Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (14): 2707-2719.doi: 10.3864/j.issn.0578-1752.2025.14.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Study and Genetic Improvement Study of Rice Blast Resistance

ZHENG MinHua1,2(), CHEN Luo1,2(), XING JiaLe1, XIE YueLan3, JIANG XianYa3, NIE Shuai1, CAI FuGe4, WU HaoXiang1, LU ZhanHua1, SUN Wei2, HUO Xing1, BAI Song1, ZHAO JunLiang1, YANG Wu1,*()   

  1. 1 Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Rice Science and Technology/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640
    2 College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225
    3 Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, Guangdong
    4 Anshun Academy of Agricultural Sciences, Anshun 562100, Guizhou
  • Received:2025-01-24 Accepted:2025-03-24 Online:2025-07-16 Published:2025-07-17
  • Contact: YANG Wu

Abstract:

【Objective】Rice blast critically compromises rice production. The genetic enhancement of blast resistance remains challenging due to pathogen variability and limited genetic diversity in breeding parents. This study seeks to accelerate resistance breeding by identifying novel resistance loci through systematic germplasm characterization. 【Method】A panel of 265 sequenced indica rice accessions (including 120 international germplasms and 145 cultivars from South China) underwent field-based blast resistance evaluation. Genome-wide association study (GWAS) was subsequently employed to identify blast resistance quantitative trait loci (QTL). Haplotype effects of these QTL on blast resistance were analyzed, and candidate genes within newly identified QTL regions were predicted using rice genome annotation. 【Result】Field resistance evaluation identified 47 accessions (18 international germplasms and 29 cultivars from South China) exhibiting high resistance to both panicle and leaf blast. GWAS detected nine blast resistance QTL distributed across chromosomes 1, 5, 6, 11, and 12, respectively. Among them, four QTL was co-localized with previously reported blast resistance genes and five QTL were newly identified. Haplotype analysis revealed significant resistance variations associated with peak SNP alleles, with eight QTL showing higher frequency of resistant haplotypes in cultivars from South China compared to international germplasms. Notably, the qPB11 locus demonstrated an inverse distribution pattern, where its resistant haplotype frequency was substantially lower in cultivars from South China (1%) than in international germplasm (16%). Candidate gene analysis within novel QTL regions identified four NBS-LRR disease resistance proteins and four NB-ARC domain-containing proteins, with eight candidate genes clustered within a 27.22-27.35 Mb interval on chromosome 11.【Conclusion】Cultivars from South China exhibit superior blast resistance compared to international germplasms. The high-resistance haplotypes of qPB1-1, qPB1-2, qPB1-3, qPB5, qPB6, qPB12-1, and qLB12/qPB12-2 have been preferentially selected during the genetic improvement of cultivars from South China. Furthermore, the qPB11 locus harbors genes encoding NBS-LRR disease-resistant proteins and NB-ARC domain-containing proteins, representing new potential resistance gene for rice blast disease.

Key words: rice, rice blast, germplasm, genome-wide association study, QTL (quantitative trait locis), genetic improvement

Fig. 1

Phenotypic evaluation of field rice blast resistance of 265 indica accessions A: Distribution of field panicle blast resistance phenotypes; B: Distribution of field leaf blast resistance phenotypes"

Table 1

47 indica accessions with high resistance to panicle blast and leaf blast"

品种名称Variety name 穗瘟抗性级别Panicle blast resistance level 叶瘟抗性级别Leaf blast resistance level
IRGC121611 1.0 0.0
IRGC121434 1.0 0.0
IRGC121852 1.0 0.0
IRGC121759 1.0 0.0
IRGC120918 1.0 0.0
IRGC121705 1.0 0.0
IRGC121901 1.0 0.0
IRGC121920 1.0 0.0
IRGC121919 1.0 0.0
IRGC120977 1.0 0.0
IRGC121053 1.0 0.0
IRGC120903 1.0 0.0
IRGC121650 1.0 0.0
IRGC121002 1.0 0.0
IRGC120981 1.0 0.0
IRGC121001 1.0 0.7
IRGC120983 1.0 0.7
IRGC121778 1.0 0.7
香秀占Xiangxiuzhan 1.0 0.0
银湖香占2号Yinhuxiangzhan2 1.0 0.0
华占Huazhan 1.0 0.0
贵育9号Guiyu9 1.0 0.0
贵育12 Guiyu12 1.0 0.0
香丝苗Xiangsimiao 1.0 0.0
福香占Fuxiangzhan 1.0 0.0
红荔丝苗Honglisimiao 1.0 0.0
广恢1521 Guanghui1521 1.0 0.0
R290 1.0 0.0
R3301 1.0 0.0
深恢9516-1 Shenhui9516-1 1.0 0.0
五山丝苗Wushansimiao 1.0 0.0
V5230♂ 1.0 0.0
粤农丝苗Yuenongsimiao 1.0 0.0
五乡B WuxiangB 1.0 0.0
吉丰B JifengB 1.0 0.0
莉丝Lisi 1.0 0.0
蒂占Dizhan 1.0 0.0
广恢736 Guanghui736 1.0 0.0
广恢138 Guanghui138 1.0 0.0
赣香占1号Ganxiangzhan1 1.0 0.0
粤美占Yuemeizhan 1.0 0.0
广恢792 Guanghui792 1.0 0.0
广恢7170 Guanghui7170 1.0 0.0
R390 1.0 0.7
黄广油占Huangguangyouzhan 1.0 0.7
野香B YexiangB 1.0 0.7
晶美丝苗Jingmeisimiao 1.0 1.0

Fig. 2

Distribution of rice blast resistance level in international germplasms and cultivars from South China A: Distribution of panicle blast resistance levels; B: Distribution of leaf blast resistance levels. The significance test is conducted by t-test (two tailed test)"

Fig. 3

Genome-wide association analysis of rice blast resistance in 265 indica accessions A: Principal component analysis plot; B: Manhattan map and QQ plot of panicle blast resistance in 265 indica accessions; C: Manhattan map and QQ plot of leaf blast resistance in 265 indica accessions"

Table 2

Rice blast resistance QTL identified by GWAS"

稻瘟病抗性QTL
Rice blast resistance QTL
数量性状基因座
Quantitative
trait locus
染色体Chromosome 峰值SNP
Peak SNP
BH P
BH P value
等位变异
Allelic
variation
共定位QTL/基因
Co-localized
QTL/gene
参考文献Reference
穗瘟抗性QTL
Panicle blast resistance QTL
qPB1-1 1 5475858 1.41E-06 C/T
qPB1-2 1 33075256 2.69E-05 C/T Pi64, Pi37, Pish, SDS2 [22-25]
qPB1-3 1 35182780 3.45E-06 C/T OsWRKY22, OsExo70B1 [26-27]
qPB5 5 13708912 3.08E-06 A/G
qPB6 6 10431287 1.34E-05 A/G Pid4, Pizh [4,28]
qPB11 11 27184395 5.98E-06 C/T
qPB12-1 12 10959080 1.64E-05 C/T Pi-ta, Ptr [29-30]
qPB12-2 12 14158887 4.23E-07 G/T
叶瘟抗性QTL
Leaf blast resistance QTL
qLB12 12 14158887 9.00E-06 G/T

Fig. 4

Analysis of rice blast resistance (panicle blast and leaf blast) in haplotype-specific materials of rice blast resistance QTL A:qPB1-1;B:qPB1-2;C:qPB1-3;D:qPB5;E:qPB6;F:qPB11;G:qPB12-1;H:qLB12/qPB12-2"

Fig. 5

Distribution of different haplotypes of rice blast resistance QTL in international germplasms and cultivars from South China A: qPB1-1; B: qPB1-2; C: qPB1-3; D: qPB5; E: qPB6; F: qPB11; G: qPB12-1; H: qLB12/qPB12-2. The green legend indicates the high-resistance haplotype"

[1]
巫浩翔, 陆展华, 方志强, 陈浩, 王石光, 王晓飞, 刘维, 何秀英. 稻瘟病菌效应蛋白与水稻互作研究现状及展望. 广东农业科学, 2023, 50(12): 52-61.
WU H X, LU Z H, FANG Z Q, CHEN H, WANG S G, WANG X F, LIU W, HE X Y. Research status and prospect on the interaction between Magnaporthe oryzae effector protein and rice. Guangdong Agricultural Sciences, 2023, 50(12): 52-61. (in Chinese)
[2]
杨婕, 杨长登, 曾宇翔, 侯雨萱, 陈天晓, 梁燕. 水稻稻瘟病抗性基因挖掘与利用研究进展. 中国水稻科学, 2024, 38(6): 591-603.

doi: 10.16819/j.1001-7216.2024.230911
YANG J, YANG C D, ZENG Y X, HOU Y X, CHEN T X, LIANG Y. Research progress in mining and utilization of rice blast resistance genes. Chinese Journal of Rice Science, 2024, 38(6): 591-603. (in Chinese)

doi: 10.16819/j.1001-7216.2024.230911
[3]
DENG Y W, ZHAI K R, XIE Z, YANG D Y, ZHU X D, LIU J Z, WANG X, QIN P, YANG Y Z, ZHANG G M, LI Q, ZHANG J F, WU S Q, MILAZZO J, MAO B Z, WANG E T, XIE H A, THARREAU D, HE Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355(6328): 962-965.

doi: 10.1126/science.aai8898 pmid: 28154240
[4]
CHEN Z X, ZHAO W, ZHU X B, ZOU C D, YIN J J, CHERN M, ZHOU X G, YING H, JIANG X, LI Y Z, LIAO H C, CHENG M P, LI W T, HE M, WANG J, WANG J C, MA B T, WANG J R, LI S G, ZHU L H, CHEN X W. Identification and characterization of rice blast resistance gene Pid4 by a combination of transcriptomic profiling and genome analysis. Journal of Genetics and Genomics, 2018, 45(12): 663-672.

doi: S1673-8527(18)30207-8 pmid: 30606471
[5]
SHANG J J, TAO Y, CHEN X W, ZOU Y, LEI C L, WANG J, LI X B, ZHAO X F, ZHANG M J, LU Z K, XU J C, CHENG Z K, WAN J M, ZHU L H. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide- binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182(4): 1303-1311.
[6]
CHEN X W, SHANG J J, CHEN D X, LEI C L, ZOU Y, ZHAI W X, LIU G Z, XU J C, LING Z Z, CAO G, MA B T, WANG Y P, ZHAO X F, LI S G, ZHU L H. A B-lectin receptor kinase gene conferring rice blast resistance. The Plant Journal, 2006, 46(5): 794-804.
[7]
OKUYAMA Y, KANZAKI H, ABE A, YOSHIDA K, TAMIRU M, SAITOH H, FUJIBE T, MATSUMURA H, SHENTON M, GALAM D C, UNDAN J, ITO A, SONE T, TERAUCHI R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. The Plant Journal, 2011, 66(3): 467-479.
[8]
CESARI S, THILLIEZ G, RIBOT C, CHALVON V, MICHEL C, JAUNEAU A, RIVAS S, ALAUX L, KANZAKI H, OKUYAMA Y, MOREL J B, FOURNIER E, THARREAU D, TERAUCHI R, KROJ T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. The Plant Cell, 2013, 25(4): 1463-1481.
[9]
WANG L L, MA Z B, KANG H X, GU S, MUKHINA Z, WANG C H, WANG H, BAI Y J, SUI G M, ZHENG W J, MA D R. Cloning and functional analysis of the novel rice blast resistance gene Pi65 in Japonica rice. Theoretical and Applied Genetics, 2022, 135(1): 173-183.
[10]
HAYASHI N, INOUE H, KATO T, FUNAO T, SHIROTA M, SHIMIZU T, KANAMORI H, YAMANE H, HAYANO-SAITO Y, MATSUMOTO T, YANO M, TAKATSUJI H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal, 2010, 64(3): 498-510.

doi: 10.1111/j.1365-313X.2010.04348.x pmid: 20807214
[11]
YU Y, MA L, WANG X Y, ZHAO Z, WANG W, FAN Y X, LIU K Q, JIANG T T, XIONG Z W, SONG Q S, LI C Q, WANG P T, MA W J, XU H, WANG X Y, ZHAO Z J, WANG J F, ZHANG H S, BAO Y M, Genome-wide association study identifies a rice panicle blast resistance gene, Pb2, encoding NLR protein. International Journal of Molecular Sciences. 2022, 23(10): 5668.
[12]
YUAN B, ZHAI C, WANG W J, ZENG X S, XU X K, HU H Q, LIN F, WANG L, PAN Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theoretical and Applied Genetics, 2011, 122(5): 1017-1028.
[13]
JIA Y L, MARTIN R. Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance. Molecular Plant- Microbe Interactions, 2008, 21(4): 396-403.
[14]
XIAO N, WU Y Y, ZHANG X X, HAO Z Y, CHEN Z C, YANG Z F, CAI Y, WANG R Y, YU L, WANG Z P, LU Y, SHI W, PAN C H, LI Y H, ZHOU C H, LIU J J, HUANG N S, LIU G Q, JI H J, ZHU S H, FANG S, NING Y S, LI A H. Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice. Molecular Plant, 2023, 16(11): 1832-1846.

doi: 10.1016/j.molp.2023.10.001 pmid: 37798878
[15]
吕凤, 杨帆, 范滔, 刘京, 李乾, 王林刚, 龙晓波. 1977—2018年水稻品种审定数据分析. 中国种业, 2019(2): 29-40.
F, YANG F, FAN T, LIU J, LI Q, WANG L G, LONG X B. Analysis of rice variety approval data from 1977 to 2018. China Seed Industry, 2019(2): 29-40. (in Chinese)
[16]
陈树嘉, 罗克波, 林桂芬, 陈达刚, 刘传光, 周新桥, 郭洁, 陈可. 2004—2022年广东审定水稻品种优质化与产量、抗性协同改良育种进展. 广东农业科学, 2023, 50(12): 73-82.
CHEN S J, LUO K B, LIN G F, CHEN D G, LIU C G, ZHOU X Q, GUO J, CHEN K. Progress in collaborative improvement of high quality, yield, and disease resistance breeding of approved rice varieties in Guangdong from 2004 to 2022. Guangdong Agricultural Sciences, 2023, 50(12): 73-82. (in Chinese)
[17]
董维, 张建平, 邓伟, 徐雨然, 奎丽梅, 涂建, 张建华, 安华, 王睿, 谷安宇, 张锦文, 吕莹, 杨丽萍, 管俊娇, 陈忆昆, 李小林. 云南省1983—2021年审定水稻品种基本特性分析. 中国稻米, 2023, 29(4): 84-89.

doi: 10.3969/j.issn.1006-8082.2023.04.015
DONG W, ZHANG J P, DENG W, XU Y R, KUI L M, TU J, ZHANG J H, AN H, WANG R, GU A Y, ZHANG J W, LV Y, LI L P, GUAN J J, ZHANG Y K, LI X L. Analysis on basic characteristics of rice varieties approved in Yunnan province from 1983 to 2021. China Rice, 2023, 29(4): 84-89. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2023.04.015
[18]
MCCOUCH S R, WRIGHT M H, TUNG C W, MARON L G, MCNALLY K L, FITZGERALD M, SINGH N, DECLERCK G, AGOSTO-PEREZ F, KORNILIEV P, et al. Open access resources for genome-wide association mapping in rice. Nature Communications, 2016, 7: 10532.

doi: 10.1038/ncomms10532 pmid: 26842267
[19]
陈汝斌, 彭沙莎, 王丹, 康厚祥. 水稻苗期抗稻瘟病基因全基因组关联分析. 激光生物学报, 2021, 30(2): 163.
CHEN R B, PENG S S, WANG D, KANG H X. Genome-wide association study of rice blast resistance genes at the seedling stage. Acta Laser Biology Sinica, 2021, 30(2): 163. (in Chinese)
[20]
HUO X, WANG J, CHEN L, FU H, YANG T F, DONG J F, MA Y M, ZHOU L, CHEN J S, LIU D L, LIU B, ZHAO J L, ZHANG S H, YANG W. Genome-wide association mapping and gene expression analysis reveal candidate genes for grain chalkiness in rice. Frontiers in Plant Science, 2023, 14: 1184276.
[21]
WANG Q, TANG J L, HAN B, HUANG X H. Advances in genome-wide association studies of complex traits in rice. Theoretical and Applied Genetics, 2019, 133(5): 1415-1425.
[22]
MA J, LEI C L, XU X T, HAO K, WANG J L, CHENG Z J, MA X D, MA J, ZHOU K N, ZHANG X, GUO X P, WU F Q, LIN Q B, WANG C M, ZHAI H Q, WANG H Y, WAN J M. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Molecular Plant-Microbe Interactions, 2015, 28(5): 558-568.

doi: 10.1094/MPMI-11-14-0367-R pmid: 25650828
[23]
LIN F, CHEN S, QUE Z Q, WANG L, LIU X Q, PAN Q H. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177(3): 1871-1880.

doi: 10.1534/genetics.107.080648 pmid: 17947408
[24]
TAKAHASHI A, HAYASHI N, MIYAO A, HIROCHIKA H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biology, 2010, 10: 175.

doi: 10.1186/1471-2229-10-175 pmid: 20707904
[25]
FAN J B, BAI P F, NING Y S, WANG J Y, SHI X T, XIONG Y H, ZHANG K, HE F, ZHANG C Y, WANG R Y, MENG X Z, ZHOU J G, WANG M, SHIRSEKAR G, PARK C H, BELLIZZI M, LIU W D, JEON J S, XIA Y, SHAN L B, WANG G L. The monocot-specific receptor-like kinase SDS2 controls cell death and immunity in rice. Cell Host & Microbe, 2018, 23(4): 498-510.
[26]
ABBRUSCATO P, NEPUSZ T, MIZZI L, DEL CORVO M, MORANDINI P, FUMASONI I, MICHEL C, PACCANARO A, GUIDERDONI E, SCHAFFRATH U, MOREL J B, PIFFANELLI P, FAIVRE-RAMPANT O. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology, 2012, 13(8): 828-841.

doi: 10.1111/j.1364-3703.2012.00795.x pmid: 22443363
[27]
HOU H N, FANG J B, LIANG J H, DIAO Z J, WANG W, YANG D W, LI S P, TANG D Z. OsExo70B1 positively regulates disease resistance to Magnaporthe oryzae in rice. International Journal of Molecular Sciences, 2020, 21(19): 7049.
[28]
XIE Z, YAN B X, SHOU J Y, TANG J, WANG X, ZHAI K R, LIU J Y, LI Q, LUO M Z, DENG Y W, HE Z H. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1767): 20180308.
[29]
BRYAN G T, WU K S, FARRALL L, JIA Y, HERSHEY H P, MCADAMS S A, FAULK K N, DONALDSON G K, TARCHINI R, VALENT B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell, 2000, 12(11): 2033-2046.
[30]
ZHAO H J, WANG X Y, JIA Y L, MINKENBERG B, WHEATLEY M, FAN J B, JIA M H, FAMOSO A, EDWARDS J D, WAMISHE Y, VALENT B, WANG G L, YANG Y N. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nature Communications, 2018, 9(1): 2039.

doi: 10.1038/s41467-018-04369-4 pmid: 29795191
[31]
朱小源, 杨祁云, 伍尚忠. 广东优质籼稻抗稻瘟病育种研究进展. 植物保护学报, 2003, 30(2): 209-216.
ZHU X Y, YANG Q Y, WU S Z. Review of the blast resistance breeding in fine quality indica rice in Guangdong, South China. Journal of Plant Protection, 2003, 30(2): 209-216. (in Chinese)
[32]
汪文娟, 陈凯玲, 杨健源, 封金奇, 朱小源, 苏菁. 广东省不同稻区稻瘟病菌生理小种鉴定及无毒基因分析. 植物保护学报, 2024, 51(3): 645-653.
WANG W J, CHEN K L, YANG J Y, FENG J Q, ZHU X Y, SU J. Identification of physiological races and analysis of avirulence genes of rice blast fungus Magnaporthe oryzae in different rice regions of Guangdong Province. Journal of Plant Protection, 2024, 51(3): 645-653. (in Chinese)
[33]
向小娇. 水稻稻瘟病抗性的全基因组关联分析和品种抗瘟性改良[D]. 北京: 中国农业科学院, 2016.
XIANG X J. Genome-wide association study of rice blast resistance and improvement of rice blast resistance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[34]
WEI X, QIU J, YONG K C, FAN J J, ZHANG Q, HUA H, LIU J, WANG Q, OLSEN K M, HAN B, HUANG X H. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 2021, 53(2): 243-253.

doi: 10.1038/s41588-020-00769-9 pmid: 33526925
[35]
GAO P, LI M Y, WANG X Q, XU Z W, WU K T, SUN Q Y, DU H B, YOUNAS M U, ZHANG Y, FENG Z M, HU K M, CHEN Z X, ZUO S M. Identification of elite R-gene combinations against blast disease in Geng rice varieties. International Journal of Molecular Sciences, 2023, 24(4): 3984.
[36]
XIAO N, WU Y Y, PAN C H, YU L, CHEN Y, LIU G Q, LI Y H, ZHANG X X, WANG Z P, DAI Z Y, LIANG C Z, LI A H. Improving of rice blast resistances in Japonica by pyramiding major R genes. Frontiers in Plant Science, 2017, 7: 1918.
[37]
YU P Y, YE C R, LI L, YIN H X, ZHAO J, WANG Y K, ZHANG Z, LI W G, LONG Y, HU X Y, XIAO J H, JIA G F, TIAN B C. Genome-wide association study and genomic prediction for yield and grain quality traits of hybrid rice. Molecular Breeding, 2022, 42(4): 16.
[38]
KABANGE N R, ALIBU S, KWON Y, LEE S M, OH K W, LEE J H. Genome-wide association study (GWAS) with high-throughput SNP chip DNA markers identified novel genetic factors for mesocotyl elongation and seedling emergence in rice (Oryza sativa L.) using multiple GAPIT models. Frontiers in Genetics, 2023, 14: 1282620.
[39]
XU Y C, BAI L, LIU M H, LIU Y C, PENG S S, HU P, WANG D, LIU Q, YAN S Y, GAO L J, WANG X L, NING Y S, ZUO S M, ZHENG W J, LIU S M, XIANG W S, WANG G L, KANG H X. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology. Plant Biotechnology Journal, 2023, 21(8): 1628-1641.

doi: 10.1111/pbi.14064 pmid: 37154202
[40]
LIU H, DONG S Y, SUN D Y, LIU W, GU F W, LIU Y Z, GUO T, WANG H, WANG J F, CHEN Z Q. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways. PLoS One, 2016, 11(11): e0166249.
[41]
刘南南, 江玲, 张文伟, 刘玲珑, 翟虎渠, 万建民. 水稻种胚LOX3基因在逆境胁迫中的作用. 中国水稻科学, 2008, 22(1): 8-14.
LIU N N, JIANG L, ZHANG W W, LIU L L, ZHAI H Q, WAN J M. Role of embryo LOX3 gene under adversity stress in rice(Oryza sativa). Chinese Journal of Rice Science, 2008, 22(1): 8-14. (in Chinese)
[42]
CHEN J F, ZHAO Z X, LI Y, LI T T, ZHU Y, YANG X M, ZHOU S X, WANG H, ZHAO J Q, PU M, FENG H, FAN J, ZHANG J W, HUANG Y Y, WANG W M. Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and development. Rice, 2021, 14(1): 26.
[43]
李秀容, 刘智英, 霍超斌, 王官远, 林佩珍. 水稻国外资源抗稻瘟病的研究. 广东农业科学, 1987(5): 35-38.
LI X R, LIU Z Y, KUO C B, WANG G Y, LIN P Z. Research on rice foreign resources of the blast resistance. Guangdong Agricultural Sciences, 1987(5): 35-38. (in Chinese)
[44]
朱小源, 杨祁云, 刘斌, 张少红, 伍尚忠. 三黄占2号及其衍生品种抗稻瘟病特征研究. 广东农业科学, 2003, 30(2): 37-40.
ZHU X Y, YANG Q Y, LIU B, ZHANG S H, WU S Z. Study on the resistance to blast and its derivation in rice of San Huang Zhan 2 Hao. Guangdong Agricultural Science, 2003, 30(2): 37-40. (in Chinese)
[45]
王丰. 粤稻百年主要水稻科技创新成就概述. 中国稻米, 2024, 30(5): 1-9, 18.

doi: 10.3969/j.issn.1006-8082.2024.05.001
WANG F. Overview of the main achievements in rice science and technology innovation of Guangdong rice over the past century. China Rice, 2024, 30(5): 1-9, 18. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2024.05.001
[46]
钟宝玉, 黄德超, 朱小源, 陈玉托, 邹寿发, 杨伟新, 赖信红. 近十年广东稻瘟病菌生理小种变化分析. 仲恺农业工程学院学报, 2018, 31(1): 24-29.
ZHONG B Y, HUANG D C, ZHU X Y, CHEN Y T, ZHOU S F, YANG W X, LAI X H. Analysis of physiological races of Magnaporthe oryzae in Guangdong during recent decade. Journal of Zhongkai University of Agriculture and Engineering, 2018, 31(1): 24-29. (in Chinese)
[1] LÜ Tao, SUN GuoQing, GUO DongCai, CHEN QuanJia, CAI YongSheng, FAN BiaoXing, QU YanYing, ZHENG Kai. Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(9): 1684-1701.
[2] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[3] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[4] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[5] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[6] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[7] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[8] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[9] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[10] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[11] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[12] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[15] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!