Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4372-4381.doi: 10.3864/j.issn.0578-1752.2025.21.007

• GREEN CONTROL OF MAJOR COWPEA PESTS AND FUSARIUM WILT: RESEARCH AND PRACTICAL INNOVATIONS • Previous Articles     Next Articles

Effects of Acoustic Interference on the Courtship Behavior of Liriomyza sativae

XING GuangTao1,2(), LÜ BaoQian3,4, WU ShengYong1,2, WU JianTao5, ZHOU Ying6, GE Jin7, ZHANG QiKai3,4()   

  1. 1 Institute of Plant Protection, Chinese Academy of Agricultural Sciences/State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 100193
    2 National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan
    3 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management of Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101
    4 Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in the Nanfan Area, Sanya 572025, Hainan
    5 Hainan Sugarcane Breeding Station of Guangzhou Sugarcane Industry Research Institute/ Guangdong Scientific Observation Test Station of Sugarcane Germplasm Resources and Utilization, Ministry of Agriculture and Rural Affairs, Sanya 572025, Hainan
    6 Hainan Institute, Zhejiang University, Sanya 572025, Hainan
    7 Institute of Zoology, Chinese Academy of Sciences/State Key Laboratory of Integrated Management of Pest Insects and Rodents, Beijing 100101
  • Received:2025-04-24 Accepted:2025-06-13 Online:2025-11-01 Published:2025-11-06
  • Contact: ZHANG QiKai

Abstract:

【Objective】The objective of this study is to investigate the disruptive effect of acoustic stimuli on the courtship behavior of Liriomyza sativae and its application potential in green pest control. 【Method】Acoustic signals of varying frequencies were emitted by directional loudspeakers. Laser vibrometry coupled with behavioral video recording was employed to measure vibrational responses of cowpea leaves and courtship and mating parameters of L. sativae (latency, frequency, duration, mating success rate). The laboratory population control trial of L. sativae larvae was carried out by using 200 Hz acoustic frequency, and the population density change of L. sativae and effect on cowpea quality (soluble sugar, soluble protein and vitamin C content) were analyzed by setting sound source distance gradient with spatiotemporal dynamic monitoring in the field. 【Result】External acoustic stimulation induced differential leaf vibrational responses, disrupting L. sativae courtship. Cowpea leaves exhibited the strongest vibrational response within 200-300 Hz with peak vibration velocity of ±4 mm·s-1. The 200 Hz frequency significantly prolonged male courtship latency ((15.92±3.99) min vs. control (5.24±1.63) min, P<0.05) and duration ((44.50±2.68) s vs. control (20.22±1.97) s, P<0.05), increased male courtship attempts ((13.20±2.58) times vs. control (5.40±1.21) times, P<0.05), and reduced mating success rate to 20% (control: 60%). Markov chain analysis confirmed greatest behavioral disruption in the mid-frequency band (200-300 Hz), specifically blocking the critical “male courtship→female response” transition pathway. Laboratory trials demonstrated 42.14% larval number reduction under 200 Hz acoustic treatment ((57.67±3.18) individuals vs. control (99.67±9.61) individuals, P<0.05). Field data indicated that with the increase of audio playback time, the mining density in near-source zones (0-25 m) decreased significantly, though efficacy diminished in far-source areas (25-70 m). No significant adverse effects occurred on cowpea quality parameters (soluble sugar, soluble protein and vitamin C content). 【Conclusion】The 200 Hz acoustic frequency disrupts L. sativae courtship signaling by maximizing cowpea leaf vibrations, effectively suppressing mating behavior and population growth without compromising crop quality. This technique provides an innovative perspective for developing environmentally-friendly pest control strategies.

Key words: Liriomyza sativae, acoustic interference, vibration velocity, substrate-borne vibration, courtship behavior, mining density, green pest control

Fig. 1

Schematic diagram of cowpea leaf vibration response to acoustic stimulation"

Fig. 2

Schematic diagram of the courtship behavior interference test under acoustic stimulation"

Fig. 3

Resonance response of cowpea leaves to sound stimuli at different frequencies"

Fig. 4

Effects of different acoustic frequencies on courtship behavior of L. sativae"

Fig. 5

Behavioral transition networks of L. sativae courtship under acoustic frequency stimulation"

Fig. 6

Effect of 200 Hz acoustic frequency on larval populations of L. sativae under controlled conditions"

Fig. 7

Spatiotemporal dynamics of L. sativae mining density under 200 Hz acoustic interference in field conditions"

Fig. 8

Effects of 200 Hz acoustic treatment on cowpea biochemical composition at varying distances from the sound source"

[1]
DEEMING J C. Liriomyza sativae Blanchard (Diptera: Agromyzidae) established in the old world. Tropical Pest Management, 1992, 38(2): 218-219.
[2]
问锦曾, 王音, 雷仲仁. 美洲斑潜蝇中国新纪录. 昆虫分类学报, 1996, 18(4): 311-312.
WEN J Z, WANG Y, LEI Z R. New record of Liriomyza sativae Blanchard (Diptera: Agromyzidae) from China. Entomotaxonomia, 1996, 18(4): 311-312. (in Chinese)
[3]
陈燕羽, 罗劲梅, 李萍, 石旺鹏, 王树昌, 陈俊谕, 迟元铭, 陈丽丽, 王昊祺. 我国豇豆病虫害绿色防控技术研究应用进展及对策建议. 植物保护, 2025, 51(2): 1-7, 17.
CHEN Y Y, LUO J M, LI P, SHI W P, WANG S C, CHEN J Y, CHI Y M, CHEN L L, WANG H Q. Research and application progress of environmentally-friendly pest control for cowpea and countermeasures in China. Plant Protection, 2025, 51(2): 1-7, 17. (in Chinese)
[4]
JOHNSON M W, WELTER S C, TOSCANO N C, TING L P, TRUMBLE J T. Reduction of tomato leaflet photosynthesis rates by mining activity of Liriomyza sativae (Diptera: Agromyzidae). Journal of Economic Entomology, 1983, 76(5): 1061-1063.
[5]
LIU T X, KANG L, HEINZ K M, TRUMBLE J. Biological control of Liriomyza leafminers: Progress and perspective. CABI Reviews, 2009, 4: 004.
[6]
何石兰. 海南琼北蔬菜病虫害发生与农药使用调查. 热带农业科学, 2022, 42(12): 98-105.
HE S L. Investigation on the occurrence of vegetable diseases and insect pests and the use of pesticides in the northern region of Hainan. Chinese Journal of Tropical Agriculture, 2022, 42(12): 98-105. (in Chinese)
[7]
朱新利, 谢宗远, 程乐庆, 罗会淑. 豫东地区设施黄瓜美洲斑潜蝇的发生及综合防治技术. 特种经济动植物, 2024, 27(12): 114-116.
ZHU X L, XIE Z Y, CHENG L Q, LUO H S. Occurrence and integrated control strategies of Liriomyza sativae in facility-grown cucumbers in the eastern Henan region. Special Economic Animals and Plants, 2024, 27(12): 114-116. (in Chinese)
[8]
余学花, 范正宽, 阿普前, 李世岚, 波碧芳, 李诚忠, 孙涛, 陈世荣. 怒江州美洲斑潜蝇发生特点及防控技术. 云南农业科技, 2023(S1): 15-16.
YU X H, FAN Z K, A P Q, LI S L, BO B F, LI C Z, SUN T, CHEN S R. Occurrence characteristics and control techniques of Liriomyza sativae in Nujiang prefecture. Yunnan Agricultural Science and Technology, 2023(S1): 15-16. (in Chinese)
[9]
GITONGA Z M, CHABI-OLAYE A, MITHÖFER D, OKELLO J J, RITHO C N. Control of invasive Liriomyza leafminer species and compliance with food safety standards by small scale snow pea farmers in Kenya. Crop Protection, 2010, 29(12): 1472-1477.
[10]
成卫宁, 李修炼, 仵均祥, 李建军, 李怡萍. 美洲斑潜蝇发生与防治研究进展. 西北农林科技大学学报(自然科学版), 2004, 32(S1): 78-82.
CHENG W N, LI X L, WU J X, LI J J, LI Y P. Progressive study on occurrence and control of Liriomyza sativae Blanchard. Journal of Northwest A & F University (Natural Science Edition), 2004(S1): 78-82. (in Chinese)
[11]
MANKIN R. Subterranean arthropod biotremology:Ecological and economic contexts//Biotremology:Physiology, Ecology, and Evolution. Cham: Springer International Publishing, 2022: 511-527.
[12]
NIERI R, BEUKEBOOM L W, MAZZONI V. Insect biotremology— an introduction. Entomologia Experimentalis et Applicata, 2024, 172(12): 1113-1115.
[13]
MUKAI H, TAKANASHI T, YAMAWO A. Elaborate mating dances: Multimodal courtship displays in jewel bugs. Ecology, 2022, 103(4): e3632.
[14]
HILL P S M, SHADLEY J R. Talking back: Sending soil vibration signals to lekking prairie mole cricket males. American Zoologist, 2001, 41(5): 1200-1214.
[15]
KOJIMA W, TAKANASHI T, ISHIKAWA Y. Vibratory communication in the soil: Pupal signals deter larval intrusion in a group-living beetle Trypoxylus dichotoma. Behavioral Ecology and Sociobiology, 2012, 66(2): 171-179.
[16]
COCROFT R B, RODRÍGUEZ R L. The behavioral ecology of insect vibrational communication. BioScience, 2005, 55(4): 323-334.
[17]
YANAGISAWA R, TATSUTA H, SEKINE T, OE T, MUKAI H, UECHI N, KOIKE T, ONODERA R, SUWA R, TAKANASHI T. Vibrations as a new tool for pest management - a review. Entomologia Experimentalis et Applicata, 2024, 172(12): 1116-1127.
[18]
FENG Z L, WEI Q, YE Z R, YANG B J, GAO Y F, LV J, DAI Y Y, BAO J, YAO Q. Vibrational courtship disruption of Nilaparvata lugens using artificial disruptive signals. Frontiers in Plant Science, 2022, 13: 897475.
[19]
SAXENA K N, KUMAR H. Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia, 1980, 36(8): 933-936.
[20]
SEKINE T, TAKANASHI T, ONODERA R, OE T, KOMAGATA Y, ABE S, KOIKE T. Potential of substrate-borne vibration to control greenhouse whitefly Trialeurodes vaporariorum and increase pollination efficiencies in tomato Solanum lycopersicum. Journal of Pest Science, 2023, 96(2): 599-610.
[21]
VIRANT-DOBERLET M, STRITIH-PELJHAN N, ŽUNIČ-KOSI A, POLAJNAR J. Functional diversity of vibrational signaling systems in insects. Annual Review of Entomology, 2023, 68: 191-210.
[22]
GE J, WEI J N, ZHANG D J, HU C, ZHENG D Z, KANG L. Pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. Insect Science, 2019, 26(3): 510-522.
[23]
YEATES D K, WIEGMANN B M. Congruence and controversy: Toward a higher-level phylogeny of Diptera. Annual Review of Entomology, 1999, 44: 397-428.

pmid: 15012378
[24]
FABRE C C G, HEDWIG B, CONDUIT G, LAWRENCE P A, GOODWIN S F, CASAL J. Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Current Biology, 2012, 22(22): 2180-2185.
[25]
ZHANG Q K, WU S Y, XING Z L, WANG H H, LEI Z R. Substrate-borne vibrational signals and stridulatory organs for sexual communication in leafminer, Liriomyza sativae (Diptera: Agromyzidae). Insect Science, 2023, 30(1): 221-231.
[26]
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006.
WANG X K. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2006. (in Chinese)
[27]
王鸿飞, 邵兴锋. 果品蔬菜贮藏与加工实验指导. 北京: 科学出版社, 2012.
WANG H F, SHAO X F. The Experimental Guidance of Fruit and Vegetable Storage and Processing. Beijing: Science Press, 2012. (in Chinese)
[28]
POLAJNAR J, ERIKSSON A, VIRANT-DOBERLET M, MAZZONI V. Mating disruption of a grapevine pest using mechanical vibrations: From laboratory to the field. Journal of Pest Science, 2016, 89(4): 909-921.
[29]
钦俊德, 王琛柱. 论昆虫与植物的相互作用和进化的关系. 昆虫学报, 2001, 44(3): 360-365.
QIN J D, WANG C Z. The relation of interaction between insects and plants to evolution. Acta Entomologica Sinica, 2001, 44(3): 360-365. (in Chinese)
[30]
POLAJNAR J, ČOKL A. The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Open Life Sciences, 2008, 3(2): 189-197.
[31]
CLUTTON-BROCK T H, PARKER G A. Sexual coercion in animal societies. Animal Behaviour, 1995, 49(5): 1345-1365.
[32]
NIERI R, MAZZONI V. Vibrational mating disruption of Empoasca vitis by natural or artificial disturbance noises. Pest Management Science, 2019, 75(4): 1065-1073.
[33]
魏琪, 单瑶, 冯泽霖, 何佳春, 赖凤香, 万品俊, 王渭霞, 姚青, 边磊, 傅强. 褐飞虱求偶鸣声的振动传播规律及感知行为. 中国农业科学, 2024, 57(20): 3989-3997. doi: 10.3864/j.issn.0578-1752.2024.20.005.
WEI Q, SHAN Y, FENG Z L, HE J C, LAI F X, WAN P J, WANG W X, YAO Q, BIAN L, FU Q. The vibration propagation laws and perception behavior of mating calls of Nilaparvata lugens. Scientia Agricultura Sinica, 2024, 57(20): 3989-3997. doi: 10.3864/j.issn.0578-1752.2024.20.005. (in Chinese)
[1] WEI Qi, SHAN Yao, FENG ZeLin, HE JiaChun, LAI FengXiang, WAN PinJun, WANG WeiXia, YAO Qing, BIAN Lei, FU Qiang. The Vibration Propagation Laws and Perception Behavior of Mating Calls of Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2024, 57(20): 3989-3997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!