Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (3): 478-492.doi: 10.3864/j.issn.0578-1752.2025.03.006

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Hypovirus in Apple Ring Rot Fungus Botryosphaeria dothidea and Detection of Virus-Carrying Status in China

CONG QiQi(), ZHANG JingYi, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan()   

  1. College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2024-09-24 Accepted:2024-10-29 Online:2025-02-01 Published:2025-02-11
  • Contact: WANG YaNan

Abstract:

【Objective】Apple ring rot is one of the serious fungal diseases in apple production caused by Botryosphaeria dothidea. The aim of this study is to obtain strains of B. dothidea with weak pathogenicity carrying dsRNA viruses, identify the types of viruses, and clarify the distribution of these viruses in China, so as to provide new biological control resources for the prevention and control of apple ring rot and new insights into the diversity and systematic evolution of fungal viruses. 【Method】Samples of branches with typical symptoms of apple ring rot were collected from across China, and pure cultures were obtained through tissue isolation and single-spore isolation. Virus-carrying strains were identified through dsRNA band analysis, and the types of dsRNA viruses carried by the virus-carrying strain WH-2L were identified using high-throughput sequencing and molecular cloning techniques. The presence of two types of dsRNA viruses in B. dothidea from six provinces (autonomous region) in China was determined by RT-PCR. Pathogenicity differences among representative strains carrying different viruses were clarified through pathogenicity tests. Finally, the transmission characteristics of the two viruses were revealed through analysis of vertical and horizontal transmission properties. 【Result】For the first time in apple-producing regions of China, strains of B. dothidea causing apple ring rot were found to be co-infected with two viruses: Botryosphaeria dothidea chrysovirus 1 (BdCV1), belonging to the family Chrysoviridae and genus Chrysovirus, and Botryosphaeria dothidea victorivirus 2 (BdVV2), belonging to the family Totiviridae and genus Victorivirus. It was clarified that BdCV1 and BdVV2 are widely distributed in B. dothidea causing apple ring rot in China. BdCV1 was detected in strains from Liaoning, Shandong, Henan, Hebei, Shaanxi, and Xinjiang, except for Yan’an in Shaanxi and Shijiazhuang in Hebei, with an average detection rate of 53.6%. BdVV2 occurred in Liaoning, Shandong, Henan, Hebei, and Shaanxi, but was not detected in Yan’an in Shaanxi, Shijiazhuang and Handan in Hebei, Aksu in Xinjiang, Taian and Qingdao in Shandong, with an average detection rate of 28.6%. It was clarified that the pathogenicity of strains with co-infection of the two viruses and single infection of BdCV1 on branches, apple fruits, and pear fruits was significantly reduced. The vertical transmission efficiency of BdCV1 and BdVV2 was 100%, and the horizontal transmission efficiency was 9% and 3%, respectively. 【Conclusion】The strain WH-2L of B. dothidea with weak pathogenicity carries two viruses, BdCV1 and BdVV2. The detection rates of BdCV1 and BdVV2 in B. dothidea causing apple ring rot in six apple-producing regions in China were 53.6% and 28.6%, respectively. Both viruses can cause reduced pathogenicity in their hosts, with high vertical transmission efficiency and certain horizontal transmission efficiency, and have potential for development as biological control resources for apple ring rot.

Key words: Botryosphaeria dothidea, apple ring rot, dsRNA, fungal virus, pathogenicity, biological control

Table 1

Information of B. dothidea samples in this study"

序号Number 菌株编号
Strain number
采集地点
Collection site
分离部位
Separation site
采集时间
<BOLD>C</BOLD>ollection time
品种
Cultivar
树龄
Tree age
1-10 LY-1L, LY-2L, LY-3L, LY-4L, LY-5L,
LY-6L, LY-7L, LY-8L, LY-9L, LY-10L
辽宁省营口市
Yingkou, Liaoning
枝干Branch 2023-04 富士Fuji 11
11-14 3L-10, 7L-10, 9L-10, 10L-10 山东省威海市
Weihai, Shandong
枝干Branch 2023-04 烟富8
Fuji 8
10
15-20 WH-1L, WH-2L, WH-3L, WH-6L, WH-7L, WH-9L 山东省威海市
Weihai, Shandong
枝干Branch 2023-04 威海金Harlikar 7
21-27 SMX-3L, SMX-4L, SMX-5L, SMX-8L, SMX-9L, SMX-20L, SMX-80L 河南省三门峡市
Sanmenxia, Henan
枝干Branch 2023-03 - -
28-36 CL-1L, CL-2L, CL-3L, CL-4L, CL-5L, CL-6L, CL-7L, CL-8L, CL-10L 河北省秦皇岛市
Qinhuangdao, Hebei
枝干Branch 2023-03 富士Fuji 8
37-40 BS-2L, BS-5L, BS-9L, BS-10L 陕西省渭南市Weinan, Shaanxi 枝干Branch 2023-03 富士Fuji 15
41 76 陕西省延安市Yan’an, Shaanxi 树皮Bark 2011-05 - -
42-50 52, 68, 70, 72, 74, 99, 978, 1109, 99-3 河北省保定市Baoding, Hebei 枝干、果实、树皮Branch, fruit, bark 2016-04 - -
51 77 河北省石家庄市Shijiazhuang, Hebei 树皮Bark 2024-05 - -
52 53 河北省邯郸市Handan, Hebei 枝干Branch 2024-05 - -
53 AKS 新疆阿克苏市Akesu, Xinjiang 枝干Branch 2016-04 - -
54-55 TA-1, TA-2 山东省泰安市Taian, Shandong 枝干Branch 2024-05 - -
56 QD 山东省青岛市Qingdao, Shandong 枝干Branch 2024-05 - -
57-64 529, 530, 531, 532, 534, 536, 537, 539 日本未知地区
Unknown region in Japan
枝干、果实
Branch, fruit
2018-09 - -

Table 2

Primers used in this study"

引物名称
Primer name
序列
Sequence (5′-3′)
片段大小
Product size (bp)
用途
Purpose
退火温度
Tm (℃)
来源
Source
BdCV1-F TGCAATGCTGGATGTGTACG 516 BdCV1鉴定
BdCV1 identification
59.4 自行设计
Designed by authors
BdCV1-R AGCGGTTTCTGCCAATTCG
StPV-F GGAGAACTAGACGACGGGTT 511 StPV鉴定
StPV identification
53.0 自行设计
Designed by authors
StPV-R ACTTCGGTTCAGCGCTATCT
BfPV1-F CTACACCAAAACCCCAACCG 531 BfPV1鉴定
BfPV1 identification
53.0 自行设计
Designed by authors
BfPV1-R GGTCGGCAATCACACCTTTT
PdPV-pa-F CATCTGTGACGGACCGGTAT 565 PdPV-pa鉴定
PdPV-pa identification
53.0 自行设计
Designed by authors
PdPV-pa-R CGCCTATCAACTTGTCCTGC
CfCV1-F TTACTTGGAGCAGGAGGGTG 519 CfCV1鉴定
CfCV1 identification
53.0 自行设计
Designed by authors
CfCV1-R ACACGAGCCCATTGATACCT
CpMV1-F ATGATCAGGTCCTTTGGGCA 525 CpMV1鉴定
CpMV1 identification
56.0 自行设计
Designed by authors
CpMV1-R AAAACGCGGTCTGGATTCAC
AOV-F CGCAAGGTACGGTGGTTATG 541 AOV鉴定
AOV identification
56.0 自行设计
Designed by authors
AOV-R CACCAACATTTCTGCGGGAT
BdVV2-F CCGGTAACTGGGTCAACCTC 500 BdVV2鉴定
BdVV2 identification
59.4 [22]
BdVV2-R CCGTGCGCTTCAATAAGTCG

Fig. 1

dsRNA types in WH-2L and WH-3L strains of B. dothidea"

Fig. 2

Electrophoresis of B. dothidea WH-2L dsRNA cDNA library M: DL2000; 1, 2: WH-2L; 3, 4: WH-3L"

Fig. 3

Positive monoclonal identification for strain WH-2L dsRNA cDNA library by PCR"

Table 3

Information of virus type in strain WH-2L by cDNA library cloning"

序列编号
Sequence number
病毒分类
Virus classification
同源序列登录号
Accession number
序列相似性
Sequence similarity (%)
2L-1 Chrysoviridae, Betachrysovirus YP_010839425 96.09
2L-4 Chrysoviridae, Betachrysovirus AJD14833.1 92.35
2L-5 Chrysoviridae, Betachrysovirus AJD14833.1 92.26
2L-8 Chrysoviridae, Betachrysovirus YP_009353026.1 97.70
2L-10 Chrysoviridae, Betachrysovirus YP_009353028.1 91.04
2L-11 Chrysoviridae, unclassified Chrysoviridae UVZ34692.1 87.50
2L-12 Chrysoviridae, unclassified Chrysoviridae UVZ34692.1 91.16
2L-14 Chrysoviridae, Betachrysovirus YP_009353026.1 96.20
2L-19 Chrysoviridae, Betachrysovirus AJD14833.1 92.41
2L-20 Chrysoviridae, Betachrysovirus AJD14833.1 92.26

Table 4

Analysis of virus type in strain WH-2L by high-throughput sequencing"

编号
Number
种名
Species name
病毒分类
Virus classification
寄主
Host
病毒来源reads数目Virus reads number
1 产黄青霉病毒
Botryosphaeria dothidea chrysovirus 1 (BdCV1)
Chrysoviridae, Betachrysovirus Botryosphaeria dothidea 13381204
2 葡萄座腔菌整体病毒2
Botryosphaeria dothidea victorivirus 2 (BdVV2)
Totiviridae, Victorivirus Botryosphaeria dothidea 11509973
3 葡萄球菌病毒Staphylococcus virus 29 (StPV29) Siphoviridae, Phietavirus Staphylococcus aureus 24898
4 灰葡萄藻1型
Botryotinia fuckeliana partitivirus 1 (BfPV1)
Partitiviridae, unclassified Partitiviridae Botrytis cinerea 6025
5 分枝杆菌病毒
Pseudogymnoascus destructans partitivirus-pa (PdPV-pa)
Partitiviridae, unclassified Partitiviridae Pseudogymnoascus destructans 4010
6 刺盘孢菌病毒
Colletotrichum fructicola chrysovirus 1 (CfCV1)
Chrysoviridae, Betachrysovirus Colletotrichum fructicola 848
7 有丝分裂病毒1 Cryphonectria mitovirus 1 (CpMV1) Mitoviridae, Mitovirus Cryphonectria parasitica 568
8 赭色曲霉病毒Aspergillus ochraceous virus (AOV) Partitiviridae, Gammapartitivirus Aspergillus ochraceous 222

Fig. 4

Identification of eight viruses in strain WH-2L by RT-PCR"

Table 5

Distribution of BdCV1 and BdVV2 in B. dothidea from apple producing areas in China"

序号 Number 采集地点
Collection site
BdCV1 BdVV2
阳性菌株数/总菌株数
Positive number/total number
检出率
Detection rate (%)
阳性菌株数/总菌株数
Positive number/total number
检出率
Detection rate (%)
1-10 辽宁地区Liaoning region 6/10 60 5/10 50
11-23 山东地区Shandong region 9/13 69 4/13 30
24-30 河南三门峡Sanmenxia, Henan 3/7 43 1/7 14
31-50 河北地区Hebei region 8/20 40 3/20 15
51-55 陕西地区Shaanxi region 3/5 60 3/5 60
56 新疆阿克苏Akesu, Xinjiang 1/1 100 0/1 0
总计Total 30/56 53.6 16/56 28.6

Fig. 5

RT-PCR detection of BdCV1 and BdVV2 in the representative strains of B. dothidea"

Fig. 6

Pathogenicity of B. dothidea strains carrying different viruses of BdCV1 or BdVV2 on apple fruits in vitro"

Fig. 7

Spot size on apple fruits infected by B. dothidea strains carrying different viruses of BdCV1 or BdVV2"

Fig. 8

Pathogenicity of B. dothidea strains carrying different viruses of BdCV1 or BdVV2 on pear fruits in vitro"

Fig. 9

Spot size on pear fruits infected by B. dothidea strains carrying different viruses of BdCV1 or BdVV2"

Fig. 10

Detection of BdCV1 in the progeny of B. dothidea strain WH-2L by RT-PCR"

Fig. 11

Detection of BdVV2 in the progeny of B. dothidea strain WH-2L by RT-PCR"

Fig. 12

Detection of horizontal transmission rate of BdCV1 among B. dothidea strains by RT-PCR"

Fig. 13

Detection of horizontal transmission rate of BdVV2 among B. dothidea strains by RT-PCR"

[1]
LI X, ZHANG R, WANG X P, LIU X X, WANG Y C, QI P R, WANG L S, WU S J, CHEN X S. Extracellular and intracellular infection of Botryosphaeria dothidea and resistance mechanism in apple cells. Horticultural Plant Journal, 2023, 9(2): 209-223.
[2]
孙广宇, 徐超, 梁晓飞, 张荣. 苹果轮纹病病害名称之规范. 菌物学报, 2023, 42(1): 76-85.

doi: 10.13346/j.mycosystema.220422
SUN G Y, XU C, LIANG X F, ZHANG R. The revision to the Chinese names of apple ring rot. Mycosystema, 2023, 42(1): 76-85. (in Chinese)

doi: 10.13346/j.mycosystema.220422
[3]
田路明, 周宗山, 董星光, 曹玉芬, 张莹. 梨轮纹病研究进展. 中国果树, 2013(4): 74-77.
TIAN L M, ZHOU Z S, DONG X G, CAO Y F, ZHANG Y. Research progress of pear ring rot. China Fruits, 2013(4): 74-77. (in Chinese)
[4]
TANG W, DING Z, ZHOU Z Q, WANG Y Z, GUO L Y. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Disease, 2012, 96(4): 486-496.
[5]
张杰, 刘媛媛, 朱会营, 王新茹, 李艳, 李会平. 中草药源杀菌剂“轮纹一扫光”对苹果枝干轮纹病防治作用研究. 中国生物防治学报, 2021, 37(5): 1050-1057.

doi: 10.16409/j.cnki.2095-039x.2021.04.008
ZHANG J, LIU Y Y, ZHU H Y, WANG X Y, LI Y, LI H P. Effect of ‘lunwenyisaoguang’ fungicide derived from a traditional Chinese herbal medicine against apple branch and stem ring disease. Chinese Journal of Biological Control, 2021, 37(5): 1050-1057. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.04.008
[6]
刘金蓉, 葛喜珍, 田国英, 田平芳. 苹果响应轮纹病菌侵染的分子机制研究进展. 中国果树, 2019(4): 11-15.
LIU J R, GE X Z, TIAN G Y, TIAN P F. Research progress in molecular mechanism of apple response to Botryosphaeria dothidea infestation. China Fruits, 2019(4): 11-15. (in Chinese)
[7]
YU X, LI B, FU Y P, JIANG D H, GHABRIAL S A, LI G Q, PENG Y L, XIE J T, CHENG J S, HUANG J B, YI X H. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8387-8392.
[8]
ZHANG H X, XIE J T, FU Y P, CHENG J S, QU Z, ZHAO Z Z, CHENG S F, CHEN T, LI B, WANG Q Q, LIU X Q, TIAN B N, COLLINGE D B, JIANG D H. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement. Molecular Plant, 2020, 13(10): 1420-1433.

doi: 10.1016/j.molp.2020.08.016 pmid: 32998002
[9]
TIAN B N, XIE J T, FU Y P, CHENG J S, LI B, CHEN T, ZHAO Y, GAO Z X, YANG P Y, BARBETTI M J, TYLER B M, JIANG D H. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. The ISME Journal, 2020, 14(12): 3120-3135.
[10]
LI P F, WANG S C, ZHANG L H, QIU D W, ZHOU X P, GUO L H. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions. Science Advances, 2020, 6(14): eaay9634.
[11]
LIU H, WANG H, LIAO X L, GAO B D, LU X, SUN D H, GONG W J, ZHONG J, ZHU H J, PAN X T, GUO L, DENG X W, ZHOU Q. Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(50): e2214096119.
[12]
WANG L P, JIANG J J, WANG Y F, HONG N, ZHANG F P, XU W X, WANG G P. Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: Association with a coinfecting chrysovirus and a partitivirus. Journal of Virology, 2014, 88(13): 7517-7527.
[13]
ZHAI L F, HONG N, ZHANG M X, WANG G P. Complete dsRNA sequence of a novel victorivirus isolated from the pear stem wart fungus Botryosphaeria dothidea. Archives of Virology, 2015, 160(2): 613-616.
[14]
ZHAI L F, YANG M M, ZHANG M X, HONG N, WANG G P. Characterization of a botybirnavirus conferring hypovirulence in the phytopathogenic fungus Botryosphaeria dothidea. Viruses, 2019, 11(3): 266.
[15]
杨萌萌. 葡萄座腔菌病毒多样性与新型病毒分子生物学特性研究[D]. 武汉: 华中农业大学, 2020.
YANG M M. Diversity of mycoviruese in Botryosphaeria dothidea and molecular biological characteristics of novel viruses[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[16]
DING Z, ZHOU T, GUO L Y. Characterization of a novel strain of Botryosphaeria dothidea chrysovirus 1 from the apple white rot pathogen Botryosphaeria dothidea. Archives of Virology, 2017, 162(7): 2097-2102.
[17]
WANG B, LIANG X F, GLEASON M L, ZHANG R, SUN G Y. Comparative genomics of Botryosphaeria dothidea and B. kuwatsukai, causal agents of apple ring rot, reveals both species expansion of pathogenicity-related genes and variations in virulence gene content during speciation. IMA Fungus, 2018, 9(2): 243-257.
[18]
罗慧, 胡旺成, 王国平, 王利平. 来源于湖北省梨轮纹病菌中真菌病毒多样性检测及其分析. 植物病理学报, 2019, 49(1): 113-123.
LUO H, HU W C, WANG G P, WANG L P. Detection and analysis of the double-stranded RNAs diversity from Botryosphaeria dothidea strains in Hubei Province. Acta Phytopathologica Sinica, 2019, 49(1): 113-123. (in Chinese)
[19]
ZHAI L F, XIANG J, ZHANG M X, FU M, YANG Z K, HONG N, WANG G P. Characterization of a novel double-stranded RNA mycovirus conferring hypovirulence from the phytopathogenic fungus Botryosphaeria dothidea. Virology, 2016, 493: 75-85.
[20]
HEINIGER U, RIGLING D. Biological control of chestnut blight in Europe. Annual Review of Phytopathology, 1994, 32: 581-599.
[21]
YU X, LI B, FU Y P, XIE J T, CHENG J S, GHABRIAL S A, LI G Q, YI X H, JIANG D H. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1452-1457.
[22]
刘文义. 苹果轮纹病菌病毒多样性分析[D]. 泰安: 山东农业大学, 2020.
LIU W Y. Diversity analysis of mycovirus from apple ring rot pathogen[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
[23]
李波. 核盘菌弱毒菌株SX276生物学特性及其携带RNA病毒的研究[D]. 武汉: 华中农业大学, 2016.
LI B. Research on the biological characteristics and RNA viruses from the hypovirulent strain SX276 of Sclerotinia sclerotiorum[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[24]
GHABRIAL S A, SUZUKI N. Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 2009, 47: 353-384.

doi: 10.1146/annurev-phyto-080508-081932 pmid: 19400634
[25]
MOKILI J L, ROHWER F, DUTILH B E. Metagenomics and future perspectives in virus discovery. Current Opinion in Virology, 2012, 2(1): 63-77.

doi: 10.1016/j.coviro.2011.12.004 pmid: 22440968
[26]
MARZANO S L, NELSON B D, AJAYI-OYETUNDE O, BRADLEY C A, HUGHES T J, HARTMAN G L, EASTBURN D M, DOMIER L L. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. Journal of Virology, 2016, 90(15): 6846-6863.
[27]
YIE S W, KHALIFA M E, HAHN T, PEARSON M N. Molecular characterization of a novel victorivirus from the entomopathogenic fungus Beauveria bassiana. Archives of Virology, 2014, 159(6): 1321-1327.
[28]
高云静, 王天好, 胡旺成, 洪霓, 王国平, 王利平. 梨轮纹病菌弱毒株携带产黄青霉病毒水平传染力测定. 园艺学报, 2023, 50(11): 2477-2488.

doi: 10.16420/j.issn.0513-353x.2022-0683
GAO Y J, WANG T H, HU W C, HONG N, WANG G P, WANG L P. Determination of horizontal transmission ability of BdCV1 infecting Botryosphaeria dothidea strain with hypovirulence. Acta Horticulturae Sinica, 2023, 50(11): 2477-2488. (in Chinese)
[29]
丁正. 葡萄座腔菌侵染苹果枝条过程研究及一株低致病力菌株中病毒的鉴定[D]. 北京: 中国农业大学, 2018.
DING Z. Study on the infection process of Botryosphaeria dothidea on apple shoots and identification of a mycovirus infect Botryosphaeria dothidea[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[30]
王利华, 罗慧, 王国平, 王利平. 来源于产黄青霉病毒科成员的分离物对梨轮纹病菌生长及其致病力的影响. 果树学报, 2017, 34(10): 1330-1339.
WANG L H, LUO H, WANG G P, WANG L P. Effect of Botryosphaeria dothidea chrysovirus 1 isolate belonging to the Chrysoviridae family on growth and pathogenicity of the B. dothidea strain infection in pears. Journal of Fruit Science, 2017, 34(10): 1330-1339. (in Chinese)
[31]
王彦芬. 果树枝干葡萄座腔菌科病原真菌及其真菌病毒多样性研究[D]. 郑州: 河南农业大学, 2023.
WANG Y F. Study on the diversity of pathogenic fungi and mycovirues in the Botryosphaeriaceae from fruit tree branches[D]. Zhengzhou: Henan Agricultural University, 2023. (in Chinese)
[32]
WU M D, JIN F Y, ZHANG J, YANG L, JIANG D H, LI G Q. Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the phytopathogenic fungus Botrytis porri. Journal of Virology, 2012, 86(12): 6605-6619.
[33]
GLASS N L, JACOBSON D J, SHIU P K. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annual Review of Genetics, 2000, 34: 165-186.

pmid: 11092825
[34]
WANG J Z, SHI L M, HE X P, LU L D, LI X P, CHEN B S. Comparative secretome analysis reveals perturbation of host secretion pathways by a hypovirus. Scientific Reports, 2016, 6: 34308.

doi: 10.1038/srep34308 pmid: 27698384
[35]
PARK S M, CHOI E S, KIM M J, CHA B J, YANG M S, KIM D H. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Molecular Microbiology, 2004, 51(5): 1267-1277.
[36]
PARSLEY T B, CHEN B S, GELETKA L M, NUSS D L. Differential modulation of cellular signaling pathways by mild and severe hypovirus strains. Eukaryotic Cell, 2002, 1(3): 401-413.

doi: 10.1128/EC.1.3.401-413.2002 pmid: 12455988
[37]
GAO Z X, WU J Y, JIANG D H, XIE J T, CHENG J S, LIN Y. ORF 1 of mycovirus SsNSRV-1 is associated with debilitating symptoms of Sclerotinia sclerotiorum. Viruses, 2020, 12(4): 456.
[38]
LI P F, ZHANG H L, CHEN X G, QIU D W, GUO L H. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology, 2015, 481: 151-160.
[39]
MOCHAMA P, JADHAV P, NEUPANE A, MARZANO S L. Mycoviruses as triggers and targets of RNA silencing in white mold fungus Sclerotinia sclerotiorum. Viruses, 2018, 10(4): 214.
[40]
HU W C, LUO H, YANG Y K, WANG Q, HONG N, WANG G P, WANG A M, WANG L P. Comprehensive analysis of full genome sequence and Bd-milRNA/target mRNAs to discover the mechanism of hypovirulence in Botryosphaeria dothidea strains on pear infection with BdCV1 and BdPV1. IMA Fungus, 2019, 10: 3.
[1] TONG ZhaoYang, LIU WenHua, ZHANG GuoXin, DONG ChunYan, ZHANG YanXia, XU XiaoWei, HE Dong, LIU HeChun, LI Yang, WANG FengTao, FENG Jing, YAO XiaoBo, LIU MeiJin, LIN RuiMing. The Relationship Between Occurrence of Hulless Barley Ear Rot and Population Migration of Grass Mite (Siteroptes spp.) [J]. Scientia Agricultura Sinica, 2025, 58(3): 493-506.
[2] LIAO XinLin, GUO Xin, YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua. Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function [J]. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334.
[3] XIAO LiuHua, KANG NaiHui, LI ShuCheng, ZHENG ZhiYuan, LUO RaoRao, CHEN JinYin, CHEN Ming, XIANG MiaoLian. Effect of Methyl Jasmonate on Energy Metabolism and Membrane Lipid Metabolism During Resistance to Botryosphaeria dothidea in Kiwifruit [J]. Scientia Agricultura Sinica, 2024, 57(7): 1377-1393.
[4] DONG ZaiFang, DING TengTeng, SHAN YiXuan, LI HongLian, CHEN LinLin, XING XiaoPing. Autophagy-Related Gene FpAtg3 Involves in Growth and Pathogenicity of Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2024, 57(6): 1080-1090.
[5] ZHANG AiHong, YANG Fei, ZHAO YuanYe, ZHAO YiHan, DI DianPing, MIAO HongQin. Pathogenicity and Epidemic Risk of Barley Yellow Striate Mosaic Virus [J]. Scientia Agricultura Sinica, 2024, 57(23): 4686-4697.
[6] SHI Na, LU Yang, SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun, ZHANG ZhengKun. Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids [J]. Scientia Agricultura Sinica, 2024, 57(17): 3398-3407.
[7] WANG Yuan, DU MengDan, LI ZhengGang, SHE XiaoMan, YU Lin, LAN GuoBing, DING ShanWen, HE ZiFu, TANG YaFei. Identification of Pathogen Causing Tomato White Tip and Curl Leaf Disease and Its Pathogenicity in Guangdong Province [J]. Scientia Agricultura Sinica, 2024, 57(12): 2350-2363.
[8] ZHANG Jian, ZHAO BinSen, FENG Hao, HUANG LiLi. Function and Mechanism Analysis of Vm-milRN7 Regulating the Pathogenicity of Valsa mali [J]. Scientia Agricultura Sinica, 2024, 57(10): 1930-1942.
[9] GAO XiaoXiao, TU LiQin, YANG Liu, LIU YaNan, GAO DanNa, SUN Feng, LI Shuo, ZHANG SongBai, JI YingHua. Construction of an Infectious Clone of Tobacco Mild Green Mosaic Virus Isolate Infecting Pepper from Jiangsu Based on Genomic Clone [J]. Scientia Agricultura Sinica, 2023, 56(8): 1494-1502.
[10] GONG AnDong, LEI YinYu, WU NanNan, LIU JingRong, SONG MengGe, ZHANG YiMei, YANG Guang, YANG Peng. The Effect of 3-Oxyacyl ACP Reductase Gene FgOAR1 on the Growth, Development and Pathogenicity of Fusarium graminearum [J]. Scientia Agricultura Sinica, 2023, 56(24): 4854-4865.
[11] GUO Ning, SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie, ZHENG XiaoJuan, DONG YueGuang. Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot [J]. Scientia Agricultura Sinica, 2023, 56(22): 4453-4466.
[12] LI HuiXin, SONG WenPing, HAN ZongXi, LIU ShengWang. Isolation and Pathogenicity of Fowl Adenovirus Serotype 8a Strain [J]. Scientia Agricultura Sinica, 2023, 56(16): 3226-3236.
[13] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[14] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[15] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!