Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4361-4371.doi: 10.3864/j.issn.0578-1752.2025.21.006

• GREEN CONTROL OF MAJOR COWPEA PESTS AND FUSARIUM WILT: RESEARCH AND PRACTICAL INNOVATIONS • Previous Articles     Next Articles

GENETIC DIVERSITY OF MTCO1 IN DIFFERENT GEOGRAPHICAL POPULATIONS OF MEGALUROTHRIPS USITATUS

LIU XiaoXu1,2(), ZHONG ZeXin1, QIU JiaRen1, YANG ChunXiao1, ZHANG YongJun2, XIE Wen3, ZHANG YouJun3, PAN HuiPeng1,*()   

  1. 1 College of Plant Protection, South China Agricultural University/State Key Laboratory of Green Pesticide/Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510642
    2 Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    3 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
  • Received:2025-04-24 Accepted:2025-05-27 Online:2025-11-01 Published:2025-11-06
  • Contact: PAN HuiPeng

Abstract:

【Objective】Megalurothrips usitatus is a significant vegetable pest in China, causing substantial damage to legume crops as economic plants. The purpose of this study is to compare the genetic diversity of M. usitatus in different geographical populations and ascertain the genetic differentiation of M. usitatus, and to provide a theoretical basis for the precise control of M. usitatus. 【Method】A total of 18 geographical populations of M. usitatus were collected from 6 prefecture-level cities in Guangdong Province and 9 prefecture-level cities outside Guangdong Province. The mitochondrial DNA (mtDNA) cytochrome c oxidase subunit 1 (CO1) gene sequence was obtained based on PCR. The haplotype diversity (Hd), nucleotide diversity (π) of different geographical populations were analyzed, and Tajima’s D neutrality test based on the mtCO1 was performed to evaluate the genetic structure of M. usitatus populations across different geographical regions. The fixation index (FST) and gene flow (Nm) were calculated to evaluate the degree of genetic differentiation among populations. 【Result】A total of 111 mtCO1 gene sequences were detected in 18 geographical populations of M. usitatus. A total of 617 conserved sites and 24 variable sites were detected, accounting for 3.68% of the total sequence length. A total of 20 haplotypes (H1-H20) were detected, of which H4 was the dominant haplotype, accounting for 48.6% of the total sequence and distributed in 17 populations. The overall population of M. usitatus exhibited relatively high haplotype diversity (Hd=0.677) and nucleotide diversity (π=0.00425), but nucleotide sequence divergence among different genetic types was not pronounced. The nonsignificant Tajima’s D neutrality test indicated stable population size without marked expansion. Furthermore, the population fixation coefficient (FST=0.04973<0.05) and gene flow (Nm=9.55>1) suggested sufficient genetic exchange and low genetic differentiation among geographically distinct populations. The results of molecular variance analysis showed that the main factor causing the overall population variation was intra-population variation. 【Conclusion】The geographically distinct populations of M. usitatus exhibited relatively high genetic diversity, with frequent gene flow and minimal genetic differentiation among populations, suggesting a stable overall population size. These findings provide a theoretical basis for the integrated management of M. usitatus field populations in diverse regions.

Key words: Megalurothrips usitatus, geographical population, mtCO1, genetic diversity, genetic differentiation

Table 1

Sample information of M. usitatus in different geographical populations"

种群代码Population code 采集地点Location 经度Latitude (°E) 纬度Longitude (°N) 采集日期Collection date
GDGZ 广东广州Guangzhou, Guangdong 113.36 23.16 2023-06-06
GDHZ 广东惠州Huizhou, Guangdong 114.71 22.98 2023-11-03
GDJM 广东江门Jiangmen, Guangdong 113.03 22.67 2023-11-09
GDMM 广东茂名Maoming, Guangdong 110.69 21.59 2023-11-04
GDZJ1 广东湛江Zhanjiang, Guangdong 110.02 20.28 2023-10-25
GDZJ2 广东湛江Zhanjiang, Guangdong 110.07 20.32 2023-10-17
GDZJ3 广东湛江Zhanjiang, Guangdong 109.98 20.39 2023-08-13
GDZJ4 广东湛江Zhanjiang, Guangdong 110.01 20.43 2023-06-26
GDYJ 广东阳江Yangjiang, Guangdong 112.01 21.85 2023-11-08
GZGY 贵州贵阳Guiyang, Guizhou 106.62 26.68 2023-11-08
SDWF 山东潍坊Weifang, Shandong 118.79 36.86 2023-11-08
FJZZ 福建漳州Zhangzhou, Fujian 117.71 24.50 2023-11-08
HNSY 海南三亚Sanya, Hainan 109.75 18.40 2023-11-08
GXBH 广西北海Beihai, Guangxi 109.21 21.66 2023-06-26
GXLZ 广西柳州Liuzhou, Guangxi 109.45 24.34 2023-06-26
YNKM 云南昆明Kunming, Yunnan 102.82 24.89 2023-06-26
HNHK 海南海口Haikou, Hainan 110.33 20.03 2023-06-26
GXQZ 广西钦州Qinzhou, Guangxi 108.57 22.17 2023-06-26

Table 2

Distribution of each haplotype in different geographical populations of M. usitatus"

种群代码
Population code
单倍型Haplotype (H)
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20
GDGZ 3 1 1
GDHZ 1 5 1 1
GDJM 4 1 1 1 1
GDMM 5 1 6
GDYJ 2 2 1
GZGY 4
SDWF 4
FJZZ 3 1
HNSY 4
GXBH 1 1 1 1
GXLZ 1 2 1
YNKM 2 2
HNHK 3 1
GXQZ 1 2 1
GDZJ1 1 4 1
GDZJ2 3 5 1 1
GDZJ3 3 7 1
GDZJ4 3 1 4 1 1 1 1
总计Total 33 5 1 54 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1

Table 3

Genetic diversity indices of mtCO1 in different geographical populations of M. usitatus"

种群代码
Population
code
测序数目
Number of sequencing
单倍型数量
Number of unique haplotypes
单倍型多样性
Haplotype diversity
(mean±SD)
核苷酸多样性
Nucleotide diversity
(mean±SD)
Tajima’s D
GDGZ 5 3 0.900±0.161 0.00805±0.00196 1.44761
GDHZ 8 4 0.643±0.184 0.00271±0.00137 -1.67405*
GDJM 6 5 0.933±0.122 0.00714±0.00184 0.3023
GDMM 14 3 0.780±0.081 0.00588±0.00084 0.01877
GDYJ 4 3 1.000±0.177 0.00644±0.00176 -0.44637
GDZJ1 6 3 0.867±0.129 0.00888±0.00236 0.55314
GDZJ2 10 4 0.911±0.077 0.00658±0.00120 0.41008
GDZJ3 10 3 0.911±0.077 0.00531±0.00101 0.3315
GDZJ4 12 7 0.985±0.040 0.00756±0.00098 -0.07633
GZGY 4 1
SDWF 4 1
FJZZ 4 2 0.833±0.222 0.00154±0.00052 -0.7099
HNSY 4 1
GXBH 4 4 0.833±0.222 0.00154±0.00052 -0.49151
GXLZ 4 3 0.667±0.204 0.00515±0.00158 2.12492
YNKM 4 2 0.833±0.222 0.00490±0.00214 -0.31446
HNHK 4 2 0.833±0.222 0.00490±0.00214 -0.31446
GXQZ 4 3 0.833±0.222 0.00258±0.00093 0.16766
Total总计 111 20 0.677±0.035 0.00425±0.00028 -1.25895

Fig. 1

Neighbor-joining phylogenetic tree of the haplotypes of M. usitatus based on mtCO1"

Fig. 2

Haplotype network of different geographical populations of M. usitatus based on mtCO1 Each circle represents a haplotype, and the area of the circle reflects the frequency of its haplotype in the total population"

Table 4

AMOVA analysis of M. usitatus in different geographical populations"

变异来源
Variation source
自由度
df
平方和
ss
变异组成
Variation composition
变异百分率
Percentage of variation (%)
种群间Between population 17 28.927 0.06757 4.97
种群内In population 93 120.082 1.29121 95.03
总计Total 110 149.009 1.35878 100.00

Table 5

Pairwise FST and gene flow Nm values analysis of M. usitatus populations based on mtCO1"

种群代码
Population
code
GDGZ GDHZ GDJM GDMM GZGY GXQZ HNHK GXLZ GXBH HNSY FJZZ SDWF YNKM GDYJ GDZJ1 GDZJ2 GDZJ3 GDZJ4
GDGZ 1.36 inf 158.55 0.77 inf inf 22.08 inf 0.77 0.83 0.77 inf inf inf 9.75 7.03 5.06
GDHZ 0.27 0.95 17.68 inf inf 0.61 inf 3.27 inf inf inf 3.51 0.82 inf inf inf inf
GDJM -0.12 0.34 8.44 0.50 3.02 inf 4.47 inf 0.50 0.55 0.50 inf inf 15.00 4.88 3.86 2.58
GDMM 0 0.03 0.06 4.30 inf 4.25 inf inf 4.30 3.81 4.30 inf 5.27 inf inf inf inf
GZGY 0.39 -0.11 0.50 0.10 4.75 0.25 inf 1.30 inf inf inf 1.00 0.42 7.10 5.17 7.45 inf
GXQZ -0.05 -0.02 0.14 -0.08 0.10 1.79 inf inf 4.75 5.50 4.75 inf 2.93 inf inf inf inf
HNHK -0.15 0.45 -0.23 0.11 0.67 0.22 2.40 inf 0.25 0.30 0.25 inf inf 5.79 2.62 2.17 1.71
GXLZ 0.02 -0.09 0.10 -0.11 0 -0.16 0.17 inf inf inf inf inf 4.30 inf inf inf inf
GXBH -0.16 0.13 -0.17 -0.09 0.28 -0.07 -0.14 -0.12 1.30 1.45 1.30 inf inf inf inf inf inf
HNSY 0.39 -0.11 0.50 0.10 0 0.10 0.67 0 0.28 inf inf 1.00 0.42 7.10 5.17 7.45 inf
FJZZ 0.38 -0.07 0.48 0.12 0 0.08 0.63 0 0.26 0 inf 1.15 0.48 6.70 4.52 6.02 79.60
SDWF 0.39 -0.11 0.50 0.10 0 0.10 0.67 0 0.28 0 0 1.00 0.42 7.10 5.17 7.45 inf
YNKM -0.19 0.12 -0.18 -0.14 0.33 -0.08 -0.17 -0.14 -0.28 0.33 0.30 0.33 inf inf inf inf inf
GDYJ -0.02 -0.02 0.03 -0.09 0.07 -0.11 0.08 -0.16 -0.14 0.07 0.07 0.07 -0.17 11.00 3.55 2.86 2.13
GDZJ1 0.05 -0.01 0.09 -0.08 0.09 -0.07 0.16 -0.13 -0.08 0.09 0.10 0.09 -0.12 -0.11 inf inf inf
GDZJ2 0.07 -0.02 0.11 -0.08 0.06 -0.08 0.19 -0.14 -0.07 0.06 0.08 0.06 -0.11 -0.11 -0.10 inf inf
GDZJ3 0.09 -0.05 0.16 -0.05 -0.01 -0.11 0.23 -0.13 -0.03 -0.01 0.01 -0.01 -0.05 -0.08 -0.07 -0.08 inf
GDZJ4 -0.13 0.38 -0.17 0.09 0.54 0.15 -0.23 0.10 -0.14 0.54 0.51 0.54 -0.17 0.04 0.12 0.15 0.19
[1]
张桂玲. 中国蓟马科分类研究[D]. 杨凌: 西北农林科技大学, 2003.
ZHANG G L. Taxonomic studies on Thripidae in China[D]. Yangling: Northwest A&F University, 2003. (in Chinese)
[2]
谭珂, 李曼娟, 陈鑫, 葛文龙, 但建国. 普通大蓟马产卵选择性初探. 热带作物学报, 2015, 36(3): 587-590.
TAN K, LI M J, CHEN X, GE W L, DAN J G. Preliminary studies on oviposition preference of bean flower thrips, Megalurothrips usitatus (Bagnall). Chinese Journal of Tropical Crops, 2015, 36(3): 587-590. (in Chinese)
[3]
唐良德, 付步礼, 邱海燕, 韩云, 李鹏, 刘奎. 豆大蓟马对12种杀虫剂的敏感性测定. 热带作物学报, 2015, 36(3): 570-574.
TANG L D, FU B L, QIU H Y, HAN Y, LI P, LIU K. Studied on the toxicity of different insecticides to against Megalurothrips usitatus by using a modified TIBS method. Chinese Journal of Tropical Crops, 2015, 36(3): 570-574. (in Chinese)
[4]
TANG L D, GUO L H, ALI A, DESNEUX N, ZANG L S. Synergism of adjuvants mixed with spinetoram for the management of bean flower thrips, Megalurothrips usitatus (Thysanoptera: Thripidae) in cowpeas. Journal of Economic Entomology, 2022, 115(6): 2013-2019.
[5]
MORSE J G, HODDLE M S. Invasion biology of thrips. Annual Review of Entomology, 2006, 51: 67-89.

pmid: 16332204
[6]
REITZ S R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist, 2009, 92(1): 7-13.
[7]
REITZ S R, GAO Y L, LEI Z R. Thrips: Pests of concern to China and the United States. Agricultural Sciences in China, 2011, 10(6): 867-892.
[8]
NIASSY S, EKESI S, MANIANIA N K, ORINDI B, MORITZ G B, DE KOGEL W J, SUBRAMANIAN S. Active aggregation among sexes in bean flower thrips (Megalurothrips sjostedti) on cowpea (Vigna unguiculata). Entomologia Experimentalis et Applicata, 2016, 158(1): 17-24.
[9]
潘雪莲, 杨磊, 金海峰, 陆容材, 李芬, 曹凤勤, 吴少英. 豆大蓟马在海南发生及防治的研究进展. 热带生物学报, 2021, 12(4): 508-513.
PAN X L, YANG L, JIN H F, LU R C, LI F, CAO F Q, WU S Y. Research advances in occurrence and control of Megalurothrips usitatus in Hainan. Journal of Tropical Biology, 2021, 12(4): 508-513. (in Chinese)
[10]
HUNTER W B, ULLMAN D E. Precibarial and cibarial chemosensilla in the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). International Journal of Insect Morphology and Embryology, 1994, 23(2): 69-83.
[11]
李钊阳, 韩云, 唐良德, 吴建辉, ALI S. 普通大蓟马对寄主植物及其挥发物的行为反应. 环境昆虫学报, 2021, 43(6): 1566-1580.
LI Z Y, HAN Y, TANG L D, WU J H, ALI S. Behavioral responses of Megalurothrips usitatus (Thysanoptera: Thripoidae) to host plant and volatile compounds. Journal of Environmental Entomology, 2021, 43(6): 1566-1580. (in Chinese)
[12]
唐良德, 韩云, 吴建辉, 付步礼, 张瑞敏, 邱海燕, 刘奎. 豆大蓟马对寄主植物及挥发性化合物的趋性. 环境昆虫学报, 2015, 37(5): 1024-1029.
TANG L D, HAN Y, WU J H, FU B L, ZHANG R M, QIU H Y, LIU K. The effect of host plants and chemicals on behavioral response of Megalurothrips usitatus(Bagnall). Journal of Environmental Entomology, 2015, 37(5): 1024-1029. (in Chinese)
[13]
王谅, 刘宇艳, 李恒, 陈艺欣, 林硕, 余芸, 田厚军, 林涛, 张洁, 陈勇, 魏辉. 豆大蓟马消化道形态及超微结构. 昆虫学报, 2022, 65(2): 144-156.
WANG L, LIU Y Y, LI H, CHEN Y X, LIN S, YU Y, TIAN H J, LIN T, ZHANG J, CHEN Y, WEI H. Morphology and ultrastructure of the alimentary canal of Megalurothrips usitatus (Thysanoptera: Thripidae). Acta Entomologica Sinica, 2022, 65(2): 144-156. (in Chinese)
[14]
唐良德, 赵海燕, 付步礼, 韩云, 闫凯莉, 邱海燕, 刘奎, 吴建辉, 李鹏. 海南地区豆大蓟马田间种群的抗药性监测. 环境昆虫学报, 2016, 38(5): 1032-1037.
TANG L D, ZHAO H Y, FU B L, HAN Y, YAN K L, QIU H Y, LIU K, WU J H, LI P. Monitoring the insecticide resistance of the field populations of Megalurothrips usitatus in Hainan area. Journal of Environmental Entomology, 2016, 38(5): 1032-1037. (in Chinese)
[15]
MAVRIDIS K, ILIAS A, PAPAPOSTOLOU K M, VARIKOU K, MICHAELIDOU K, TSAGKARAKOU A, VONTAS J. Molecular diagnostics for monitoring insecticide resistance in the western flower thrips Frankliniella occidentalis. Pest Management Science, 2023, 79(4): 1615-1622.
[16]
GUO S K, CAO L J, SONG W, SHI P, GAO Y F, GONG Y J, CHEN J C, HOFFMANN A A, WEI S J. Chromosome-level assembly of the melon thrips genome yields insights into evolution of a sap-sucking lifestyle and pesticide resistance. Molecular Ecology Resources, 2020, 20(4): 1110-1125.
[17]
WILSON A C, CANN R L, CARR S M, GEORGE M, GYLLENSTEN U B, HELM-BYCHOWSKI K M, HIGUCHI R G, PALUMBI S R, PRAGER E M, SAGE R D, STONEKING M. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society, 1985, 26(4): 375-400.
[18]
HARRISON R G. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology & Evolution, 1989, 4(1): 6-11.
[19]
MIYA M, TAKESHIMA H, ENDO H, ISHIGURO N B, INOUE J G, MUKAI T, SATOH T P, YAMAGUCHI M, KAWAGUCHI A, MABUCHI K, SHIRAI S M, NISHIDA M. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2003, 26(1): 121-138.

pmid: 12470944
[20]
XU D D, LOU B, SHI H L, GENG Z, LI S L, ZHANG Y R. Genetic diversity and population structure of Nibea albiflora in the China sea revealed by mitochondrial COI sequences. Biochemical Systematics and Ecology, 2012, 45: 158-165.
[21]
TANG X T, ZHENG F S, LU M X, DU Y Z. New ideas about genetic differentiation of Chilo suppressalis (Lepidoptera: Pyralidae) populations in China based on the mtDNA cytochrome b gene. Mitochondrial DNA Part A, 2016, 27(2): 1567-1573.
[22]
AKMAL M, FREED S, DIETRICH C H, MEHMOOD M, RAZAQ M. Patterns of genetic differentiation among populations of Amrasca biguttula biguttula (Shiraki) (Cicadellidae: Hemiptera). Mitochondrial DNA Part A, DNA Mapping, Sequencing, and Analysis, 2018, 29(6): 897-904.
[23]
RUÍZ-RIVERO O, GARCIA-LOR A, ROJAS-PANADERO B, FRANCO J C, KHAMIS F M, KRUGER K, CIFUENTES D, BIELZA P, TENA A, URBANEJA A, PÉREZ-HEDO M. Insights into the origin of the invasive populations of Trioza erytreae in Europe using microsatellite markers and mtDNA barcoding approaches. Scientific Reports, 2021, 11(1): 18651.
[24]
SCHEFFER S J, LEWIS M L, JOSHI R C. DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Annals of the Entomological Society of America, 2006, 99(2): 204-210.
[25]
WANG H H, KENNEDY G G, REAY-JONES F P F, REISIG D D, TOEWS M D, ROBERTS P M, HERBERT D A, TAYLOR S, JACOBSON A L, GREENE J K. Molecular identification of thrips species infesting cotton in the southeastern United States. Journal of Economic Entomology, 2018, 111(2): 892-898.

doi: 10.1093/jee/toy036 pmid: 29506223
[26]
曹婧钰, 刘若思, 王军. 警惕新外来入侵害虫——股带针蓟马Hercinothrips femoralis (缨翅目: 蓟马科). 生物安全学报, 2023, 32(2): 188-192.
CAO J Y, LIU R S, WANG J. New alien invasion banded greenhouse thrips Hercinothrips femoralis (Thysanoptera: Thripidae) in China. Journal of Biosafety, 2023, 32(2): 188-192. (in Chinese)
[27]
FOLMER O, BLACK M, HOEH W, LUTZ R, VRIJENHOEK R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294-299.

pmid: 7881515
[28]
LIBRADO P, ROZAS J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.

doi: 10.1093/bioinformatics/btp187 pmid: 19346325
[29]
BANDELT H, FORSTER P, RÖHL A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 1999, 16(1): 37-48.

doi: 10.1093/oxfordjournals.molbev.a026036 pmid: 10331250
[30]
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010, 10(3): 564-567.

doi: 10.1111/j.1755-0998.2010.02847.x pmid: 21565059
[31]
CHAPUIS M P, LOISEAU A, MICHALAKIS Y, LECOQ M, FRANC A, ESTOUP A. Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: A regional-scale comparative survey. Molecular Ecology, 2009, 18(5): 792-800.
[32]
张桂芬, 乔玮娜, 古君伶, 闵亮, 万方浩. 我国西花蓟马线粒体DNA-COⅠ基因变异及群体遗传结构分析. 生物安全学报, 2014, 23(3): 196-209.
ZHANG G F, QIAO W N, GU J L, MIN L, WAN F H. Genetic variability of mtDNA COⅠ and population structure of Frankliniella occidentalis (Pergande) in China. Journal of Biosafety, 2014, 23(3): 196-209. (in Chinese)
[33]
HARPENDING H C, BATZER M A, GURVEN M, JORDE L B, ROGERS A R, SHERRY S T. Genetic traces of ancient demography . Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1961-1967.
[34]
王兴亚, 许国庆. 中国甜菜夜蛾地理种群的遗传分化与基因流. 昆虫学报, 2014, 57(9): 1061-1074.
WANG X Y, XU G Q. Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomologica Sinica, 2014, 57(9): 1061-1074. (in Chinese)
[35]
ZHOU A L, TIAN P, LI Z C, LI X W, TAN X P, ZHANG Z B, QIU L, HE H L, DING W B, LI Y Z. Genetic diversity and differentiation of populations of Chlorops oryzae (Diptera, Chloropidae). BMC Ecology, 2020, 20(1): 22.
[36]
OLIVIERI A, ACHILLI A, PALA M, BATTAGLIA V, FORNARINO S, AL-ZAHERY N, SCOZZARI R, CRUCIANI F, BEHAR D M, DUGOUJON J M, et al. The mtDNA legacy of the levantine early upper palaeolithic in Africa. Science, 2006, 314(5806): 1767-1770.

pmid: 17170302
[37]
HAAK W, LAZARIDIS I, PATTERSON N, ROHLAND N, MALLICK S, LLAMAS B, BRANDT G, NORDENFELT S, HARNEY E, STEWARDSON K, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015, 522(7555): 207-211.
[38]
YANG X M, SUN J T, XUE X F, LI J B, HONG X Y. Invasion genetics of the Western flower thrips in China: Evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS ONE, 2012, 7(4): e34567.
[1] WEI YiMin, ZHOU MeiLiang, TANG Yu. Origin, Evolution and Spread of Crop Buckwheat [J]. Scientia Agricultura Sinica, 2025, 58(21): 4305-4316.
[2] SHI CaiHua, JIN Jie, HUA DengKe, HU JingRong, ZHANG YouJun, HUANG ShengLin, WU MingYue, KONG XiangYi, XIE Wen. Development and Application of Novel Physical Control Technologies Based on the Correlation Between Megalurothrips usitatus Outbreaks and Cowpea Flower Development Dynamics [J]. Scientia Agricultura Sinica, 2025, 58(21): 4382-4392.
[3] ZHAO HanYang, LI YiHong, XU ShuGuang, WU YueMin, WU ShengYong. Control Effect of New Insect-Repellent Screen on Megalurothrips usitatus and Its Impact on the Microclimate in the Field [J]. Scientia Agricultura Sinica, 2025, 58(21): 4393-4404.
[4] DAI XiaoYan, ZHAO JinFeng, WANG RuiJuan, SU Long, WANG Yu, CHENG WenHua, XU QianQian, ZHAO Shan, ZHENG Li, LIU Yan, ZHAI YiFan. Comparison of the Predation Ability of Four Species of Orius Against Megalurothrips usitatus, Tetranychus urticae and Aphis craccivora [J]. Scientia Agricultura Sinica, 2025, 58(21): 4421-4428.
[5] WANG HuanTing, HUANG LiFei, CAO XueMei, GONG Rui, SU GuoLian, ZHENG XiaLin, WU MingYue, YANG Lang. Effects of Different Host Plants on Digestive Enzyme Activity and Nutrient Content in Megalurothrips usitatus [J]. Scientia Agricultura Sinica, 2025, 58(21): 4429-4438.
[6] HUANG ShengLin, XU YiBo, KONG XiangYi, SHI CaiHua, JIAO XiaoGuo, ZHANG YouJun, WU MingYue, XIE Wen. Analysis of Annual Population Dynamics of Megalurothrips usitatus on Cowpea in Hainan [J]. Scientia Agricultura Sinica, 2025, 58(21): 4439-4450.
[7] GUO MengZe, ZHANG Lei, SUN PingPing, JIANG Biao, YAN JinQiang, LI ZhengNan. Molecular Characterization and Evolutionary Dynamics of Tomato Leaf Curl New Delhi Virus Isolate from Wax Gourd (Benincasa hispida) in Guangdong [J]. Scientia Agricultura Sinica, 2025, 58(19): 3890-3904.
[8] LIU PengPeng, LI JiangBo, XU HongJun, NIE YingBin, HAN XinNian, KONG DeZhen, SANG Wei. Genetic Diversity Analysis of Protein Fractions and Quality in Xinjiang Winter Wheat Cultivar Resources [J]. Scientia Agricultura Sinica, 2025, 58(15): 2948-2959.
[9] WANG Hui, DING BaoPeng, LI YuXian, REN QuanRu, ZHOU Hai, ZHAO JunLiang, HU HaiFei. Research Progress and Prospects on Crop Pan-Genomics [J]. Scientia Agricultura Sinica, 2025, 58(11): 2045-2061.
[10] LI Pei, HE ZhiLin, TAN YueXia, ZHAO WanTong, FENG JinYing, CHEN GuiHu, YAN Chi, WANG ZiHao, HUANG Ping, JIANG Dong. Genetic Diversity Analysis of Mandarin and Excellent Germplasm Screening Based on Whole-Genome Resequencing Data and Phenotypic Traits [J]. Scientia Agricultura Sinica, 2024, 57(23): 4761-4773.
[11] YANG Chun, YANG DaiXing, LI Yan, LIANG SiHui, DENG XiaoQiang, QIAO DaHe, CHEN Juan, GUO Yan, LIN KaiQin, CHEN ZhengWu. Comprehensive Analysis of Morphologic Characters and Biochemical Components of Guizhou Dashu Tea Germplasms [J]. Scientia Agricultura Sinica, 2024, 57(19): 3894-3916.
[12] LI YuShan, XIAO Jing, MA Yue, TIAN Chao, ZHAO LianJia, WANG Fan, SONG Yu, JIANG ChengYao. Identification and Evaluation of Phenotypic Characters and Genetic Diversity Analysis of 169 Tomato Germplasm Resources [J]. Scientia Agricultura Sinica, 2024, 57(18): 3671-3683.
[13] ZHAI CaiJiao, GE LiJiao, CHENG YuJing, QIU Liang, WANG XiaoQiu, LIU ShuiDong. Genetic Diversity Analysis of Wax Gourd and Chieh-Qua Germplasm Resources Based on Phenotypic Traits and SSR Markers [J]. Scientia Agricultura Sinica, 2024, 57(17): 3440-3457.
[14] LEI MengLin, LIU Xia, WANG YanZhen, CUI GuoQing, MU ZhiXin, LIU LongLong, LI Xin, LU LaHu, LI XiaoLi, ZHANG XiaoJun. Genetic Diversity Analysis of Winter Wheat Germplasm Resources in Shanxi Province Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2024, 57(10): 1845-1856.
[15] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!