ZHU WeiHong, SUN XinYan, LI HuiMin, XIA LaiKun, DUAN CanXing. Integrating Transcriptomic and Metabolomic Analyses Reveals Maize Responses to Stalk Rot Caused by Fusarium proliferatum [J]. Scientia Agricultura Sinica, 2025, 58(1): 75-90.
[9] LÜ JinLing, YOU Ke, WANG XiaoFei, XIAO Qiang, LI WenFeng, MA Jin, YANG Qing, ZHANG JinPing, KONG HaiJiang, CHANG YunHua. Variation Characteristics and Key Influencing Factors of Near-Surface Ambient Ammonia Concentration in Typical Cropland Areas in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 127-140.
[10] LÜ ShuWei, TANG Xuan, LI Chen. Research Progress on Seed Shattering of Rice [J]. Scientia Agricultura Sinica, 2025, 58(1): 1-9.
[11] FAN Hong, YIN Wen, HU FaLong, FAN ZhiLong, ZHAO Cai, YU AiZhong, HE Wei, SUN YaLi, WANG Feng, CHAI Qiang. Compensation Potential of Dense Planting on Nitrogen Reduction in Maize Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(9): 1709-1721.
[12] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[13] HE YongQiang, ZHANG JinKui, XU JinSong, DING XiaoYu, CHENG Yong, XU BenBo, ZHANG XueKun. Effect of 14-Hydroxylated Brassinosteroids Growth Regulator on Growth and Yield of Rapeseed [J]. Scientia Agricultura Sinica, 2024, 57(8): 1444-1454.
[14] LI YongFei, LI ZhanKui, ZHANG ZhanSheng, CHEN YongWei, KANG JianHong, WU HongLiang. Effects of Postponing Nitrogen Fertilizer Application on Flag Leaf Physiological Characteristics and Yield of Spring Wheat Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2024, 57(8): 1455-1468.
[15] LIU ZeHou, WANG Qin, YE MeiJin, WAN HongShen, YANG Ning, YANG ManYu, YANG WuYun, LI Jun. Utilization Efficiency of Improving the Resistance for Pre-Harvest Sprouting by Synthetic Hexaploid Wheat and Chinese Wheat Landrace [J]. Scientia Agricultura Sinica, 2024, 57(7): 1255-1266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!