Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (4): 635-646.doi: 10.3864/j.issn.0578-1752.2025.04.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content

YANG YongQing(), HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035
  • Received:2024-08-04 Accepted:2024-09-09 Online:2025-02-16 Published:2025-02-24
  • Contact: WANG Jin

Abstract:

【Objective】High quality is a critical objective in peanut breeding. However, the poor genetic base of cultivated peanuts has significantly limited the breeding efficiency for high-quality peanut. Therefore, unearthing valuable allelic gene resources associated with quality traits would provide basis for expanding genetic diversity of cultivated peanut germplasm resources.【Method】A wild peanut (Arachis villosa), PI 210553, carried diploid A type genome, was used as a donor parent for crossing with cultivated peanuts. Ultra-high oil peanut germplasm with wild ancestry was selected from the progeny, and a recombinant inbred line (RIL) population, derived from this germplasm and the cultivated variety Jihua 5, was used for genetic dissection and QTL mapping of four quality traits across three environments.【Result】Four ultra-high oil accessions of the SW9721 series were selected from the cross population between Yueyou 551 and PI 210553. Notably, SW9721-3 showcased an oil content of 62.50%, exceeding the national high-oil-content peanut standard by 7.5 percent points. Phenotypic analysis of the RIL population revealed that environmental influences caused variations in the mean values of quality traits from 11.02% to 40.80%. Correlation coefficients among these traits varied from 0.23 to 0.97 (P<0.001), with significant associations observed between oil and protein contents, and between oleic and linoleic acid contents. Furthermore, the phenotypic variation of quality traits was found to be between 3.78% and 10.61%, with heritability values above 0.6, absolute values of skewness and kurtosis were less than 1. These phenotypic values were approximately normally distributed, indicating that these traits are quantitatively inherited. In addition, a total of 12 QTLs were identified across the three environments, with LOD scores ranging from 3.26 to 17.82, accounting for 1.97% to 24.56% of the phenotypic variation. Particularly, The QTL locus qPOC_7 was consistently detected in all environments, with LOD scores between 6.01 and 17.82, explaining 4.59% to 24.56% of the phenotypic variation in both protein and oil content. The oil content increase was attributed to the allele from SW9721-3, highlighting the significant breeding value of this QTL. The physical position of flanking molecular markers for qPOC_7 suggested that the corresponding genes are located within a 180 kb interval from 426 363 to 606 659 bp at the end of chromosome 7. Within this candidate region, 22 annotated genes were identified, including two glucose metabolism- related genes, Ah.CKCA5J and Ah.805HV8, which are considered the high-potential candidate genes. 【Conclusion】In summary, this study successfully developed an ultra-high oil peanut germplasm, SW9721-3, and identified a major QTL locus, qPOC_7, with significant implications for peanut breeding.

Key words: peanut, semi-wild germplasm, quality traits, genetic analysis, QTL mapping

Fig. 1

The creation of peanut germplasm SW9721-3 with ultra-high oil content"

Table 1

The main agronomic and quality trait of SW9721 accessions"

家系
Line
主茎
Stem (cm)
侧枝
Branch (cm)
分枝数
Branch number
株型
Plant architecture
百果重
Hundred pod weight (g)
百仁重
Hundred seed weight (g)
出米率
Shelling percent (%)
含油量
Oil (%)
蛋白含量
Protein (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
SW9721-1 29.06 63.13 5.06 半直立
Semi-erect
96 45 0.82 57.78 23.53 33.43 43.08
SW9721-2 36.75 51.75 7.25 半直立
Semi-erect
94 36 0.75 58.72 22.45 45.12 31.82
SW9721-3 44.00 52.33 7.53 半直立Semi-erect 147 59 0.70 62.50 21.95 48.60 33.76
SW9721-4 44.14 60.29 10.21 半直立
Semi-erect
113 41 0.71 58.67 22.95 45.46 34.70

Fig. 2

The variation of quality traits in peanut populations across different environments"

Table 2

Genetic analysis of peanut RIL population"

性状
Trait
年份
Year
地点
Location
亲本Parent 重组自交系群体RIL population hb2
SW9721-3 冀花5号
Jihua 5
平均值
Mean
偏差
SD
变异率
CV (%)
最小值
Min
最大值
Max
偏度
Skewness
峰度
Kurtosis
含油量
Oil content
2013 NC 56.01 53.78 51.71 2.33 4.51 42.97 57.23 -0.41 0.61 0.793
2013 DS 58.35 56.91 57.41 2.17 3.78 51.36 63.20 -0.18 -0.04
2011 DS 57.22 55.72 53.66 2.36 4.40 48.26 59.59 -0.09 -0.32
蛋白
Protein
2013 NC 29.04 22.88 26.75 2.32 8.69 20.09 33.77 0.08 0.17 0.778
2013 DS 22.90 19.33 21.81 2.31 10.61 16.39 28.25 0.29 -0.47
2011 DS 26.26 21.97 25.33 2.60 10.26 19.86 33.40 0.47 -0.02
油酸
Oleic acid
2013 NC 36.89 40.96 37.76 2.90 7.69 28.66 45.62 -0.12 0.35 0.606
2013 DS 45.39 44.13 45.52 2.95 6.48 34.37 53.07 -0.21 0.59
2011 DS 38.05 31.71 32.73 2.67 8.39 23.64 41.24 -0.13 0.78
亚油酸
Linoleic acid
2013 NC 42.57 39.84 42.71 2.37 5.55 36.83 49.18 -0.04 0.20 0.637
2013 DS 36.17 37.11 36.27 2.32 6.40 30.66 44.95 0.15 0.54
2011 DS 39.81 44.44 43.53 2.21 5.07 36.35 49.47 0.09 0.28

Fig. 3

Correlation analysis of peanut RIL population for quality traits"

Fig. 4

Genetic linkage map of peanut RIL population"

Table 3

QTL analysis for peanut quality-related traits"

QTL 性状
Traits
年份
Year
地点
Location
染色体
Chromosome
遗传位置
Position (cM)
标记区间
Marker interval
LOD 变异率
PVE (%)
1)加性
效应
Additive
置信区间
CI (95%)
qOAC_6 油酸Oleic acid 2013 DS 6 33 Chr.6_1040901-Chr.6_1163254 3.448 3.836 0.718 32.5-34.5
qPOC_7 蛋白Protein 2011 DS 7 0 Chr.7_426363-Chr.7_606659 16.176 4.594 1.394 0-1.5
油Oil 2013 NC 7 0 Chr.7_426363-Chr.7_606659 6.011 7.502 -0.731 0-1.5
蛋白Protein 2013 NC 7 0 Chr.7_426363-Chr.7_606659 14.665 16.624 1.097 0-0.5
蛋白Protein 2013 DS 7 1 Chr.7_426363-Chr.7_606659 17.174 24.565 1.188 0-1.5
油Oil 2011 DS 7 2 Chr.7_426363-Chr.7_606659 13.454 17.579 -1.260 0-5.5
油Oil 2013 DS 7 2 Chr.7_426363-Chr.7_606659 17.823 10.562 -1.053 0-3.5
qLOAC_8 油酸Oleic acid 2013 DS 8 82 Chr.8_9806548-Chr.8_12067382 3.502 3.887 0.689 81.5-82.5
亚油酸
Linoleic acid
2013 DS 8 82 Chr.8_9806548-Chr.8_12067382 4.383 6.930 -0.635 81.5-82.5
qPC_9_1 蛋白Protein 2013 DS 9 36 Chr.9_3592725-Chr.9_3885505 5.777 7.114 -0.636 34.5-38.5
qOC_11 油Oil 2013 NC 11 232 Chr.11_146976864-Chr.11_147333328 3.260 4.224 0.534 228.5-235.5
qLOAC_12 油酸Oleic acid 2013 DS 12 258 Chr.12_113403145-Chr.12_113753329 11.096 12.710 -1.279 256.5-259.5
亚油酸
Linoleic acid
2013 DS 12 259 Chr.12_113753329-Chr.12_114140997 3.674 5.542 0.583 258.5-261.5
qOC_13 油Oil 2013 NC 13 142 Chr.13_40358691-Chr.13_41117839 5.869 7.439 -0.707 140.5-142.5
qOAC_14 油酸Oleic acid 2011 DS 14 85 Chr.14_5584603-Chr.14_6169675 4.154 5.537 -0.731 84.5-85.5
qPC_15 蛋白Protein 2013 NC 15 63 Chr.15_16684152-Chr.15_16876297 5.795 5.944 -0.643 62.5-64.5
qLOAC_18 油酸Oleic acid 2013 DS 18 145 Chr.18_127253379-Chr.18_127574947 10.376 11.767 1.210 142.5-146.5
亚油酸
Linoleic acid
2013 DS 18 151 Chr.18_127844934-Chr.18_128082442 6.846 10.514 -0.789 146.5-151.5
qLOAC_19 油酸Oleic acid 2011 DS 19 81 Chr.19_7524026-Chr.19_8013993 7.699 10.502 1.031 80.5-82.5
亚油酸
Linoleic acid
2011 DS 19 81 Chr.19_7524026-Chr.19_8013993 13.674 16.828 -1.087 80.5-82.5
油Oil 2013 DS 19 82 Chr.19_7524026-Chr.19_8013993 4.029 1.970 0.458 80.5-88.5
qPC_20 蛋白Protein 2013 NC 20 53 Chr.20_26840433-Chr.20_27313971 4.809 4.897 0.571 51.5-53.5

Table 4

Gene annotation analysis in candidate interval of qPOC_7"

基因ID
Gene ID
起始
Start (bp)
终止
End (bp)
结构域
Domain
功能注释
Function annotation
Ah.CKCA5J 417827 418374 - ADP葡萄糖合成酶ADP-glucose synthase (EC 2.7.7.27)
Ah.5EZV1I 430400 430608 F-box\\WD40 -
Ah.LY7S5B 443953 444160 F-box -
Ah.RQVC78 448379 448503 - -
Ah.9UY90I 448898 448963 - 烯醇化酶Enolase (EC:4.2.1.1)
Ah.Y5ZZLQ 453738 454286 - 神经酰胺酶Ceramidase (EC:3.5.1.23)
Ah.TSR8I7 465235 465885 AAA-ATPase RuvB-2类似蛋白酶RuvB-like protein 2 (EC:3.6.4.12)
Ah.Q5U408 469703 470231 - 犰狳重复含蛋白8 Armadillo repeat-containing protein 8
Ah.V44IJD 470925 471047 - RbcX伴侣蛋白Chaperonin-like RbcX protein
Ah.IAUU74 476267 476605 - -
Ah.K5EKT0 479599 481958 L 抗病蛋白Disease resistance protein
Ah.M76BEQ 486150 486157 NB-ARC 跨膜氨基酸转运蛋白Transmembrane amino acid transporter protein
Ah.WQ43CN 499558 499961 - 氨基酸转运蛋白Amino acid transporter protein
Ah.805HV8 513622 514004 - 半乳糖醇-蔗糖半乳糖基转移酶
Probable galactinol-sucrose galactosyltransferase 1 (EC:2.4.1.38)
Ah.29L1CF 525724 525930 - -
Ah.76FVS2 528409 528969 POZ 斑点型POZ蛋白Speckle-type POZ protein
Ah.ZU2VWU 549286 549294 - UMP 焦磷酸化酶UMP pyrophosphorylase (EC:2.4.2.9)
Ah.0TKI11 549780 550463 - 胚胎发育晚期丰富蛋白Late embryogenesis abundant protein
Ah.GJ51RN 577341 577644 CH 负向运动蛋白Minus-end-directed kinesin
Ah.8KGR77 583793 584881 Winged helix-turn-helix DNA修复调节Regulation of DNA repair
Ah.VAAE0N 585253 585629 Protein kinase 苏氨酸特异性蛋白激酶Threonine-specific protein kinase (EC:2.7.11.1)
Ah.864J84 600588 600698 - 参与内质网到高尔基转运的膜蛋白
Membrane protein involved in ER to Golgi transport
Ah.B8WNJH 606120 606501 - 热激蛋白90 heat shock protein, HSP90
[1]
国家统计局. 2022中国统计年鉴. 北京: 中国统计出版社, 2022.
National Bureau of Statistics. China Statistical Yearbook 2022. Beijing: China Statistics Press, 2022. (in Chinese)
[2]
廖伯寿. 花生在中国食物安全和农业发展中作用的经济学分析. 粮食与油脂, 2001(10): 28-29.
LIAO B S. Economic aspects of groundnut in food security and agricultural development in China. Cereals & Oils, 2001(10): 28-29. (in Chinese)
[3]
廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42(2): 161-166.
LIAO B S. A review on progress and prospects of peanut industry in China. Chinese Journal of Oil Crops Sciences, 2020, 42(2): 161-166. (in Chinese)
[4]
廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34(6): 999-1004.
LIAO B S, LEI Y, WANG S Y, LI D, HUANG J Q, JIANG H F, REN X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agronomica Sinica, 2008, 34(6): 999-1004. (in Chinese)
[5]
姜慧芳, 任小平. 我国栽培种花生资源农艺和品质性状的遗传多样性. 中国油料作物学报, 2006, 28(4): 421-426.
JIANG H F, REN X P. Genetic diversity of peanut resource on morphological characters and seed chemical components in China. Chinese Journal of Oil Crops, 2006, 28(4): 421-426. (in Chinese)
[6]
陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009, 42(9): 3048-3057. doi: 10.3864/j.issn.0578-1752.2009.09.005.
CHEN S L, LI Y R, CHENG Z S, LIAO B S, LEI Y, LIU J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Scientia Agriculture Sinica, 2009, 42(9): 3048-3057. doi: 10.3864/j.issn.0578-1752.2009.09.005. (in Chinese)
[7]
殷冬梅, 张幸果, 王允, 崔党群. 花生主要品质性状的主成分分析与综合评价. 植物遗传资源学报, 2011, 12(4): 507-512, 518.

doi: 10.13430/j.cnki.jpgr.2011.04.004
YIN D M, ZHANG X G, WANG Y, CUI D Q. Principal component analysis and comprehensive evaluation on quality traits of peanut parents. Journal of Plant Genetic Resources, 2011, 12(4): 507-512, 518. (in Chinese)
[8]
郭峰, 阮建, 王莹莹, 万书波, 彭振英. 利用变异系数分析花生品质性状应对环境变化的遗传稳定性研究. 山东农业科学, 2017, 49(9): 25-31.
GUO F, RUAN J, WANG Y Y, WAN S B, PENG Z Y. Study on genetic stability of peanut quality characters in response to environmental changes using coefficient of variation. Shandong Agricultural Sciences, 2017, 49(9): 25-31. (in Chinese)
[9]
王才斌, 刘云峰, 吴正锋, 郑亚萍, 万书波, 孙奎香, 孙学武, 冯昊. 山东省不同生态区花生品质差异及稳定性研究. 中国生态农业学报, 2008, 16(5): 1138-1142.
WANG C B, LIU Y F, WU Z F, ZHENG Y P, WAN S B, SUN K X, SUN X W, FENG H. Diversity and stability of peanut kernel quality in different ecological regions of Shandong province. Chinese Journal of Eco-Agriculture, 2008, 16(5): 1138-1142. (in Chinese)
[10]
郭洪海, 杨丽萍, 李新华, 杨萍, 万书波. 黄淮海区域花生生产与品质特征的研究. 中国生态农业学报, 2010, 18(6): 1233-1238.
GUO H H, YANG L P, LI X H, YANG P, WAN S B. Characteristics of production and quality of peanut in Huang-Huai-Hai region. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1233-1238. (in Chinese)
[11]
WANG M J, TU L L, LIN M, LIN Z X, WANG P C, YANG Q Y, ZHANG L, YE Z X, SHEN C, LI J Y, GUO K, ZHOU X L, NIE X H, LI Z H, MA Y Z, HUANG C, JIN S X, ZHU L F, YANG X Y, MIN L, YUAN D J, ZHANG Q H, LINDSEY K, ZHANG X L. Asymmetric sub-genome selection and cis-regulatory divergence 2 during cotton domestication. Nature Genetics, 2017, 49(4): 579-587.
[12]
WANG Y H, LIU S J, JI S L, ZHANG W W, WANG C M, JIANG L, WAN J M. Fine mapping and marker-assisted selection (MAS) of a low glutelin content gene in rice. Cell Research, 2005, 15(8): 622-630.

pmid: 16117852
[13]
KANG M S, AGGARVAL V D, CHIRWA R M. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis. Journal of Crop Improvement, 2006, 15(1): 97-120.
[14]
WU M L, ZHU Y J, CONG F, DAN R, WEN Y, WANG J, HUANG B H, LIAN Y X, ZHANG Y, HUANG R, GUO P J. Rapid detection of three rabbit pathogens by use of the Luminex x-TAG assay. BMC Veterinary Research, 2018, 14(127): 1-6.
[15]
高斌, 李洪珍, 崔顺立, 郭丽果, 陈焕英, 穆国俊, 杨鑫雷, 刘立峰. 北方花生育成品种(系)分子标记鉴定及系谱分析. 植物遗传资源学报, 2019, 20(6): 1472-1485.

doi: 10.13430/j.cnki.jpgr.20181218003
GAO B, LI H Z, CUI S L, GUO L G, CHEN H Y, MU G J, YANG X L, LIU L F. Molecular marker identification and pedigree analysis for peanut cultivated cultivars (lines) in northern China. Journal of Plant Genetic Resources, 2019, 20(6): 1472-1485. (in Chinese)
[16]
殷冬梅, 王允, 尚明照, 崔党群. 花生优异种质的分子标记与遗传多样性分析. 中国农业科学, 2010, 43(11): 2220-2228. doi: 10.3864/j.issn.0578-1752.2010.11.004.
YIN D M, WANG Y, SHANG M Z, CUI D Q. Genetic diversity analysis of peanut genotypes based on molecular markers. Scientia Agricultura Sinica, 2010, 43(11): 2220-2228. doi: 10.3864/j.issn.0578-1752.2010.11.004. (in Chinese)
[17]
房元瑾, 孙子淇, 齐飞艳, 刘华, 黄冰艳, 董文召, 张新友. 花生分子标记辅助育种研究进展与展望. 中国油料作物学报, 2024, 46(4): 728-736.

doi: 10.19802/j.issn.1007-9084.2022333
FANG Y J, SUN Z Q, QI F Y, LIU H, HUANG B Y, DONG W Z, ZHANG X Y. Advances of marker-assisted selection in peanut breeding. Chinese Journal of Oil Crops, 2024, 46(4): 728-736. (in Chinese)
[18]
姜慧芳, 段迺雄, 任小平. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
JIANG H F, DUAN N X, REN X P. Descriptive Specification and Data Standard for Germplasm Resources of Peanut. Beijing: China Agriculture Press, 2006. (in Chinese)
[19]
张月, 王志慧, 淮东欣, 刘念, 姜慧芳, 廖伯寿, 雷永. 花生含油量的遗传基础与QTL定位研究进展. 作物学报, 2024, 50(3): 529-542.

doi: 10.3724/SP.J.1006.2024.34083
ZHANG Y, WANG Z H, HUAI D X, LIU N, JIANG H F, LIAO B S, LEI Y. Research progress on genetic basis and QTL mapping of oil content in peanut seed. Acta Agronomica Sinica, 2024, 50(3): 529-542. (in Chinese)

doi: 10.3724/SP.J.1006.2024.34083
[20]
HU X H, ZHANG S Z, MIAO H R, CUI F G, SHEN Y, YANG W Q, XU T T, CHEN N, CHI X Y, ZHANG Z M, CHEN J. High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Scientific Reporters, 2018, 8(1): 5479.
[21]
HUANG L, HE H Y, CHEN W G, REN X P, CHEN Y N, ZHOU X J, XIA Y L, WANG X L, JIANG X G, LIAO B S, JIANG H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2015, 128: 1103-1115.
[22]
WANG Z H, HUAI D X, ZHANG Z H, CHENG K, KANG Y P, WAN L Y, YAN L Y, JIANG H F, LEI Y, LIAO B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Frontiers in Plant Science, 2018, 9: 827.

doi: 10.3389/fpls.2018.00827 pmid: 29997635
[23]
LI L, YANG X L, CUI S L, MENG X H, MU G J, HOU M Y, HE M J, ZHANG H, LIU L F, CHEN X Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Frontiers in Plant Science, 2019, 10: 745.
[24]
ZHOU X J, DONG Y, ZHAO J J, HUANG L, REN X P, CHEN Y N, HUANG S M, LIAO B S, LEI Y, LI Y R, JIANG H F. Genomic survey sequencing for development and validation of single-locus SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2016, 17: 420.
[25]
BACHLAVA E, BURTON J W, BROWNIE C, WANG S B, AUCLAIR J, CARDINAL A J. Heritability of oleic acid content in soybean seed oil and its genetic correlation with fatty acid and agronomic traits. Crop Science, 2008, 48(5): 1764-1772.
[26]
DE BLAS F J, BRUNO C, ARIAS R S, BALLÉN-TABORDA C, MAMANÍ E M, ODDINO C, ROSSO M H, COSTERO B D, BRESSANO M, SOAVE J H, SOAVE S J, BUTELER M I, SEIJO J G, MASSA A N. Genetic mapping and QTL analysis for peanut smut resistance. BMC Plant Biology, 2021, 21(1): 312.
[27]
TSAI Y C, BRENNEMAN T B, GAO D, CHU Y, LAMON S, BERTIOLI D J, LEAL-BERTIOLI S C M. The identification of the peanut wild relative Arachis stenosperma as a source of resistance to stem rot and analyses of genomic regions conferring disease resistance through QTL mapping. Agronomy, 2024, 14(7): 1442.
[28]
PRIOLLI R H G, CARVALHO C R L, BAJAY M M, PINHEIRO J B, VELLO N A. Genome analysis to identify SNPs associated with oil content and fatty acid components in soybean. Euphytica, 2019, 215(3): 54.
[29]
SUN Z, QI F, LIU H. QTL map of quality traits in peanut using whole-genome resequencing. The Crop Journal, 2022, 10(1): 177-184.
[30]
LIU N, GUO J, ZHOU X J, WU B, HUANG L, LUO H Y, CHEN Y N, CHEN W G, LEI Y, HUANG Y, LIAO B S, JIANG H F. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a 0.8- Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2020, 133: 37-49.
[31]
YANG Y Q, LI Y R, CHENG Z S, SONG Y H, WANG J. Genetic analysis and exploration of major effect QTLs underlying oil content in peanut. Theoretical and Applied Genetics, 2023, 136(5): 97.
[32]
JUNG S, POWELL G, MOORE K, ABBOTT A. The high oleate trait in the cultivated peanut [Arachis hypogaea L.]: II. Molecular basis and genetics of the trait. Molecular and General Genetics, 2000, 263(5): 806-811.
[33]
LÓPEZ Y, NADAF H L, SMITH O D, CONNELL J P, REDDY A S, FRITZ A K. Isolation and characterization of the Delta(12)-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical and Applied Genetics, 2000, 101(7): 1131-1138.
[34]
PETAL M, JUNG S, MOORE K, POWELL G, ABBOTT A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and Applied Genetics, 2004, 108: 1492-1502.
[35]
WANG M L, TONNIS B, AN Y, PINNOW D L, TISHCHENKO V, PEDERSON G A. Newly identified natural high-oleate mutant from Arachis hypogaea L. subsp. hypogaea. Molecular Breeding, 2015, 35: 186.
[36]
郭建斌, 成良强, 李威涛, 刘念, 罗怀勇, 丁膺宾, 喻博伦, 陈伟刚, 黄莉, 周小静. 花生蔗糖含量与蛋白质和含油量的相关性分析及蔗糖含量QTL定位. 作物学报, 2023, 49(10): 2698-2704.
GUO J B, CHENG L Q, LI W T, LIU N, LUO H Y, DING Y B, YU B L, CHEN W G, HUANG L, ZHOU X J. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut. Acta Agronomica Sinica, 2023, 49(10): 2698-2704. (in Chinese)

doi: 10.3724/SP.J.1006.2023.24251
[37]
张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012, 34(3): 311-315.
ZHANG X Y, HAN S Y, XU J, YAN M, LIU H, TANG F S, DONG W Z, HUANG B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chinese Journal of Oil Crop Sciences, 2012, 34(3): 311-315. (in Chinese)
[1] YANG QiRui, LI LanTao, ZHANG Xiao, ZHANG Qian, ZHANG YinJie, ZHANG Duo, WANG YiLun. Effects of Potassium Application Dosage on Yield, Quality and Light Temperature Physiological Characteristics of Summer Peanut [J]. Scientia Agricultura Sinica, 2024, 57(7): 1335-1349.
[2] ZHAO ZhenJian, WANG Kai, CHEN Dong, SHEN Qi, YU Yang, CUI ShengDi, WANG JunGe, CHEN ZiYang, YU ShiXin, CHEN JiaMiao, WANG XiangFeng, TANG GuoQing. Integrated Aanalysis of Genome and DNA Methylation for Screening Key Genes Related to Pork Quality Traits [J]. Scientia Agricultura Sinica, 2024, 57(7): 1394-1406.
[3] PAN Jing, MENG ZhiHao, WANG Sen, WANG HaiBo, HE Ping, CHANG YuanSheng, ZHENG WenYan, LI LinGuang, WANG Chen, WANG Ping, HE XiaoWen. Diversity Analysis and Comprehensive Evaluation of Fruit Quality Traits in Reciprocal Cross Progenies of Apple Golden Delicious and Fuji Nagafu No.2 [J]. Scientia Agricultura Sinica, 2024, 57(24): 4945-4963.
[4] XIONG ShangYe, ZHANG Xiang, LIANG BaoHui, YE YangDong, LI YuYang, ZHU Xiao, ZHU ZhiHong, GUAN HuaZhong, ZHANG Shuai, WU JianGuo, HU Jie. Fine Mapping and Analysis of Pyramiding Effects of Rice Brown Planthopper Resistance Genes QBPH1 and QBPH4 [J]. Scientia Agricultura Sinica, 2024, 57(23): 4619-4631.
[5] ZHU YanTing, DANG Hao, NIU SiJie, LIN JingYi, YANG Hua, YANG Qiang, ZHANG Chong, CAI TieCheng, ZHUANG WeiJian, CHEN Hua. Screening of Interaction Proteins with AhSAP1 in Peanut Using the Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(21): 4376-4390.
[6] LIU Han, DING Di, WANG JiangTao, ZHENG Bin, WANG XiaoXiao, ZHU ChenXu, LIU Juan, LIU Ling, FU GuoZhan, JIAO NianYuan. Coordinated Effects of Maize Ear Type and Planting Density on Interspecific Competition in Maize-Peanut Intercropping System [J]. Scientia Agricultura Sinica, 2024, 57(19): 3758-3769.
[7] YE XueLian, CHEN JingWen, YAO XiangTan, QUAN XinHua, HUANG Li. Genetic Analysis of Leaf Wrinkling Traits in Non-Heading Chinese Cabbage [J]. Scientia Agricultura Sinica, 2024, 57(18): 3684-3694.
[8] ZHAO ZhuoChao, CAO HaoTian, ZHOU ZiXin, QU JiaLe, LI Ze, XU MingYang, YANG QiWei, ZHANG Bin, WANG NingZe, WU YongZhen, SUN Han, QIN Ran, ZHAO ChunHua, CUI Fa. Genetic Effects of the 1BL·1RS Chromosome on Wheat Yield and Quality-Related Traits [J]. Scientia Agricultura Sinica, 2024, 57(16): 3116-3126.
[9] HU JiaYu, GAO BingYang, GAO YiFan, YUAN ShiLun, QI Xin, HUANG YuFang, YAN JunYing, ZHAO YaNan, YE YouLiang. Effects of Magnesium Fertilizer Dosage on Nutrient Absorption and Photosynthetic Characteristics in Peanuts [J]. Scientia Agricultura Sinica, 2024, 57(16): 3220-3233.
[10] LIU Hua, ZENG FanPei, WANG Qian, CHEN GuoQuan, MIAO LiJuan, QIN Li, HAN SuoYi, DONG WenZhao, DU Pei, ZHANG XinYou. Development and Identification of an Interspecific Hexaploid Hybrid Between an A. hypogaea Cultivar and a Wild Species Arachis sp. 30119 in Peanut [J]. Scientia Agricultura Sinica, 2024, 57(10): 1870-1881.
[11] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[12] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[13] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[14] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[15] SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck [J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!