Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4429-4438.doi: 10.3864/j.issn.0578-1752.2025.21.012

• GREEN CONTROL OF MAJOR COWPEA PESTS AND FUSARIUM WILT: RESEARCH AND PRACTICAL INNOVATIONS • Previous Articles     Next Articles

Effects of Different Host Plants on Digestive Enzyme Activity and Nutrient Content in Megalurothrips usitatus

WANG HuanTing1,2(), HUANG LiFei1(), CAO XueMei1, GONG Rui1,3, SU GuoLian4, ZHENG XiaLin2, WU MingYue5, YANG Lang1,2()   

  1. 1 Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007
    2 College of Agriculture, Guangxi University, Nanning 530004
    3 School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006
    4 Beihai Agricultural Technology Service Center, Beihai 536000, Guangxi
    5 Sanya Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan
  • Received:2025-04-29 Accepted:2025-07-03 Online:2025-11-01 Published:2025-11-06
  • Contact: YANG Lang

Abstract:

【Background】Megalurothrips usitatus can successfully develop and reproduce on host plants such as cowpea (Vigna unguiculata), green bean (Phaseolus vulgaris), and white bean (Vigna cylindrica), with cowpea being the most suitable host. In contrast, its development and reproductive capacity are significantly limited on wax gourd (Benincasa hispida). 【Objective】The objective of this study is to determine the digestive enzyme activity and nutrient content in M. usitatus after feeding on different hosts, and to explore the adaptation mechanism of M. usitatus to different host plants. 【Method】F1 adults of M. usitatus reared on cowpeas for 3 d were transferred to petri dishes containing cowpea, green bean, white bean, or wax gourd, with four replicates per treatment. Sampling was conducted at 0, 3, 6, 12, 24, 48, and 72 h after feeding. The dynamic changes in the activities of key digestive enzymes (including α-amylase, trehalase, trypsin, and chymotrypsin) were systematically measured. Concurrently, changes in the content of major nutrients, such as glycogen, soluble protein, and fat, were analyzed. 【Result】Significant changes were observed in the activities of digestive enzymes and the content of nutrients in M. usitatus after feeding on different host plants. The activities of various digestive enzymes in M. usitatus fed on cowpea, green bean and white bean were generally higher than those fed on wax gourd. Specifically, the α-amylase activity of M. usitatus fed on cowpea was the highest (1.33 mg·min-1·mg-1 protein), along with high trehalase activity (469.80 nmol·min-1·mg-1 protein). Trypsin and chymotrypsin activities reached 20.42 and 24.86 U·mg-1 protein, respectively. M. usitatus fed on green bean had the highest α-amylase activity (1.49 mg·min-1·mg-1 protein), but the activities of trehalase (304.81 nmol·min-1·mg-1 protein) and two proteases were slightly lower than those of cowpea group. Trehalase activity in white bean group was significantly decreased (175.61 nmol·min-1·mg-1 protein), while trypsin activity was increased (21.15 U·mg-1 protein). In contrast, all enzyme activities of M. usitatus fed on wax gourd were at the lowest level, the trehalase activity was only 152.89 nmol·min-1·mg-1 protein. Regarding nutrient content, glycogen content (1.61 mg·mg-1 protein) and fat content (5.54 μg per individual) were highest in M. usitatus fed on cowpea, while the lowest values were observed in the wax gourd group (glycogen content 0.79 mg·mg-1 protein; fat content 3.37 μg per individual). 【Conclusion】Different host plants significantly influenced the digestive enzyme activities and nutrient contents of M. usitatus. M. usitatus rapidly adjusted these physiological parameters after feeding on cowpea, green bean, and white bean, but exhibited slower adaptation on wax gourd. These findings indicate that M. usitatus has higher adaptability to cowpea, green bean, and white bean, whereas its adaptability to wax gourd is comparatively poorer.

Key words: Megalurothrips usitatus, host plant, digestive enzyme, nutrient

Table 1

Changes of α-amylase activity in M. usitatus feeding on different hosts (mg·min-1·mg-1 protein)"

处理时间Treatment time (h) 豇豆V. unguiculata 四季豆P. vulgaris 白豆V. cylindrica 冬瓜B. hispida
0 1.326±0.019Ac 1.326±0.019Ad 1.326±0.019Ab 1.326±0.019Abcd
3 1.528±0.005Aa 1.448±0.002Bc 1.223±0.014Dc 1.277±0.014Ccd
6 1.225±0.006Bd 1.314±0.009Ad 1.310±0.013Ab 1.116±0.009Ce
12 1.181±0.003Ce 1.615±0.028Aa 1.333±0.007Bb 1.221±0.022Cde
24 1.327±0.009Cc 1.432±0.018Bc 1.425±0.003Ba 1.540±0.052Aa
48 1.243±0.012Cd 1.616±0.016Aa 1.313±0.029BCb 1.377±0.066Bbc
72 1.458±0.018ABb 1.541±0.034Ab 1.441±0.011Ba 1.410±0.038Bb

Table 2

Changes of trehalase activity in M. usitatus feeding on different hosts (nmol·min-1·mg-1 protein)"

处理时间Treatment time (h) 豇豆V. unguiculata 四季豆P. vulgaris 白豆V. cylindrica 冬瓜B. hispida
0 473.95±1.43Ac 473.95±1.43Aa 473.95±1.43Aa 473.95±1.43Aa
3 421.71±3.40Ae 313.13±2.16Bd 203.43±3.37Cb 144.69±1.36Dd
6 530.03±5.30Ab 222.84±1.85Bf 170.57±2.55Cc 136.44±1.18De
12 417.85±3.04Ae 292.66±2.92Be 134.54±1.56De 157.56±2.44Cc
24 390.21±0.53Af 287.43±2.07Be 193.53±2.33Cb 168.79±2.07Db
48 436.68±1.32Ad 337.66±4.09Bc 157.51±4.80Cd 157.26±1.78Cc
72 622.30±4.99Aa 375.13±2.97Bb 194.09±3.55Cb 152.58±3.83Cc

Table 3

Changes of trypsin activity in M. usitatus feeding on different hosts (U·mg-1 protein)"

处理时间Treatment time (h) 豇豆V. unguiculata 四季豆P. vulgaris 白豆V. cylindrica 冬瓜B. hispida
0 15.355±0.595Ae 15.355±0.595Ade 15.355±0.595Ae 15.355±0.595Ad
3 21.398±0.393Ab 19.023±0.297Bb 19.056±0.115Bd 15.708±0.055Cd
6 16.650±0.241Bd 14.699±0.369Ce 22.466±0.116Ab 12.787±0.222De
12 20.395±0.422Bb 17.353±0.213Cc 21.782±0.604Abc 13.421±0.274De
24 17.950±0.376Cc 21.031±0.464Ba 18.414±0.337Cd 24.626±0.237Aa
48 21.357±0.053Ab 20.542±0.321Aa 20.772±0.474Ac 18.839±0.320Bc
72 24.748±0.248Aa 16.457±0.299Ccd 24.387±0.223Aa 20.043±0.217Bb

Table 4

Changes of chymotrypsin activity in M. usitatus feeding on different hosts (U·mg-1 protein)"

处理时间Treatment time (h) 豇豆V. unguiculata 四季豆P. vulgaris 白豆V. cylindrica 冬瓜B. hispida
0 21.682±0.214Ad 21.682±0.214Ac 21.682±0.214Aa 21.682±0.214Ab
3 19.948±0.493Be 13.942±0.440Ce 20.256±0.337Bab 24.015±0.638Aa
6 23.907±0.270Ac 21.570±0.260Bc 21.470±0.923Bab 21.935±0.806ABb
12 27.646±0.353Ba 29.391±0.432Aa 11.099±0.658Dd 14.577±0.535Cd
24 24.717±0.469Abc 18.017±0.658Cd 14.145±0.415Dc 21.614±0.212Bb
48 27.606±0.562Aa 21.589±1.110Bc 12.231±0.777Dd 17.535±0.414Cc
72 25.332±0.412Ab 24.334±0.698Ab 19.725±0.338Bb 17.126±0.555Cc

Fig. 1

Changes of glycogen, soluble protein and fat content in M. usitatus feeding on different hosts Different lowercase letters above error bars indicate significant differences among the 7 time points for the same plant species, while different uppercase letters indicate significant differences among the 4 plant species at the same time point (LSD, P<0.05)"

[1]
郭线茹, 李为争, 董钧锋, 丁识伯, 周洲, 宋南, 马继盛. 植食性昆虫寄主植物选择假说述介. 应用昆虫学报, 2021, 58(6): 1245-1256.
GUO X R, LI W Z, DONG J F, DING S B, ZHOU Z, SONG N, MA J S. An introduction to phytophagous insect host-plant selection hypotheses. Chinese Journal of Applied Entomology, 2021, 58(6): 1245-1256. (in Chinese)
[2]
梁薇, 麻亚辉, 陈丽慧, 魏洪义. 寄主植物对植食性昆虫选择行为影响的研究进展. 生物灾害科学, 2022, 45(3): 299-304.
LIANG W, MA Y H, CHEN L H, WEI H Y. Research progress in the influence of host plants on the selection behaviors of herbivorous insects. Biological Disaster Science, 2022, 45(3): 299-304. (in Chinese)
[3]
李庆龙. 不同取食习性的蝉次目昆虫消化系统比较形态学研究(昆虫纲: 半翅目)[D]. 杨凌: 西北农林科技大学, 2015.
LI Q L. Comparative morphology of digestive system of Cicadomorpha with different feeding habits (Insecta: Hemiptera)[D]. Yangling: Northwest A&F University, 2015. (in Chinese)
[4]
QIU X Y, HUANG W Q, ZENG G, YUE W B, ZHANG C Y, ZHI J R. Enzymatic activity and development of Frankliniella occidentalis (Thysanoptera: Thripidae) in response to exogenous calcium treatments of kidney bean plants. Journal of Economic Entomology, 2024, 117(1): 311-322.
[5]
BERAN F, PETSCHENKA G. Sequestration of plant defense compounds by insects: From mechanisms to insect-plant coevolution. Annual Review of Entomology, 2022, 67: 163-180.

doi: 10.1146/annurev-ento-062821-062319 pmid: 34995091
[6]
LIU L, HOU X L, YUE W B, XIE W, ZHANG T, ZHI J R. Response of protective enzymes in western flower thrips (Thysanoptera: Thripidae) to two leguminous plants. Environmental Entomology, 2020, 49(5): 1191-1197.

doi: 10.1093/ee/nvaa090 pmid: 32794573
[7]
LI D Y, JIA Y L, ZHI J R, ZHANG T. Effect of jasmonic acid and ethylene mediate faba bean defense responses to the activity and gene expression of the detoxifying enzyme in Frankliniella occidentalis. Entomological Research, 2024, 54(1): e12699.
[8]
LIU X W, WANG Y H, LIU H, HUANG X Y, QIAN L, YANG B Q, XU Y J, CHEN F J. Enhanced β-glucosidase in western flower thrips affects its interaction with the redox-based strategies of kidney beans under elevated CO2. Plant, Cell & Environment, 2023, 46(3): 918-930.
[9]
ZHI J R, LIU L, HOU X L, XIE W, YUE W B, ZENG G. Role of digestive enzymes in the adaptation of Frankliniella occidentalis to preferred and less-preferred host plants. Entomologia Experimentalis et Applicata, 2021, 169(8): 688-700.
[10]
SAHA D. Host plant-based variation in fitness traits and major detoxifying enzymes activity in Scirtothrips dorsalis (Thysanoptera: Thripidae), an emerging sucking pest of tea. International Journal of Tropical Insect Science, 2016, 36(3): 106-118.
[11]
王琳. 昆虫淀粉酶蛋白质类抑制剂研究进展. 广东农业科学, 2006(8): 110-113.
WANG L. Progress in research on proteinaceous inhibitors of insect amylase. Guangdong Agricultural Sciences, 2006(8): 110-113. (in Chinese)
[12]
严盈, 刘万学, 万方浩. 唾液成分在刺吸式昆虫与植物关系中的作用. 昆虫学报, 2008, 51(5): 537-544.
YAN Y, LIU W X, WAN F H. Roles of salivary components in piercing-sucking insect-plant interactions. Acta Entomologica Sinica, 2008, 51(5): 537-544. (in Chinese)
[13]
CAO Y, QI G L, JIANG F Y, MENG Y L, WANG C, GU Z Y, GAO Y L, REITZ S R, LI C. Population performance and detoxifying and protective enzyme activities of four thrips species feeding on flowers of Magnolia grandiflora (Ranunculales: Magnolia). Pest Management Science, 2023, 79(9): 3239-3249.
[14]
谢文, 郅军锐, 侯晓琳, 刘利. 西花蓟马对非嗜食寄主蚕豆植株短期适应的生化机制. 植物保护学报, 2022, 49(2): 587-594.
XIE W, ZHI J R, HOU X L, LIU L. The biochemical mechanism of the short-term adaptation of western flower thrips Frankliniella occidentalis to the broad bean, the non-favorite host plant. Journal of Plant Protection, 2022, 49(2): 587-594. (in Chinese)
[15]
蒲恒浒, 郅军锐, 曾广, 岳文波. 不同诱导处理对番茄植株保护酶及西花蓟马体内消化酶活性的影响. 植物保护学报, 2018, 45(4): 915-916.
PU H H, ZHI J R, ZENG G, YUE W B. Effects of different induction treatments on protective enzyme activities of tomato plants and digestive enzyme activities in western flower thrips Frankliniella occidentalis (Pergande). Journal of Plant Protection, 2018, 45(4): 915-916. (in Chinese)
[16]
周丹, 郅军锐, 岳文波, 张涛, 李定银, 刘利. 西花蓟马消化酶对食物短期适应的生化机制. 环境昆虫学报, 2023, 45(1): 233-238.
ZHOU D, ZHI J R, YUE W B, ZHANG T, LI D Y, LIU L. Biochemical mechanism of short-term adaptation of digestive enzymes in Frankliniella occidentalis to different foods. Journal of Environmental Entomology, 2023, 45(1): 233-238. (in Chinese)
[17]
WANG H T, HUANG L F, ZHENG X L, GONG R, CAO X M, YANG L. An age-stage, two-sex life table for Megalurothrips usitatus feeding on eight different crop plants. Agronomy, 2024, 14(10): 2283.
[18]
苏美凤, 孙靖雨, 胡坚, 吴迪, 庙浩, 范咏梅. 普通大蓟马不同地理种群的分子鉴定及酶活测定. 热带生物学报, 2017, 8(3): 364-370.
SU M F, SUN J Y, HU J, WU D, MIAO H, FAN Y M. Molecular identification and enzyme activity determination of different geographical populations of Megalurothrips usitatus (Bagnall). Journal of Tropical Biology, 2017, 8(3): 364-370. (in Chinese)
[19]
程媛, 韩岚岚, 赵奎军, 徐馨竹, 李东坡, 张旭霞. 寄主植物与温度对大豆食心虫滞育期间糖类和脂质含量的影响. 应用昆虫学报, 2016, 53(4): 716-722.
CHENG Y, HAN L L, ZHAO K J, XU X Z, LI D P, ZHANG X X. Effect of host plants and temperature on the accumulation of carbohydrates and lipid in the soybean pod borer, Leguminivora glycinivorella (Mats.) Obraztsov. Chinese Journal of Applied Entomology, 2016, 53(4): 716-722. (in Chinese)
[20]
唐庆峰, 吴振廷, 金涛, 吴尚澧. 中华真地鳖中肠主要消化酶的活性研究. 昆虫知识, 2005, 42(5): 557-561.
TANG Q F, WU Z T, JIN T, WU S L. The activities of major digestive enzymes in the midgut of Eupolyphaga sinensis. Chinese Bulletin of Entomology, 2005, 42(5): 557-561. (in Chinese)
[21]
WANG B B, HUANG D Y, CAO C X, GONG Y. Insect α-amylases and their application in pest management. Molecules, 2023, 28(23): 7888.
[22]
BECKER A, SCHLÖDER P, STEELE J E, WEGENER G. The regulation of trehalose metabolism in insects. Cellular and Molecular Life Sciences, 1996, 52: 433-439.
[23]
谢文, 郅军锐, 刘利, 吕莎莎, 周治成. 不同嗜食寄主对西花蓟马胰蛋白酶基因CL4520.Contig1表达量的影响. 江苏农业科学, 2020, 48(7): 69-73.
XIE W, ZHI J R, LIU L, S S, ZHOU Z C. The impact of different host diets on the expression level of the trypsin gene CL4520.Contig1 in Frankliniella occidentalis. Jiangsu Agricultural Sciences, 2020, 48(7): 69-73. (in Chinese)
[24]
WIGGLESWORTH V B. The utilization of reserve substances in drosophila during flight. Journal of Experimental Biology, 1949, 26(2): 150-163.

pmid: 15395188
[25]
DONG X L, CHEN J Y, XU R B, LI X H, WANG Y, PAN X, ZHANG C C, LI Y Y, WANG F L, LI C R. Molecular identification and lipid mobilization role of adipokinetic hormone receptor in Spodoptera litura (F.). Bulletin of Entomological Research, 2022, 112(6): 758-765.
[26]
张娜, 郭建英, 万方浩, 吴刚. 寄主植物对甜菜夜蛾生长发育和消化酶活性的影响. 植物保护学报, 2009, 36(2): 146-150.
ZHANG N, GUO J Y, WAN F H, WU G. Effects of three kinds of host plants on development and some digestive enzyme activities of beet armyworm, Spodoptera exigua. Journal of Plant Protection, 2009, 36(2): 146-150. (in Chinese)
[27]
杨玉婷, 史彩华, 程佳旭, 张友军. 不同寄主植物对韭菜迟眼蕈蚊生长发育、繁殖和保护酶活力的影响. 植物保护, 2017, 43(5): 119-123.
YANG Y T, SHI C H, CHENG J X, ZHANG Y J. Effects of feeding on different host plants on development, reproduction and protective enzymes of Bradysia odoriphaga. Plant Protection, 2017, 43(5): 119-123. (in Chinese)
[28]
向玉勇, 孙星, 殷培峰. 寄主植物、温度对金银花尺蠖幼虫消化酶活性的影响. 浙江农林大学学报, 2020, 37(2): 311-318.
XIANG Y Y, SUN X, YIN P F. Effects of host plants and temperatures on digestive enzyme activities in Heterolocha jinyinhuaphaga larvae. Journal of Zhejiang A&F University, 2020, 37(2): 311-318. (in Chinese)
[29]
肖留斌, 谭永安, 孙洋, 赵洪霞, 吴国强, 柏立新. 绿盲蝽对寄主转换的适应性及生理响应. 中国农业科学, 2013, 46(23): 4941-4949. doi: 10.3864/j.issn.0578-1752.2013.23.010.
XIAO L B, TAN Y A, SUN Y, ZHAO H X, WU G Q, BAI L X. Adaptability and physiological response to host plant species switching in Apolygus lucorum. Scientia Agricultura Sinica, 2013, 46(23): 4941-4949. doi: 10.3864/j.issn.0578-1752.2013.23.010. (in Chinese)
[30]
严泽生, 江雷雨, 张中典. 32个菜豆品种种质资源的综合评价. 农学学报, 2013, 3(5): 42-46, 52.
YAN Z S, JIANG L Y, ZHANG Z D. Comprehensive evaluation of 32 kidney bean germplasm resources. Journal of Agriculture, 2013, 3(5): 42-46, 52. (in Chinese)

doi: 10.11924/j.issn.2095-4050.2013-xb0141
[31]
张红梅, 许文静, 陈华涛, 刘晓庆, 张智民, 崔晓艳, 袁星星, 顾和平, 陈新. 不同荚色豇豆品种花青素和营养成分含量变化分析. 南方农业学报, 2017, 48(6): 1080-1085.
ZHANG H M, XU W J, CHEN H T, LIU X Q, ZHANG Z M, CUI X Y, YUAN X X, GU H P, CHEN X. Variation of anthocyanin contents and nutrient component contents in yardlong bean varieties with different pod colors. Journal of Southern Agriculture, 2017, 48(6): 1080-1085. (in Chinese)
[32]
王明祖, 蒋璐希, 余晓华, 韩瑞宏, 石秀兰, 郭微, 陈荣芬. 室内墙面种植6种芽苗菜的效果初探. 仲恺农业工程学院学报, 2018, 31(4): 48-51.
WANG M Z, JIANG L X, YU X H, HAN R H, SHI X L, GUO W, CHEN R F. Applied effects of six species of vegetable sprouts in interior metope planting. Journal of Zhongkai University of Agriculture and Engineering, 2018, 31(4): 48-51. (in Chinese)
[33]
秦春梅. 冬瓜的开发价值及其利用. 农产品加工, 2014(5): 44-45.
QIN C M. The development value of wax gourd and its utilization. Agricultural Products Processing, 2014(5): 44-45. (in Chinese)
[34]
黎庭耀, 李桂花, 陈汉才, 张艳, 郭巨先, 陆美莲, 唐文武, 廖丽霞, 沈智. 不同豇豆品种资源的营养品质分析. 广东农业科学, 2017, 44(4): 32-37.
LI T Y, LI G H, CHEN H C, ZHANG Y, GUO J X, LU M L, TANG W W, LIAO L X, SHEN Z. Nutritional quality analysis of different varieties of cowpea. Guangdong Agricultural Sciences, 2017, 44(4): 32-37. (in Chinese)
[1] ZHANG YaFeng, DONG WeiJin, LI QiYun, LU Yang, ZHANG ZhengKun, SUI Li. Effect of Interaction Between Beauveria bassiana and Potassium on Tomato Fruit Quality [J]. Scientia Agricultura Sinica, 2025, 58(6): 1131-1144.
[2] WANG XiaoTing, SHEN Qi, PAN JuXiu, MA Lei, HE WeiZhong, WANG Cheng. Regression Analysis of the Differences in the Bioaccessibility of Six Nutrients in the Flesh of Melons from Different Production Areas and Their Relationship with Soil Element Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 779-791.
[3] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
[4] LIU XiaoXu, ZHONG ZeXin, QIU JiaRen, YANG ChunXiao, ZHANG YongJun, XIE Wen, ZHANG YouJun, PAN HuiPeng. GENETIC DIVERSITY OF MTCO1 IN DIFFERENT GEOGRAPHICAL POPULATIONS OF MEGALUROTHRIPS USITATUS [J]. Scientia Agricultura Sinica, 2025, 58(21): 4361-4371.
[5] SHI CaiHua, JIN Jie, HUA DengKe, HU JingRong, ZHANG YouJun, HUANG ShengLin, WU MingYue, KONG XiangYi, XIE Wen. Development and Application of Novel Physical Control Technologies Based on the Correlation Between Megalurothrips usitatus Outbreaks and Cowpea Flower Development Dynamics [J]. Scientia Agricultura Sinica, 2025, 58(21): 4382-4392.
[6] ZHAO HanYang, LI YiHong, XU ShuGuang, WU YueMin, WU ShengYong. Control Effect of New Insect-Repellent Screen on Megalurothrips usitatus and Its Impact on the Microclimate in the Field [J]. Scientia Agricultura Sinica, 2025, 58(21): 4393-4404.
[7] DAI XiaoYan, ZHAO JinFeng, WANG RuiJuan, SU Long, WANG Yu, CHENG WenHua, XU QianQian, ZHAO Shan, ZHENG Li, LIU Yan, ZHAI YiFan. Comparison of the Predation Ability of Four Species of Orius Against Megalurothrips usitatus, Tetranychus urticae and Aphis craccivora [J]. Scientia Agricultura Sinica, 2025, 58(21): 4421-4428.
[8] HUANG ShengLin, XU YiBo, KONG XiangYi, SHI CaiHua, JIAO XiaoGuo, ZHANG YouJun, WU MingYue, XIE Wen. Analysis of Annual Population Dynamics of Megalurothrips usitatus on Cowpea in Hainan [J]. Scientia Agricultura Sinica, 2025, 58(21): 4439-4450.
[9] HAN ZheQun, SU Ying, GAO QiQi, LIU MeiYing, JIA AngYuan, ZHANG HaiRui, NAN ShanShan, XU QinZheng, WANG Qiang, WANG LiJun, WU XuePing. Intelligent Drip Irrigation Water-Fertilizer Coupling Regime Realizes Synergistic Improvement of Soil Water Conservation, Salt Control and Sunflower Yield and Quality [J]. Scientia Agricultura Sinica, 2025, 58(20): 4158-4177.
[10] SHE YingJun, ZHOU ZiZhe, WU Ming, GUO Wei, SHI ChangJian, HU Chao, LI Ping. Effects of Groundwater Depth and Nitrogen Application on the Distribution of Soil Water and Salt and the Nutrient Absorption and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2025, 58(20): 4285-4304.
[11] ZHANG SiJia, YANG Jie, ZHAO Shuai, LI LiWei, WANG GuiYan. The Impact of Diversified Crops and Wheat-Maize Rotations on Soil Quality in the North China Plain [J]. Scientia Agricultura Sinica, 2025, 58(2): 238-251.
[12] WU Yong, WEN Xue, WANG TianShu, HUANG YanYan, MENG YiLi, JIANG HongYu, BI LiDong, WU HuiJun, YAO ShuiHong. The Influence of Topographic Factors and Ridge Tillage Methods on Soil Nutrients and Fertility Index of Sloping Arable Land in the Black Soil Region [J]. Scientia Agricultura Sinica, 2025, 58(18): 3676-3689.
[13] FANG YaTing, ZHAO Jian, SHENG QianNan, LI KaiXu, WANG XiangHua, ZHANG YangYang, ZHU Jun, CONG RiHuan, LU ZhiFeng, LI XiaoKun, REN Tao, LU JianWei. Effects of Long-Term Chemical Fertilizer and Organic Material Application on Crop Yield and Nutrient Utilization in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3164-3177.
[14] BU RongYan, CHENG WenLong, WU Ji, TANG Shan, LI Min, LU JianWei, JI GenXue, WANG Hui, ZHU Rui, JIANG FaHui, TANG MengMeng, HAN Shang. Organic-Inorganic Fertilization Application and Deep Tillage Enhance Productivity and Nutrient Use Efficiency in Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3178-3189.
[15] MENG ZiZhen, REN Tao, LIU Chen, WANG KunKun, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU ZhiFeng, FANG YaTing, LU JianWei. Balanced Application of Nitrogen, Phosphorus and Potassium Fertilizer in Rice-Rapeseed Rotation System Improves Crop Yield and Nutrient Utilization [J]. Scientia Agricultura Sinica, 2025, 58(16): 3190-3200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!